## The Giant Component and 2-Core in Sparse Random Outerplanar Graphs

giant component
core
outerplanar graphs
singularity analysis

- Mathematics of computing → Random graphs
- Mathematics of computing → Generating functions

**Abstract.**
Let A(n,m) be a graph chosen uniformly at random from the class of all vertex-labelled outerplanar graphs with n vertices and m edges. We consider A(n,m) in the sparse regime when m=n/2+s for s=o(n). We show that with high probability the giant component in A(n,m) emerges at m=n/2+O (n^{2/3}) and determine the typical order of the 2-core. In addition, we prove that if s=ω(n^{2/3}), with high probability every edge in A(n,m) belongs to at most one cycle.