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ABSTRACT

This thesis investigates the asymptotic behaviour of algebraic invariants associated with
powers of monomial ideals, with particular emphasis on associated primes and the number

of minimal generators.

After introducing the necessary background on monomial ideals and their combinatorial in-
terpretations, we investigate the number of generators of high powers of bivariate monomial
ideals. We establish an explicit bound beyond which the number of minimal generators
becomes polynomial in the power, and provide a method for constructing the minimal
generating sets of these powers from certain subideals of a fixed power, thereby reducing
computational complexity. These results facilitate the effective computation of Hilbert

functions and related invariants.

We then study the structure of Buchberger graphs and their relation to associated primes,
introducing the lcm-complex to generalize results from strongly generic to arbitrary mono-
mial ideals. This framework allows for a combinatorial characterization of associated primes
in terms of simplicial complexes derived from least common multiples of the minimal gen-

erators of an ideal.

For monomial ideals in three variables, we apply the structural results from the bivariate
case to derive bounds on the stability index of associated primes, considering cases based
on the number and structure of minimal primes. Finally, we turn to monomial ideals in
an arbitrary number of variables and address the problem of bounding the copersistence
index—the power after which the sequence of associated primes of powers of an ideal is
weakly decreasing. We present a method to derive bounds based on systems of linear
inequalities that encode information about associated primes. Our approach yields upper
bounds for the copersistence index that improve the existing bound by an exponential
factor.

These results contribute to a better understanding of the asymptotic properties of monomial
ideals, particularly the behaviour of their associated primes and minimal generators under
powers, and provide new tools for their analysis within both algebraic and combinatorial

frameworks.






ZUSAMMENFASSUNG

Diese Dissertation beschaftigt sich mit dem asymptotischen Verhalten von Potenzen von
Monomialidealen. Im Mittelpunkt stehen dabei insbesondere die assoziierten Primideale,
die Anzahl minimaler Erzeuger sowie die Potenz, ab der sich ein stabiles Verhalten einstellt

und anfangliche Irregularitdten nicht mehr auftreten.

Zu Beginn werden die notwendigen Grundlagen zu Monomialidealen und deren Potenzen
eingefiihrt. AnschlieBend analysieren wir die Struktur bivariater Monomialideale. Ein zen-
trales Ergebnis ist eine explizite Beschreibung hoher Potenzen solcher Ideale, basierend
auf der Verkniipfung der sogenannten Staircase-Diagramme bestimmter Teilideale einer
konkreten Potenz. Das ab einer gewissen Potenz auftretende periodische Muster in diesen
Diagrammen ermoglicht eine explizite Beschreibung der minimalen Erzeuger aller hoheren
Potenzen und damit auch ihrer Anzahl. Diese Reduktion der strukturellen Analyse auf eine
einzelne Potenz erlaubt eine wesentlich effizientere Berechnung der minimalen Erzeuger

hoher Potenzen.

Im weiteren Verlauf untersuchen wir die Struktur von Buchberger-Graphen und deren
Zusammenhang mit assoziierten Primidealen. Zur Verallgemeinerung bekannter Resul-
tate von stark generischen auf beliebige Monomialideale wird der sogenannte lcm-Komplex
eingefithrt. Dieses Konzept erlaubt eine kombinatorische Charakterisierung der assozi-
ierten Primideale in Form von Simplizialkomplexen, die sich aus den kleinsten gemeinsamen

Vielfachen der minimalen Erzeuger ergeben.

Fir Monomialideale in drei Variablen libertragen wir die strukturellen Erkenntnisse aus dem
bivariaten Fall und leiten Schranken fiir den Stabilitatsindex der assoziierten Primideale ab.
Dabei zeigt sich, dass sich Ideale in drei Variablen im Wesentlichen drei Fallen zuordnen

lassen, die sich anhand ihrer minimalen Primideale unterscheiden.

AbschlieBend betrachten wir den sogenannten Kopersistenzindex—die Potenz, ab der die
Folge der assoziierten Primideale schwach monoton fallend ist—fiir Monomialideale in
beliebig vielen Variablen. Hierzu entwickeln wir eine Methode auf Basis linearer Ungle-
ichungssysteme, die Informationen iiber die assoziierten Primideale kodieren. Unser Ansatz
liefert obere Schranken, die unabhangig von der konkreten Wahl des Ungleichungssystems

sind und bestehende Resultate um einen exponentiellen Faktor verbessern.

Insgesamt leisten die erzielten Ergebnisse einen Beitrag zum tieferen Verstandnis der asymp-
totischen Eigenschaften von Monomialidealen—insbesondere im Hinblick auf das Verhal-
ten ihrer assoziierten Primideale und minimalen Erzeuger bei Potenzbildung—und er6ffnen

neue Perspektiven fiir deren algebraische und kombinatorische Analyse.
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R The real numbers

B
=

Closed interval {z € R | a <z < b}
A commutative ring with unity

The ideal generated by a set F’
Field of characteristic 0

Radical of an ideal 1

Sk

I:J The ideal quotient of two ideals I and J
Ass(R/I) Set of associated primes of an ideal I in the ring R
&) Direct sum

ker ¢ The kernel of a map ¢

I Integral closure of an ideal I
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min Minimum
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1. INTRODUCTION

Monomial ideals play a central role in commutative algebra and due to their many com-
binatorial interpretations, they are one of the main objects in combinatorial commutative

algebra. There are several properties of monomial ideals that make them so useful.

Performing algebraic operations is often far simpler on monomials than on arbitrary polyno-
mials. Thus, certain invariants are more easily determined for monomial ideals. It is more
efficient to analyze monomial ideals computationally than arbitrary ideals, as their structure

allows for more efficient algorithmic techniques in computer algebra systems.

Monomial ideals are closely related to combinatorial objects such as graphs, simplicial
complexes, and posets, which allows algebraic techniques to be applied to combinatorial
problems and vice versa. The study of the connection between Algebra and Combinatorics
was encouraged by Stanley's proof of the Upper Bound Conjecture [59] for simplicial
spheres. This marked the beginning of a deep and ongoing interplay between algebra and
combinatorics. For instance, properties of finite simple graphs can be studied through the
squarefree monomial cover and edge ideals. This connection between graphs and monomial
ideals has been first explored by Froberg [17], Villarreal [66], and Simis, Vasconcelos, and
Villarreal [57].

With the development of Grobner basis theory, many problems concerning polynomials
can be reduced to analogous problems on monomials by defining a suitable term order.
This allows to deduce certain properties of an ideal from its initial monomial ideal. Bruno
Buchberger introduced Grobner bases in his 1965 Ph.D. thesis, named after his advisor
Wolfgang Grobner. His algorithm to compute Grdbner bases builds on what he called S-
polynomials. Buchberger's criterion states that a set of polynomials F' is a Grobner basis if
each S-polynomial can be reduced to zero. The S-polynomials depend on the initial terms
of the polynomials in F' and yield a set of elements that generate the module of first syzygies
of the (monomial) initial ideal of F'. This set is generally not a minimal generating set.
According to Buchberger’s second criterion, knowing a smaller one allows the algorithm
to compute Groébner bases more efficiently. Thus, the study of monomial ideals and their

syzygies play a central role in understanding the structure of general ideals.

One of the main topics of this thesis, and a fundamental tool for gaining insight into the
structure of an ideal, is the study of its associated primes. Broadly speaking, associated
primes generalize the notion of prime factorization for integers and can be viewed as the
minimal building blocks of an ideal. The concept often becomes clearer when demonstrated
through examples involving structures related to ideals. For instance, edge ideals are
monomial ideals generated by the edges of a graph; their associated primes correspond

to the minimal vertex covers of the graph (cf. [6, Lemma 2.13]). The cover ideal is the



Alexander dual of the edge ideal, and its associated primes correspond to the edges of the
graph (cf. [6, Lemma 2.12]). For finite simple hypergraphs, there is an intrinsic relation
between the associated primes of powers of the cover ideal and colouring properties of
the underlying graph [16]. In algebraic geometry, the associated primes of the defining
ideal of a variety correspond to the defining ideals of its irreducible components (cf. [11,
Section 3.8]). And in perhaps the simplest and most intuitive case, the associated primes
of an ideal in the ring of integers correspond precisely to the prime factors of the integer

that generates the ideal.

