## The First Bijective Proof of the Alternating Sign Matrix Theorem Theorem

- Mathematics of computing → Combinatoric problems
- Mathematics of computing → Combinatorial algorithms
- Mathematics of computing → Enumeration

**Abstract.**
Alternating sign matrices are known to be equinumerous with descending plane partitions, totally symmetric self-complementary plane partitions and alternating sign triangles, but a bijective proof for any of these equivalences has been elusive for almost 40 years. In this extended abstract, we provide a sketch of the first bijective proof of the enumeration formula for alternating sign matrices, and of the fact that alternating sign matrices are equinumerous with descending plane partitions. The bijections are based on the operator formula for the number of monotone triangles due to the first author. The starting point for these constructions were known "computational" proofs, but the combinatorial point of view led to several drastic modifications and simplifications. We also provide computer code where all of our constructions have been implemented.