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Random planar graph P (n,m)

Pick a planar graph with n vertices and m edges
(uniformly at random).

m = 14n = 24
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Random planar graph P (n,m)

m = m(n) (e.g. n/2, n, . . .)

n→∞

How does the component structure change when m varies?
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Random planar graph P (n,m)

Theorem [Kang,  Luczak, 2012]

The giant component emerges at

m = n/2 +O
(
n2/3

)
.

m ≤ n/2 +O
(
n2/3

)
m ≥ n/2 + ω

(
n2/3

)
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Random outerplanar graphs

Outerplanar graph

has a planar drawing, such that all vertices belong to the outer face.

3 7
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Random outerplanar graphs

Theorem [Kang-M. 2020]

Outerplanar graphs feature a similar phase transition as planar graphs, i.e.
the giant component emerges at

m = n/2 +O
(
n2/3

)
.
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Core–kernel approach for planar graphs

Decomposition

Complex part: union of components with at least two cycles

Core: maximal subgraph of minimum degree at least two

Kernel : replace paths consisting of vertices of degree two by edges
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Core–kernel approach for planar graphs

Construction

Start with a kernel

Subdivide edges to obtain core

Attach rooted trees to get complex part

Add trees and unicyclic components
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Core–kernel approach for planar graphs

Graph

Complex part

Core

Kernel
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Core–kernel approach for planar graphs

Key fact: a graph is planar ⇐⇒ its kernel is planar

BUT: A non-outerplanar graph can have an outerplanar kernel.

K2,3 kernel of K2,3
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Core approach for outerplanar graphs

A graph is outerplanar ⇐⇒ its core is outerplanar

Determine C(n,m) = #cores with n vertices and m edges

Estimate C(n+1,m+1)
C(n,m)

Lower bound: Cactus graphs

Upper bound: Planar graphs

→

3 7
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Summary

Emergence of giant component at m = n/2 +O
(
n2/3

)

Proof idea for planar graphs: Core–kernel approach

Key fact: a graph is planar ⇐⇒ its kernel is planar

Proof idea for outerplanar graphs: Core approach

Direct analysis of the core (without using the kernel)
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