Main objectives. A key property of monomial ideals is that products are again monomial
ideals. In particular, if I is a monomial ideal than all powers I are again monomial
ideals. This naturally leads to the question of how certain invariants of a monomial ideal
behave as we consider its powers. The aim of this thesis is to better understand the
asymptotic structure of powers of monomial ideals. While many invariants behave highly
irregular for small powers and are sometimes only understood in special cases, it is known
that the changes in certain invariants eventually stabilise. For instance, the sequences
(depth(R/I™))nen and (Ass(R/I™))nen are eventually constant [4, 5], the regularity of I"
is given by an affine function of n for all sufficiently large n, i.e., there exist constants a
and b such that reg(I™) = an + b for n > 0 [10, 35], and there exists a polynomial
function in n that describes the number of generators p(1™) for n large enough. We focus
on the associated primes and number of generators, with the aim of bounding the power

of stabilisation and describing the stabilised form.
Overview of the thesis.

Chapter 2: Preliminaries. We begin by recalling fundamental definitions and key prop-
erties of monomial ideals and their associated prime ideals. We use staircase diagrams as
a tool to visualize certain properties. Especially, we point out their relation to the asso-
ciated primes of an ideal. An overview of some related combinatorial objects is provided,
including a selection of results that are relevant for this thesis. Finally, we discuss powers
of monomial ideals, providing a brief summary of the tools and frameworks used in their

study and introducing some questions explored in this context.

Chapter 3: Minimal generating sets of large powers of bivariate monomial ideals.
This chapter is based on the submitted preprint [48] and is joint work with Roswitha
Rissner. We provide an explicit description of the minimal generating sets of large powers
of bivariate monomial ideals. Specifically, we show that for sufficiently large s € N, every
higher power I51¢ can be constructed from certain subideals of I°. We further show that
such an s can be chosen to satisfy s < u(I)(d? — 1) + 1, where d is a constant determined
by the degrees of the minimal generators of I, bounded above by the maximal z- or y-
degree appearing in G(I). This yields an explicit description of G(I5*) in terms of G(I®),
which significantly reduces the computational complexity of determining high powers of
bivariate monomial ideals. Further, this description enables the computation of the Hilbert

polynomial of I, and thus u(I™) for all n > s. We include runtime measurements for



the SageMath implementation, which is available as an ancillary file on the arXiv page
of [48].

Chapter 4: Buchberger graphs and the Icm-complex. The content of this chapter
is the object of a paper in preparation. Buchberger graphs were originally introduced to
reduce the generating set of the module of first syzygies of the initial ideal of a set of
monomials to enable a faster computation of Grobner bases. We explore some properties
of Buchberger graphs of ideals in three variables and study the connections of Buchberger
graphs of ideals in 7 variables to the associated primes of the underlying ideal. Since some
results apply only to strongly generic ideals, we introduce the lcm-complex of an ideal as a
tool to extend these findings to general monomial ideals. We provide a description of the

associated primes of an ideal in terms of the faces of its lcm-complex.

Chapter 5: Stability of ideals in three variables. The content of this chapter is the
object of a paper in preparation jointly with Rowitha Rissner. We build on the structural
results for bivariate monomial ideals from Chapter 3 to establish bounds on the stability
index of associated primes of monomial ideals in three variables. Specifically, when the ideal
has one or two minimal prime ideals of height two, the stabilisation point of the staircases
associated with certain related bivariate monomial ideals—described in Chapter 3—serves

as a bound for the stability index of the ideal in three variables.

Chapter 6: Bounding the copersistence index in any number of variables. This
chapter is based on joint work with Clemens Heuberger and Roswitha Rissner [30], published
in the Journal of Linear Algebra and its Applications. L& Tuan Hoa [31] gave an upper
bound for the stability index of arbitrary monomial ideals. This bound depends on the
generators of the ideal and is obtained by separately bounding the powers of I after which
the sequence of associated primes is non-decreasing and non-increasing, respectively. In this
chapter, we focus on the latter and call the smallest such number the copersistence index.
We take up the proof idea of L& Tudn Hoa, who exploits a certain system of inequalities
whose solution sets store information about the associated primes of powers of I. However,
these proofs are entangled with a specific choice for the system of inequalities. In contrast
to that, we present a generic ansatz to obtain an upper bound for the copersistence index
that is uncoupled from this choice of the system. We establish properties for a system of
inequalities to be eligible for this approach to work. We construct two suitable inequality
systems to demonstrate how this ansatz yields upper bounds for the copersistence index
and compare them with Hoa's. One of the two systems leads to an improvement of the

bound by an exponential factor.






2. PRELIMINARIES

We start with a short historical overview of ideals and their associated primes. By the
Fundamental Theorem of Number Theory, every integer can be uniquely decomposed into
a product of prime numbers. The prime numbers appearing in this factorization, along with
their exponents, are uniquely determined. This property of uniquely decomposing elements
into a product of elements that cannot be reduced further does not hold in any commutative
ring with identity. For example, in the ring Z[v/—5] there are two fundamentally different
factorizations of the element 6, namely 2:3 = 6 = (1++/—5)-(1—+/=5). As a workaround,
Ernst Kummer and Richard Dedekind established in the 1800s that uniqueness is restored
by factoring elements into products of ideals, which are, in a sense, idealized versions of

numbers.

In the 1900s, Emanuel Lasker and Emmy Noether observed that decomposing ideals into
finite intersections—rather than products—of irreducible ideals, i.e., ideals that cannot be
written as a nontrivial intersection of two ideals, offers certain advantages. The Lasker-
Noether Theorem (1905, 1921) states that every ideal in a commutative Noetherian ring

has such a decomposition.

Interpreting this in terms of ideals, we see that any ideal in the ring Z can be uniquely
expressed as an intersection of ideals generated by powers of prime numbers. For example,
consider 140 = 22.5-7. The ideal generated by 140, consisting of all its multiples, is given
by the intersection of the ideals (22), (5), and (7). That is, (140) = (22) N (5) N (7) is the

unique way to write (140) as an intersection of ideals generated by prime powers.

However, when generalizing such decompositions to other settings, uniqueness is generally
lost. Despite this, the underlying prime ideals—the associated primes—remain uniquely
determined.

2.1 General facts about monomial ideals

We introduce some terminology and facts about monomial ideals and associated primes
of monomial ideals. For a thorough introduction we refer to Chapter 1 in Jiirgen Herzog's
and Takayuki Hibi's textbook [25] on monomial ideals.

An ideal in a commutative ring R is a nonempty subset that is closed under addition
and invariant under multiplication by elements of R. We write (g1, ...,gn) for the ideal
generated by the elements g1, ..., g, € R, that'is, (g1,...,9n) = {r191 + -+ + Tngn |
T1,...,™ € R}. Let k[x1,...,z,] be the polynomial ring in r variables over a field k of
characteristic 0. A monomial is a product of powers of the variables x7* ---z%" for a,

..., a € Np.



Notation 2.1.1. For a = (a4, ..., a,) € Nj,, we use the notation 2% := z{* - - 2.

Notation 2.1.2. Let f = 2 € k[z1,...,z,] with @ = (a1,...,a,) € Nj. For every
i€ {l,...,7}, we write deg; f := a; (sometimes also deg, f). Further, we write deg f :=
(aty...,ar).

Naturally, the set of all monomials forms a k-basis of R. A monomial ideal is an ideal
generated by monomials and again, the monomials contained in a monomial ideal form a
k-basis of that ideal. Consequently, a monomial ideal is described entirely by its mono-
mials. In fact, it suffices to choose those monomials which are minimal with respect to
divisibility.

Proposition 2.1.3 (cf. [25, Proposition 1.1.6]). Each monomial ideal I has a unique min-
imal set of monomial generators. More precisely, let G be the set of monomials in I which
are minimal with respect to divisibility. Then G is the unique minimal set of monomial

generators.

Notation 2.1.4. For a monomial ideal I, we denote by G(I) the set of its minimal monomial

generators. Further, we denote by p(I) := |G(I)| the number of minimal generators of I.
Monomial ideals behave nicely under algebraic operations, as listed below.

Fact 2.1.5 (cf. [25, Chapter 1.2]). Let I, J C R be monomial ideals. Then the following
properties hold:

(1) The sum I + J is a monomial ideal and G(I + J) C G(I) U G(J).

