

INVITATION TO THE DOCTORAL SEMINAR

Michaela Polley

Universität Klagenfurt

"The 334-Triangle Graph of $SL_3(\mathbb{Z})$ "

9 N.1.43

Wednesday, 13 December 2023

② 10:35 a.m.

ERAAD

Abstract

The 334-triangle group, $T = \langle a, b \mid a^3 = b^3 = (ab)^4 = e \rangle$, is important in the study of thin groups because its representations in $SL_3(\mathbb{Z})$ provide examples of thin group candidates. We introduce a graph on the order three elements of a group *G* which visualizes the representations of *T* in *G*. For any group *G*, the 334-triangle graph of *G*, which we denote by $\Delta 334(G)$, is the graph whose vertices are the elements $a \in G$ such that $a^3 = e$, in which there is an edge between two vertices *a* and *b* if and only if $(ab)^4 = e$. In this talk we will prove a number of properties of 334-triangle graphs in general before narrowing our focus to $\Delta 334(SL_3(\mathbb{Z}))$, $\Delta 334(SL_3(\mathbb{Z}/2\mathbb{Z}))$, and $\Delta 334(SL_3(\mathbb{Z}/3\mathbb{Z}))$. We will use information about $\Delta 334(SL_3(\mathbb{Z}/2\mathbb{Z}))$ to show that the chromatic number of $\Delta 334(SL_3(\mathbb{Z}))$ is at most eight. By generating a portion of $\Delta 334(SL_3(\mathbb{Z}))$ we show its chromatic number is at least four; we conjecture it is equal to four.

Andrei Asinowski and the Department of Mathematics look forward to seeing you at the talk!