(2) The intersection IN.J is a monomial ideal and G(INJ) C {lem (u,v) | u € G(I), v €
G(J)}-

(3) The product I - J is a monomial ideal and G(I - J) C G(I) - G(J).

(4) The colon ideal I : J :={w € R|wJ C I} is a monomial ideal.

(5) The radical VT = {w € R|3In € N:w" € I} is a monomial ideal.

Throughout, we often implicitly use these basic properties of monomial ideals without

referring to Fact 2.1.5.

Remark 2.1.6. If [ is a monomial ideal, then the radical of I is a squarefree monomial
ideal and it is generated by the monomials obtained by setting every non-zero exponent in

the generators of I to 1.



2.1.1 Staircase diagrams

We often identify a monomial in 7 variables with the point in R” defined by its exponent
vector. We use this translation to visualise ideals in two or three variables. Moreover, the
minimal generators of a monomial ideal in two variables = and y are always of the form

:B‘“ybl, . x“Sbe, where

a1 < ag < -+ < ag, and

b1 > by > -+ > bs.

Definition 2.1.7. We say a monomial u properly divides a monomial v, write u |, v, if
u | v and the degree of u is different from the degree of v in every variable that occurs
in v. We call a monomial v € I a surface monomial of [ if it is not proper divisible by

any monomial in 1.

Fig. 2.1: A visualisation of the ideal
(a1,b1)¢ (y*, 2%y3, 23y, 2°) in two variables.
All the grid points in the shaded

(ag,by)e area correspond to monomials in
the ideal. The grid points on the

staircase-line connecting the min-

imal generators correspond to the

;b3)e
(a3, b3) —’ surface monomials of the ideal.

O X
(a47 b4)

Definition 2.1.8 (cf. [43, Definition 3.6]). The staircase surface (or staircase diagram)
of a monomial ideal I in r variables is the topological boundary of the space of vectors
v € R” for which there is some monomial f € I satisfying deg; f < wv; forall 1 <i <.

Remark 2.1.9. The integer points on the staircase surface of an ideal are precisely its

surface monomials.

Example 2.1.10. Figure 2.2 illustrates the staircase surface of the monomial ideal
I = (22, 2%y, yz,2y°) C K[z, y, 2.
All grid points on the coloured surface correspond to surface monomials of I. The empty

boxes indicate that the surface continues infinitely in the corresponding directions.

The “inward-pointing corners” (white dots) correspond to the minimal generators of I.
The "outward-pointing corners” are marked with black dots and we will refer to them as

“outer corners”.



2

Fig. 2.2: The 3-dimensional staircase surface of the ideal I = (222, 2%y, yz, zy>).

Definition 2.1.11. A surface monomial m is called outer corner if 21 -- -z, | m and

m
Hj;éi Ly

is a surface monomial for every i € {1,...,r}.

Throughout this thesis, we use staircase diagrams to help illustrate key results and ex-
amples, as they provide a powerful means of visualising certain properties of monomial

ideals.

2.1.2 Primary decomposition and associated primes of monomial ideals

Primary decomposition is a standard topic in most introductory texts on commutative
algebra; see, for example, Atiyah and Macdonald [2, Chapter 4]. In this section, while
reviewing the fundamental definitions, we place particular emphasis on the behaviour and

properties of monomial ideals in this context.

Definition 2.1.12. An ideal [ in a ring R is called primary if for every product a-b € I,
either a € T or b € I for some n € N. Denoting by p the prime ideal /I, we then say
that I is p-primary.

Remark 2.1.13. Monomial prime and primary ideals can be characterized by their minimal

generating sets.

= A monomial ideal I C k[x1,...,z,] is primary if and only if for every i € {1,...,7},
whenever z; divides any minimal generator of I, then z' € G(I) for some n € N,

i.e., its staircase diagram is bounded in the direction of x; (see Figure 2.3).

= A monomial ideal is prime if and only if it is minimally generated by a subset of the

variables.



Fig. 2.3: From left to right: (23,222 23) is (z,2)-primary; (22,y) is (z,y)-primary;

(y% yz,2%) is (y, 2)-primary; (2, zy?2,9°,2%) is (x,y, z)-primary.

Definition 2.1.14. Let [ be an ideal in a ring R. A decomposition I = Q1 NQ2N---NQy,
for primary ideals Q1, @2, ..., @, C R is called a primary decomposition. A primary

decomposition is called irredundant, if

= /Q1, ..., v/Q, are distinct, and
w forallje{l,...,n}, I # Nixj Qi-

Remark 2.1.15. By splitting up products of variables, we find that every monomial ideal
has a primary decomposition with monomial primary components: If I has a minimal

generator f that is not a power of a variable, then we can factor f = f; - fa, where
ged(f1, fo) =1, f1 #1, and fo # 1. Then

I=(J+(f)N(J+(f),

where J is the ideal with minimal generators G(I)\ {f}. Repeating this process until every
generator of each component is a power of a variable leads to the desired decomposition.

To obtain an irredundant decomposition, we combine all components that have the same
radical: If p = /@1 = /@2, then we replace @)1 and Q2 with the intersection )1 N Q2.
Note that Q1 N Q2 = p.

Example 2.1.16. To compute a primary decomposition of the monomial ideal given by

I = (2324?22, 2%y2%,y*), we split up all appearing products step-by-step (Remark 2.1.15):

B,yz 2?y2%, y*) N (2, 9722, 2%y22 yh)

222y yt) 0 (2,9

(‘/Egzv y2Z2, 332y22, Y )
3

5oy a%y2h) 0 (23 2 ) N (z,yh)

5% %) N (23, 9% y) N (23,92, 2%) N (23, 2%, 0t N (2, 0%)

3

(x
= (z
( S S I CRE SN I TERTY)
= (x
= (z
= (a%,y) N (2%, y) N (2%, 9, 2%) N (2, 2%, y") N (297,

We can stop at this point, since the components in the last line are primary according to
Remark 2.1.13. Using Remark 2.1.6, we compute their radicals to be (z,y), (z,y, ), and

(y,z). To obtain an irredundant primary decomposition, we combine the components that



have the same radical:
(@ y*)N (2% y) = (2%,2%,%), (9% 2% N (% yh 2% = (2% y", %)
We end up with the irredundant primary decomposition
I= (22, 9%) N (29", 2%) N (2, 9).

See Figure 2.4 for the decomposition of the staircase of I.

Fig. 2.4: The left-most staircase is the one of I = (232, 9222, 2%y22,4*). We decompose
the staircase into a union of three staircases that correspond to the primary components
of I.

Remark 2.1.17. We can modify the (z,y, z)-primary component of the ideal in Exam-
ple 2.1.16 to obtain a different irredundant primary decomposition. For instance, it can
be replaced with (z*, 23y?, 232, y*, 2222, 4?22, 2*). This alteration does not affect the
overall intersection, as can be clearly seen from the staircase decomposition illustrated in
Figure 2.5.

Fig. 2.5: A different primary decomposition of I = (232, y?2%, 22y2%, y*).

Definition 2.1.18. Let I be an ideal in a Noetherian ring R with irredundant primary
decomposition I = @1 N ---N Q. Then the elements of the set

Ass(R/T) = {\/@,7\/@}

are called associated primes of I. The associated primes which are minimal with respect
to inclusion are called minimal primes of I and are denoted by Min(R/I). Every associated

prime that is not minimal is called embedded prime.

We state a second definition of associated primes that does not require the use of primary

10



decomposition and applies to arbitrary (not necessarily Noetherian) rings. In the Noetherian

case, this definition agrees with the one above (cf. [25, Chapter 1.3.2]).

Definition 2.1.19. For any ideal I in a ring R, a prime ideal p is an associated prime

of I if there exists an element w € R such that
p=Il:w={reR|rwel}
The element w is called a witness of p with respect to 1.

Example 2.1.20. In Example 2.1.16 we computed an irredundant primary decomposition
of the ideal I = (232,522, 2%y2%,y*). From this decomposition, we obtain the set of

associated primes:
Ass(R/T) = {(z,y), (y, 2), (z,y,2)}.

Its minimal primes of I are (z,y) and (y, z), while (z,y,2) is an embedded prime. Ac-
cording to Definition 2.1.19, these associated primes can also be identified via witnesses

as follows:

(z,y) =1:2%22, (y,2)=1:2%3, (x,9,2)=1: 2%y

For monomial ideals, the set of associated primes can be described as follows:

Fact 2.1.21 (cf. [25, Corollary 1.3.10]). If I is a monomial ideal in R = k[z1,...,x,], then
Ass(R/I) = {p prime ideal | there exists x* € R such thatp =1 : 2%},

that is, monomial witnesses always exist.
Notation 2.1.22. For r € N we write [r] :== {1,...,7}.

Notation 2.1.23. Let M be a subset of [r]. We denote by p(M) = (x; | i € M) C R,
the prime ideal generated by the variables z;, i € M. Further, we write mp == (z1,...,2,)
for the unique maximal monomial ideal in R. We simply write m if the ring is clear from

the context.

Notation 2.1.24. For a monomial ideal I in k[z1,...,x,], we denote by
supp(l) :== {i € [r] | z; divides a minimal generator of I}

and we call this set the support of 1.

11



Fact 2.1.25 (cf. [25, Section 1.3]). Let I be a monomial ideal in k[z1,...,x,]. Then

Ass(R/T) C {p(M) | M € supp(1)}.

Remark 2.1.26. As an immediate consequence of Fact 2.1.25, we get that if z; 1 g for all
g € G(I), then z; ¢ p for all p € Ass(R/I).

2.1.3 Associated primes and localization

Localizing at a suitable multiplicative set can simplify the computation of the associated

primes of a monomial ideal.

Notation 2.1.27. Let M C [r]. We denote by
Rap = (klwi | i ¢ M]\{0})'R
the localization of R at k[z; | i ¢ M]\{0}. If [ is an ideal in R, then we write Ij; := I R)y.

Remark 2.1.28. In contrast to the localization of R at p(M), the ring Rps remains a
polynomial ring. Specifically, it is a polynomial ring in |M | variables and over an extended
field, that is, Ry = k'[z; | i € M| where k' = k(z; | i ¢ M).

Fact 2.1.29 (cf. [11, Theorem 3.1]). Associated primes of ideals behave well with respect

to localization, that is,

Ass(Ryr/In) = {pRM | p € Ass(R/I) and z; ¢ p for all i € [r] \M}

Remark 2.1.30. Let M C [r]. By Fact 2.1.29 we have
p(M) e Ass(R/I) <= mpg,, =p(M)Ry € Ass(Ryr/Inr).

This equivalence allows us to focus on the maximal monomial ideal mp only. For non-
maximal prime ideals p(M) we localize to Rys where p(M )Ry is maximal. To sum up,

the following holds:

Ass(R/I)= | {p(M) | mg,, € ASS(RM/IM)}.
MClr)

In Example 2.1.16 and Remark 2.1.17, we observed that primary decompositions are gen-
erally not unique. However, for primary components corresponding to minimal primes, the
following holds:

Fact 2.1.31 (cf. [40, Theorem 6.8(iii)]). The primary components corresponding to mini-

mal primes are uniquely determined by I. Specifically, if p € Min(R/I) then the p-primary

12



component of I is W_I(Ip), where m: R — R, is the canonical projection.

In particular, note that for p = p(M), the projection 7 is equal towo¢: R — Ry — Ry
where T and ¢ are the canonical projections. Hence, if p(M) is a minimal prime of I then

¢ ' (Inr) = 7 (Iy(ary) is the p(M)-primary component of I.

Remark 2.1.32. Note that for any M C [r], the preimage ¢~ !(Iy) of Ij; under the map
©: R — Ry is equal to the saturation of I at p([r] \ M), i.e.,

o ) = Tep(P\ M) = () T:ae,
ie[r]\M

Remark 2.1.33. By Remark 2.1.30, the ideal (z;) is associated to [ if and only if I;;, #
Ry;y; that is, if and only if z; | g holds for all g € G(I). Furthermore, by Fact 2.1.31,
it follows that in this case, ¢™!(I(;) is the uniquely determined (z;)-primary component
of I.

We illustrate the results of this section on an example:

Example 2.1.34. Let I = (2*w, 23y22, 223wz, y2z?w, z2w) be an ideal in R = k[, y, z, w)].
In this example, we adapt the notation from Notation 2.1.27 by replacing the set M with
the set of the corresponding variables. We begin by localizing at k[z] \ {0} which gives
the ring Ry, .y = K[y, 2,w] and I, . = (w,y2%). (Note that the base field changes
from k to k/, but this does not affect our arguments about associated primes.) We observe
that mp,, ., = (y,2,0) ¢ Ass (Ryy 2 w)/I{y,zw), and hence by Remark 2.1.30 it follows
that

(y,z,w) ¢ Ass(R/I).

Next, we localize further at k'[y] \ {0}, obtaining Ry, ,,; = k”[z,w] and I, .,y == (2%, w).

Now, the maximal ideal (z,w) in this localized ring is associated, so

(z,w) € Ass(R/I).

This process of localization allows us to compute the associated primes of I by progressively
reducing the number of variables, simplifying the computations. Applying this technique,

we obtain (see Figure 2.6):

Ass(R/D) \{(w.y, z.w)} = { (@, 2), (&, w), (4, w), (z,w), (2,9, 2) }.

The remaining question is whether the maximal ideal (z, y, z, w) is also an associated prime
of I. Using Figure 2.6 and Fact 2.1.31, we can directly identify the primary components

of I corresponding to its minimal primes

Min(R/T) = {(z,2), (z,w), (y,w), (z,w) }.

13



For example, the (z, z)-primary components of [ is

o (L(zzy) = (L1 y®) N (1 w™) = (2%, 2%2,2%).

[(az‘lw, 23y2?, 2?yPwz, y2iw, z3w)j

. w
q / P
S 1

(w,yz?) (xtw, 2322, 2?wz, 22w) || (w, 23y) (2, 2232, 922, 23)

Fig. 2.6: We start on the top with the ideal I from Example 2.1.34. From top to bottom,
in each layer we reduce the number of variables by one. We then check if the maximal
ideal in the corresponding ring is associated (crossed out in red if it is not associated; blue
if it is associated).

We conclude with a remark that combines the results of this section with the use of the

staircase diagram as a visual tool for extracting information about Ass(R/I):

Remark 2.1.35. Let I be a monomial ideal in k[z,y, z].

(1) The ideal (2) is associated to I if and only if no generator of I lies in the x-y-
plane—that is, if every minimal generator has positive z-degree. This follows from

Remark 2.1.33. Analogous statements hold for the primes (y) and ().

(2) If the ideal (x,y) is associated to I, then the staircase diagram of I is unbounded in
z-direction, that is, there exists no minimal generator g of I lying on the z-axis. To
see this, we assume that (z,y) = I : w for some monomial w. Then 2"w ¢ I must

hold for all n € N, which is only possible if no power of z is in I.

The reverse implication of this statement holds under the assumption that neither
(z) nor (y) is an associated prime of I. In that case, by (1), there exist minimal

generators of the form y%z¢ and z%z°. The exponents of these generators fulfill
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a # 0 and b # 0 since otherwise, the staircase diagram of I would be bounded in
z-direction. Thus, I : 2* is (z,y)-primary and in particular, by Fact 2.1.31 and
Remark 2.1.32 it is the (z,y)-primary component of I.

Again, analogous statements hold for (z, z) and (y, z).

We provide examples in Figure 2.7.

Fig. 2.7: The staircase on the left is of the ideal (22z,yz). Every minimal generator of
this ideal is divisible by z, hence (z) is associated. Further, (z) and (y) are not associated,
thus, the fact that the staircase is unbounded in z-direction implies that (z, y) is associated.
The staircase on the right belongs to the ideal (23, 2%y, 2y, y%). It is unbounded in 2-
direction and has no minimal primes of height one. Therefore, (z,vy) is associated to this
ideal.

2.1.4 Conditions for the maximal ideal to be associated

By Remark 2.1.30, we have p(M) € Ass(R/I) if and only if mp,, € Ass(Ryr/In). This

subsection therefore focuses on maximal ideals.

We start with the following well-known characterizing statement:
Fact 2.1.36. Let I be a monomial ideal. Then m € Ass(R/I) if and only if I : m # I.

Remark 2.1.37. There is a one-to-one correspondence between the witnesses of m and
the monomials in 7 : m \ I. Clearly, if w is a witness of m, then w € I : m\ I. On the
other hand, if f€ I:m\ I, then f-z; € I foralli € [r]and f ¢ I, thus, I: f=m.

Corollary 2.1.38. Let I C k[z1,...,x,| be a monomial ideal. Then m € Ass(R/I) if and
only if I has an outer corner. In particular, there is a one-to-one correspondence between

the witnesses of m and the outer corners of I.

Proof. Let m be an outer corner of I. We claim that w := m/xy - - - x, is a witness of m.
First, observe that for each i € [r| the product ;- w is a surface monomial by the definition
of outer corners, and therefore lies in I. Moreover, if f | w, then f|w-2z1-- 2, =m
which is by definition a surface monomial and thus not properly divisible by f; hence, there
exists an i € [r] such that deg, f = deg; m = deg; w+ 1, a contradiction. This shows that

w ¢ I and therefore w is indeed a witness of m.
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On the other hand, if w is a witness of m, then we show that m == w-zy -- -z, is an outer

corner of I. Since w ¢ I but wz; € I for every i € [r], it follows that

m
Hj;éi Lj

w - T; =

is a surface monomial. O

Combining the above, we observe that the staircase of I : m is obtained from the stair-
case of I by removing all cubes whose endpoints correspond to an outer corner, see Fig-
ure 2.8.

Definition 2.1.39 (cf. [11, Section 15.10.6]). For a monomial ideal I, let

sat([) =1 :m™> = U (I :mk)
keNo

be the saturation of I with respect to m.

Remark 2.1.40. Since sat(l) = (i—;({ : °) holds (cf. [36, Lemma 3.5.12]), sat([) is

again a monomial ideal.

Fig. 2.8: Let I = (2*22, 2%yz, a*y?, 2%y22, 2%y%2, y%22%, vy*z, 2%y*). The staircase of I

is on the left. Its three outer corners z%y?22, z%y?z, and 2?y*2? are marked by black
dots. The staircase of I : m is obtained by removing the cubes corresponding to the outer
corners. The result is illustrated in the middle. By repeating this process we end up with
the staircase on the right, which belongs to sat(I).

Fact 2.1.41 ([9, Chapter 4, Exercise 14]). Let I be a monomial ideal. Then m is associated
to I if and only if sat(I) # I holds.

Lemma 2.1.42. Let I be a monomial ideal. For any n € N, sat(I™) # I™ if and only if
sat(I™) N In—t £ I,

Proof. Note that the following inclusions hold:
I" Csat(I")N 1" Csat(1™).

Therefore, sat(1™) N I"~1 # I" implies sat(I™) # I™. For the reverse implication, note
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that I™ = I™ : m implies I" = sat(I™). Hence, if I™ # sat(I") then there exists a
monomial % € (I" : m) \ I". Let i € [r]. Since z%zx; € I", there exist g1, ..., gn € I
such that

Qa
Ty =491 9Gn-

This further implies that z; | g; for some j, say j = 1, and hence

x% = i—lgg-~gn et

)

Since I" : m C sat(I™), we conclude that 2% € (sat(I™) N I"~ 1)\ I™. O

Remark 2.1.43. To summarize this subsection, we provide a list of statements that char-
acterize when the maximal ideal m is associated to I™. The following statements are
equivalent:
(1) me Ass(R/I™),
(2) I'"": m # I" (Fact 2.1.36),
(3) sat(I™) # I"™ (Fact 2.1.41),
(4)

4) sat(I™")NI"1 # I (Lemma 2.1.42).

2.1.5 Common divisors of the minimal generators of an ideal

Many properties of monomial ideals—such as the number of minimal generators—remain
invariant under shifts. It is often convenient to shift ideals prior to performing computa-

tions. We develop several relevant properties below.

Lemma 2.1.44. Let I be a monomial ideal in k[x; ..., z,| and m a monomial. Then
(I:m)"CI":m"
holds for alln € N. If m | g for all g € G(I), then equality (I : m)™ = 1" : m" holds.

Proof. Let f = fi---fy, bein (I : m)", for fj € I : m. Then fi---f, -m" =
fim--- fypm € I™. If m divides every minimal generator of I, then

1 \" 1
(I:m)" = <I> =—"=7":m".

m mm

O

Notation 2.1.45. For a monomial ideal I, we denote by gcd(I) the greatest common

divisor of all monomials in I.
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Definition 2.1.46. For a monomial ideal I , we write I3 = I : gcd (/). We call the ideal I
anchored, if Iy = I.

Remark 2.1.47. By Lemma 2.1.44, (I"™)4 = (Ig)" holds for all n € N.

Clearly, u(1) = pu(Ig). We now show that common divisors of the generators of I do not

play a role for the associated primes of I".

Proposition 2.1.48. Let I be a monomial ideal in r > 1 variables and let t € N such
that z* divides all of the generators of I. Then for alln € N, m € Ass(R/I"™) if and only
ifm € Ass(R/(I : 2t)™).

Proof. By Lemma 2.1.44 it suffices to show the assertion for n = 1. If m is associated to

I : 2t, then there exists a % such that
m=(I:2"):2¥=T:2%" =12

holds and therefore m € Ass(R/I).

Conversely, let m € Ass(R/I) with witness 2. Since all generators of I are divisible by z*
and z%z; € I, we have t < w + e; for all ¢ € [r]|, where e; is the i-th unit vector. Hence,

t<wand z% = 2%zt for some . Therefore,
m=1:2"=1:2%"=T:2":2",
ie., me Ass(R/(I : zb). O

Corollary 2.1.49. Let I be a monomial ideal and x* be a divisor of all the generators of I.
Then

Ass(R/I™)\ {(z1), ..., (z,)} = Ass(R/(I : 29)")\ {(z1), ..., (z,)}.

Proof. Let M C [r] with |M]| > 1. We apply Proposition 2.1.48 to the maximal monomial
ideal mp,, in the localization Rjs of R. Remark 2.1.30 then yields that p(A/) is associated
to I™ if and only if p(M) € Ass(R/(I : zt)"). O

2.2 Monomial ideals and related objects

We introduce some combinatorial objects that often appear in the context of monomial
ideals. Broadly speaking, by associating an ideal to a given object and then analysing
the ideal, we can extract valuable information about the original object. For instance,
the associated primes of certain ideals corresponding to graphs can reveal insights into
the graph's colouring properties. Conversely, this relationship also allows us to apply

combinatorial methods to derive results about monomial ideals.
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2.2.1 Edge ideals and cover ideals of graphs

We introduce edge ideals and cover ideals of finite simple hypergraphs. These ideals provide
well-studied examples of the interplay between combinatorics and commutative algebra,
wherein graph-theoretic results are employed to derive properties of monomial ideals, and
vice versa. Edge ideals were first introduced for finite simple graphs by Villarreal [66] and
extended to hypergraphs by Ha and Van Tuyl [21].

Edge and cover ideals have attracted a great deal of interest and have been heavily studied
in the last decades. We refer to [44], and [65] for a great overview, while we only scratch

the surface here and focus on the associated primes of these ideals.

Definition 2.2.1. A finite simple hypergraph is a pair H = (Vy, Ey) where Vi =
{z1,...,2,}, the set of vertices of H, and Ey = {E1,..., Es}, where the E; are subsets
of Vy of cardinality at least two, and E; ¢ E; for i # j, the edges of H.

By the condition that every edge has at least two elements, H has no loops. The condition
that no two edges are contained in each other ensures that there are no multiple edges.
If every edge has exactly two elements, then we call H a finite simple graph which we
usually denote by G.

Definition 2.2.2. Let H = ({z1,...,2.},{E1,...,Es}) be a finite simple hypergraph.
The edge ideal of H is the ideal

I’H = <11;[sz ’ E e EH) - k[(]}l,... 7$r]-

Remark 2.2.3. The assignment H — I3 gives a natural one-to-one correspondence be-

tween hypergraphs and squarefree monomial ideals (ignoring isolated vertices).

Definition 2.2.4. A vertex cover of a finite simple hypergraph H is a subset of the vertices
W C Vi such that W N E # ) holds for all E € Ex. A vertex cover is called minimal if

no proper subset is also a vertex cover.

Definition 2.2.5. Let H = ({x1,...,2,},{E1,..., Es}) be a finite simple hypergraph.
The cover ideal of H is the ideal

Jy = ( H x; | W is a minimal vertex cover of 7—[) Cklzi,. ..,z
z,eW

Remark 2.2.6. For a hypergraph #, the two ideals Iy and Jy are squarefree monomial
ideals in k[z1,...,2z,]. Thus, by Remark 2.1.15, a decomposition into prime ideals al-

ways exists. Further, they are Alexander duals of each other, that is, if I3y has primary
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decomposition
IH:($i|i€M1)ﬂ”'ﬁ($i‘Z'EM[),

for some My, ..., My, C{1,...,r}, then

Ju= (Tl =licft,....00).

ieM;

For the generalized Alexander duality for arbitrary monomial ideals, we refer to Chapter 5
of the textbook by Miller and Sturmfels [43]. In particular, the associated primes of the

edge and cover ideal of a hypergraph are given by

Ass(R/Iy) = {(ziy, ..., 2i,) | {xiy, ..., @i, } is @ minimal vertex cover},

Ass(R/Jy) = {(xiy, .., zi) | {ziy, -, 2, } € Byt

Example 2.2.7. We consider the finite simple graph
G = ({xl, cooyxa b, {{@, ws}, {zn, 2at, {z, 2o}, {xg,x4}}>.
Then the edge ideal of G is I = (z122, 2123, 124, T324) and has primary decomposition
I = (x1,23) N (x1, 4) N (22, 23, T4).

All minimal vertex covers of G are given by {x1,z3}, {z1, 24}, {22, x3, 24}, see Figure 2.9,

hence the cover ideal of G is Jg = (123, T124, T2T3T4).

@ @® @
5 ev e e

Fig. 2.9: On the left is the graph G from Example 2.2.7. The other three figure illustrate
the three minimal vertex covers of G.

s N N

We recall some terminology about colourings of graphs:

Definition 2.2.8. A k-colouring of a hypergraph H is a partition of Viy = C1 W --- W Cy,
into k disjoint sets such that for every e € Ey, we have e € C; for all 1 < i < k. The
chromatic number x(#) of H is the minimal k, such that H has a k-colouring. Further,
H is called k-chromatic if x(H) = k.

Remark 2.2.9. A graph G admits a k-colouring if there exists an assignment of k colours

to its vertices such that no two adjacent vertices share the same colour.
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Definition 2.2.10. A hypergraph H is called critically k-chromatic if H is k-chromatic
but for every v € V4, we have that the hypergraph obtained from 7 by deleting v from

its vertices and removing all edges containing v, is £-chromatic for some ¢ < k.

Example 2.2.11. = The complete graph K, i.e., the graph with n vertices and an
edge between each two of the vertices, is critically n-chromatic, as removing any

vertex results in a graph with chromatic number equal to n — 1.

» If G is an odd cycle, i.e., Vg = {x1,...,x,} for some odd n > 3, and

Eq = {{z1, 22}, {z2, 23}, ..., {xn, 21} },

then x(G) = 3. However, by removing any vertex, we obtain a path, which has

chromatic number equal to two.

Fact 2.2.12 ([16, Corollary 4.6]). Let H be a finite simple hypergraph and P C V such
that the induced hypergraph Hp, i.e., the hypergraph with vertex set P and edges {E €
Ey | E C P}, is critically k-chromatic. Then

(1) P € Ass(R/JE), and

(2) P ¢ Ass(R/J%,) forany 1 < ¢ < k.

2.2.2 The Newton polyhedron, integral closure, and reductions
Definition 2.2.13. An element f € k[z1,...,x,] is integral over an ideal I, if there exist
k € N and for 1 < i < k an element ¢; € I’ such that

fFraff ™+ +aaf+a=0.

The set of all elements that are integral over I is called the integral closure of I and is
denoted by I. An ideal is called integrally closed if I = I and normal if all powers of I

are integrally closed.

The integral closure of an ideal is again an ideal [32, Corollary 1.3.1] and if I is a monomial

ideal, then it can be described as follows:
Fact 2.2.14 (cf. [25, Theorem 1.4.2]). Let I be a monomial ideal in k[z1,...,z,]. Then
its integral closure I is generated by all monomials f such that there exists an n € N

with f* € I™.

Definition 2.2.15. Let I be a monomial ideal in k[z1,...,z,]. The set conv{a | 2% €
I} CR" is called the Newton polyhedron of I, denoted by C(I).
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(0,4) >—’ Fig..2.10: The ideal (y*, 22>, 23y, 2°) _is
(2,3) not integrally closed as there are two grid
i points, corresponding to the monomials
f zy® and 2%y2, that are in C(I) but not
o in 1.
y ]

Fact 2.2.16 (cf. [25, Corollary 1.4.3.]). The integral closure I of a monomial ideal I is

generated by the monomials x® with a € C(I).

Remark 2.2.17. By Fact 2.2.16 an ideal I is integrally closed if and only if there are no

integer points in the Newton polyhedron of I that do not correspond to monomials in I.

Definition 2.2.18. Given monomial ideals I, J C k[z1,...,z,], the ideal J is said to be
a (monomial) reduction of [ if there exists some integer m > 0 such that JI™ = [™F1,
The least integer m for which this equation is fulfilled is called the reduction number of
I with respect to J and the smallest reduction number amongst all reductions J of I is
called the reduction number of I. A reduction J is called minimal monomial reduction

if every monomial ideal L which is properly contained in J is not a reduction of 1.

Remark 2.2.19. If J is a reduction of I and m is greater than or equal to the reduction

number of I with respect to J, then

I+ — 1™ 7% holds for all £ > 0.

Singla [58] determined the unique minimal monomial reduction of a monomial ideal I using

its Newton polyhedron:

Fact 2.2.20 ([58, Proposition 2.1]). Let I be a monomial ideal in k[z1,...,x,| and let
{a1}, ..., {a¢} be the 0-dimensional faces of C(I). Then J = (z%, ..., x®) is the unique

minimal monomial reduction of I.

2.3 Powers of monomial ideals

Powers of monomial ideals have been studied in many different contexts. After the pioneer-
ing work of Brodmann, proving that the associated primes of powers of an ideal Ass(R/I™)
eventually become independent of n, and that the depth function depth(R/I") is constant
for n large enough [5, 4], a lot of research in that direction followed. For a great overview
of recent developments in the research of powers of monomial ideals and their asymptotic

behaviour, we refer to Carlini, Ha, Harbourne, and Van Tuyl's lecture notes [6].
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Definition 2.3.1. Let [ be an ideal and let py, ..., px be the minimal primes of I. The

n-th symbolic power of [ is defined to be the ideal
I™=Qin---nQy,

where @; is the primary component of I™ corresponding to p;.

Remark 2.3.2. It follows from the definition that the ordinary power of an ideal is always
contained in its symbolic power, i.e., I"™ C I(™ holds for all n € N. The question of when

equality holds in known as the Containment Problem.

Fact 2.3.3 ([26, Lemma 3.1]). If I is a monomial and Qi, ..., Qy are the primary

components corresponding to the minimal primes of I, then for every n € N,

I™M=Q"n...NQY.

Fig. 2.11: The left-most staircase in the first row is of the ideal I = (zy, zz,yz). Then the
ordinary powers I2 and I follow. In the second row are from left to right the staircases
of the symbolic powers IV, 1) and 1G).

Example 2.3.4. Let [ = (zy,zz,yz) C klz,y,z]. We compute that Min(R/I) =

Ass(R/I) = {(x,y),(x,2),(y,2)} and I = (x,y) N (z,2) N (y,z). Thus, I is equal
to its first symbolic power IV, However,
= (2,9)* N (2,2)> N (y,2)* N (2%, 9%, 2%) = 1P 0 (%97, 2%),

see Figure 2.11.

Remark 2.3.5. Let G be a graph and I its edge ideal. Sullivant [61, Corollary 3.12]

established how to obtain the second symbolic power of I in terms of edges and triangles
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in G. Further, he gave a characterization of perfect graphs in terms of the symbolic powers
of edge ideals, see [61, Theorem 3.10].

There are several algebraic structures that frequently appear in the study of powers of
monomial ideals. We recall three fundamental ones: the Rees algebra, the associated
graded ring, and the fibre ring of a monomial ideal. These structures are closely related
and provide useful tools for organizing information, carrying out computations, and under-
standing the properties of ideal powers. To study powers of a monomial ideal, it is crucial

to understand the relations among its minimal generators.

Definition 2.3.6. A syzygy or linear relation of g1, ..., gs € k[z1,...,2,] is a tuple
(fi,..-, fs) € k[z1,...,2,]° such that

fig1 + faga + -+ fsgs = 0.

Definition 2.3.7. The Rees algebra of a monomial ideal I is defined as

R(I) = P I"t" C RIt],
n>0

where t is a new variable.

If the minimal generators of I are {g1...,gs} then R(I) = R|git,...,gst]. There is a

natural homogeneous epimorphism of R-algebras
®: Rlwy,...,ws] — R(I),
where R[wy, . .., ws] is the polynomial ring over R in variables wy, ..., ws, defined by
O(w;) =git fori=1,...,s.

Thus, R(I) ~ Rlwy,...,ws]/ker ®. The kernel of ® is called the defining ideal of R(I).
Often, the defining ideal is considered to study Rees algebras. It contains the relations
obtained from the syzygies of g1, ..., gs, however, determining all defining relations is a

difficult task in general.

Example 2.3.8. We consider the ideal I = (22, 2y,%?) in R = k[z,y]. The Rees algebra
of I'is R[z%t, zyt,y*t] C k[z,y][t]. We compute all syzygies of the generators of I

z(zy) —y(a®) =
y(zy) — z(y®) =

)

0
0.

Further, we obtain the relation (zy)? — (2?)(y?) = 0. In this case, these are all the defining
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relations and we get the isomorphism

R[w17 w2, wQ]

R(I) ~ .
@D (zwe — ywr, yws — Tws, w3 — wiws)

Definition 2.3.9. The associated graded ring of [ is

gr(l) = P 1"/ 1" ~ R(I)/IR(I),

n>0

where the multiplication of two homogeneous elements a+I1"*! € 1" /™! and b+1™*1! ¢
Im/1m+ls

(a+ ") (b+ 1" = ab+ [ e prdn jprdn L

There is a strong relation between the associated graded ring of an ideal and the associated
primes of the power of that ideal. Let mR(I) be the ideal of R(I) generated by m. The

0-th local cohomology module

m

HORU)(gr(I)) ={gegr(l)| (mR(I))"g = 0 for some n € N}
can be written as a direct sum (cf. [10, Lemma 2.1])

Hurp(gr(1) = @ Ha(I" /1),
n>0

For monomial ideals, the equality Ass(I™/I" 1) = Ass(R/I™1) holds for all n > 0, cf. [6,
Lemma 2.5]. Combined with the above, this yields:

Fact 2.3.10. The maximal ideal m is associated to I"*! if and only ingR(I) (gr(D)), #0.

In Chapter 6 we give an upper bound for the degrees of the homogeneous generators of
H‘gn([)(gr(f)) which we then use to study the stability of the associated primes of the

powers of I.

Fact 2.3.11 ([56, Proposition 2.4]). Let R(I) be the positive part of the R(I). Then
Ass(R/I") C Ass(R/I™)
holds for all n > sup {n | Hy ;) (er(I)), # 0}.

Again, there is a useful description of the homogenous components, this time using the
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Ratliff-Rush closure of an ideal, which is defined as

I=J 1.

m>1

For all n > 0 we then have H%(I)+(gr(l))n_1 ~ (I"NI"Y) /1™, cf. [31, Lemma 3.6].

Intuitively, I consists of all elements that “behave like” elements of I at high powers—after
multiplying by a high enough power of I, you land inside the next power. The Ratliff-Rush
closure was first introduced by Ratliff and Rush [50], where they proved that I is a reduction
of I and I = I" holds for all n>> 0.

The last structure that we want to introduce in this section is the fibre ring (or fibre cone)
of an ideal. It was initially introduced in the context of blowup algebras. Geometrically,
the fibre ring corresponds to the fibre of the blowup at the closed point corresponding

to m.

Definition 2.3.12. The k-algebra F(I) = R(I)/mR(I) is called the fibre ring and its
Krull dimension the analytic spread of I, denoted by ¢(I).

The fibre ring captures the asymptotic growth of the minimal generators of I and its
Hilbert function H(F(I), k) = dimy I* /mI* counts the number of minimal generators of
the powers of I. Also its dimension ¢(I) is a fundamental invariant that provides insight

into the long-term behaviour of the ideal.

Fact 2.3.13 ([32, Corollary 8.2.5]). Let J be a reduction of I. Then the minimum number

of generators of J is at least the analytic spread of I.

Fact 2.3.14 ([28, Corollary 3.5]). If I C k[x1,...,x,] is a so-called polymatroidal ideal
(the exponents of the minimal generators represent the basis of a discrete polymatroid,
cf. [28] for a definition), then £(I) = r — lim,_,, depth(R/I%).

Remark 2.3.15. Let G(I) = {g1,...,9s} and ¢: k[t1,...,ts] = F(I) be the epimorphism
between the polynomial ring k[ti,...,ts] and F(I) defined by ¢(t;) = g;i + mI. The
generators of each homogeneous component I*¥ /mI* of the fibre ring correspond to the
minimal generators G(I¥). As all elements of G(I¥) are products of elements of G(I),
the fibre ring is generated in degree one over the residue field F(I)g = R/m. Thus, ¢ is

surjective and
F(I) = K[t1,...,ts]/ ker .

The ideal ker ¢ is called the defining ideal of the fibre ring.

In general, finding the defining ideal of F(I) can be challenging. In [27] and [29], the

authors determined the defining ideals of the fibre rings of special classes of bivariate
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monomial ideals.

2.3.1 Minimal generators of powers of monomial ideals

Given the minimal generators of a monomial ideal, the natural question whether we can
determine the minimal generators of its powers, arises. Specifically, let I be a monomial
ideal minimally generated by g1, ..., gs. Then I" is generated by all n-fold products of
these generators, that is, by monomials of the form

{g1" g5 | i € No, a1 + - + a5 = n}.

To determine G(I™), we must identify those monomials among these elements that are

minimal with respect to divisibility.

As noted in Remark 2.3.15, the fibre ring F(I) of a monomial ideal I—and in partic-
ular its defining ideal—contain key information about the minimal generators of I. Al-
though determining the defining ideal is generally a difficult task, the Hilbert function
H(F(I),n) = dimy I"™/mI™ provides a more accessible invariant: it counts the number
of minimal generators of I™ and eventually agrees with a polynomial in n (cf. [25, Theo-
rem 6.1.3]).

As a result, much of the existing literature concentrates on understanding the behaviour
of u(I™), rather than characterizing the generators themselves. For any monomial ideal I

and any n € N, the inequality
u(I™) <n-p(l)

always holds. Equality, however, occurs only in exceptional cases—namely, when there are

no relations among the minimal generators of I.

Contrary to what one might expect, Eliahou, Herzog, and Saem [13] provide examples of

bivariate monomial ideals that do not satisfy the inequality p(1?) > u(I):

Fact 2.3.16 ([13, Theorem 1.1]). For every integer m > 5, there exists a monomial ideal I
in k[z,y] such that p(I) = m and pu(I%) = 9.

More examples of monomial ideals whose minimal generators exhibit unexpected behavior
in low powers can be found in [1, 19].

While the unexpected behaviour of small powers is fascinating, our attention in Chapter 3
shifts to the behavior of minimal generators in /arge powers of bivariate monomial ideals.
The asymptotic properties of the Hilbert function suggest that, beyond a certain point, the
structure of G(I™) stabilizes in a predictable way. In particular, we show that cancellations
among the n-fold products of the generators of I eventually follow a regular pattern.
Indeed, we provide an explicit description of the sets G(I™) of minimal generators of I"

for all n larger than a certain threshold.
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2.3.2 Associated primes of powers of monomial ideals

While the prime factors of an integer n € Z are the same as the prime factors of any
power n* of n, this statement cannot be expanded to associated primes in general. We

begin this section with an example to motivate the following question:
Question 2.3.17. Given an ideal I, how does the set Ass(R/I™) change as n increases?

Example 2.3.18. I = (zy,xz,yz) C k[z,y, z]. Then

ASS(R/I) - Mm(R/I) - {(x,y), (.’IZ’, Z)v (yv Z)}
and computations suggest that for all n > 2

Ass(R/I™) = Min(R/I) U {(z,y, 2)}.

The following fact gives a partial answer to Question 2.3.17, namely that the minimal

primes remain unchanged when taking powers.
Fact 2.3.19. Let I be a monomial ideal and n € N. Then Min(R/I) = Min(R/I").

Hence, the question reduces to understanding how the embedded primes of an ideal evolve.
The behaviour of the sequence (Ass(R/I™))nen as n varies has been studied over the past
few decades for various classes of ideals. In what follows, we introduce the necessary
terminology and provide a brief overview of some classes of ideals whose associated primes

have been the subject of such investigations.

Definition 2.3.20. An ideal [ is called normally torsion-free if Ass(R/I*) C Ass(R/I)
holds for all £ € N.

If I is an ideal such that Ass(R/I) = Min(R/I), i.e., I has no embedded primes, then I
is normally torsion-free if and only if every power of I equals its symbolic power, cf. [67,
Proposition 3.3.26].

Definition 2.3.21. An ideal [ is said to have the persistence property if Ass(R/I") C
Ass(R/I™1) holds for all n € N. A prime ideal p is called persistent if p € Ass(R/I™)
implies that p € Ass(R/I™M1).

Examples of classes of ideals that satisfy the persistence property include edge ideals of
simple undirected graphs [39, Theorem 2.15], cover ideals of perfect graphs [16, Corol-

lary 5.11], and ideals whose powers are all integrally closed [49, Theorem 2.4].

However, the persistence property does not hold in general, not even for squarefree mono-
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mial ideals [33, Theorem 11]. In fact, Weinstein and Swanson [69, Theorem 3.9] con-
structed families of monomial ideals whose sets of associated primes decrease with n.
There are also known examples where (Ass(R/I™))nen is not even monotonic (cf. [33]).

For general monomial ideals, little is known about how Ass(R/I™) changes with n.

Despite that, the asymptotic behaviour of the sequence of associated primes of powers of
an ideal is well understood: In 1979, Brodmann gave an answer for Question 2.3.17 for
n > 0.

Theorem 2.3.22 ([5]). For sufficiently large n, the set Ass(R/I™) is independent of n.

Definition 2.3.23. The smallest integer stab(I) such that Ass(R/I") = Ass(R/I*t*())
for all n > stab(I) is called the stability index of I. The set Ass(R/I**(1)) is called the
stable set of I, and is sometimes also denoted by Ass(R/I*°) or Ass™(R/I).

Not only does the set of associated primes of powers of an ideal stabilise, but further,
Brodmann [4] also proved that the depth function of an ideal stabilises, i.e., for n > 0 then
the function depth(R/I™) is constant. The smallest such n after which the depth function
of an ideal I is constant is called the index of depth stability of I, denoted by dstab(I).
While neither stab(/) is an upper bound for dstab(/) nor the other way around, those two
invariants are connected in a way by the relation stab(I) < max;cqupp(r) dstab(Ipr) ([28,
Proposition 2.1(c)]).

We now list a few special classes of ideals for which the stability index, or an explicit bound
on it, is known: If [ is a transversal polymatroidal ideal, i.e., a product of monomial prime
ideals, then stab(l) = 1 ([28, Corollary 4.6]). Let G be a connected, non-bipartite graph
with r vertices, o vertices of degree one, and the smallest odd cycle of G has length 2k +1,
then stab(I) < r — k — o ([8, Corollary 4.3]). Let J be the cover ideal of a finite simple
hypergraph H. Then the stability index of I is at least the chromatic number of H ([16,
Corollary 4.9]).

Despite numerous results concerning specific classes of monomial ideals, relatively little is
known about the stability index of general monomial ideals. In 2006, Hoa [31] provided a

bound on the stability index applicable to arbitrary monomial ideals:

Fact 2.3.24 ([31, Theorem 3.1]). Let I be a monomial ideal in k[x1, ..., z,] with u(I) = s

and let d be the maximal total degree appearing in the minimal generators of I. Then

stab(/) < max {d(TS + 5+ d)(vVr) T V2d) TTDED g5+ T)45T+2d2(2d2)8275+1}.

In Chapter 6, we discuss this bound in more detail and present refinements. In Chapter 5,

we bound the stability index of monomial ideals in three variables.
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3. MINIMAL GENERATING SETS OF LARGE
POWERS OF BIVARIATE MONOMIAL
IDEALS

When studying powers of a monomial ideal, its minimal generators play a crucial role.
However, it is far from trivial to determine which of the n-fold products of (minimal)
generators of I are minimal generators of I™ and very little is known—even for monomial

ideals and even in the bivariate case.

The existing research mostly focuses on the number p(I™) of minimal generators of I
rather than the actual set of minimal generators. Indeed, the emphasis lies on small powers,
as u(I™) is eventually described by a polynomial—the Hilbert polynomial of the fibre ring
of I. Eliahou, Herzog, and Saem [13] studied the question how small 1(I?) can be in terms
of u(I) for a bivariate monomial ideal I. They construct examples where (1) > u(I?),
contrary to what one might have expected. For any given n € N, Abdolmaleki and
Kumashiro [1] construct a bivariate monomial ideal I such that u(I) > u(I?) > --- >
p(I™). Gasanova [19] shows that for every d there exists a monomial ideal I in any number
of variables such that the inequality p(I) > p(I™) holds for any n < d.

While the unexpected behaviour of small powers is fascinating, our focus is set on large n.
The asymptotic behaviour of the Hilbert function gives reason to suspect that eventually
the actual set of minimal generators of I™ behaves well, in the sense that cancellations

among the n-fold products of generators of I can be predicted.

For bivariate monomial ideals we describe the sets G(I™) of minimal generators of I"
explicitly for all n larger than a certain threshold. Specifically, we show that there exists sq
such that for all n > s > sg every segment of the staircase diagram—and consequently,
the set of minimal generators— of I” is already determined by the staircase diagram of I°.
In other words, the staircase diagram of I™ can be build by aligning the staircase diagrams

of certain subideals of I°. We prove that
so < p(I)(d* = 1) +1,

where d is a constant depending on the degrees of the minimal generators of I which is at

most the maximal z- or y-degree appearing in G(I).

This chapter is structured as follows: Section 3.1 summarizes the necessary background

about the integral closure of bivariate monomial ideals. In Section 3.2, we establish that the

1This chapter is based on the submitted preprint [48] and is joint work with Roswitha Rissner.
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corners of the Newton polyhedron of I play a special role among the minimal generators of
powers of I. We call them persistent generators (Definition 3.2.1), as their powers remain
minimal generators of all powers of I. The main result of this section is Theorem 3.2.14

which allows us to decompose powers of I into a sum of ideals:

k
ID+€ = Z(giagH»l)gIDv
i=1
where g1, ..., gr41 are the persistent generators of I, ordered in descending y-degree.

We skip the details on how to calculate D here but note that D < u(I) - d, where d is
a constant depending on the degrees of the minimal generators of I and is at most the
maximal x- or y-degree appearing in G(I). We recover the fact [58, Proposition 2.1] that
the ideal generated by the persistent generators is a reduction of I as a direct consequence
of this theorem. In addition, it yields a bound for its reduction number, see Remark 3.2.12.
Sums of that form for increasing £ are further studied in Section 3.3. We first describe the
minimal generators of each summand (g;, g;+1)'I” separately (Theorem 3.3.4) and then
add them up again (Theorem 3.3.16). Section 3.4 combines the results of Section 3.2 and
Section 3.3 to the main results of this chapter (Theorem 3.4.6 and Corollary 3.4.11). We
provide an implementation to compute I°¢ in SageMath?. We conclude the chapter with

examples and runtime measurements in practice.

3.1 Integral closures of bivariate monomial ideals

For the basic definitions and facts about integral closures of monomial ideals, we refer to

Section 2.2.2 in the preliminaries.

Throughout, we assume that [ is not a principal ideal. Moreover, as developed in Sec-
tion 2.1.5, when convenient for notation, we factor out the greatest common divisor of
all monomials in I, and carry out computations with the shifted ideal I3 = I : ged(I),
see Definition 2.1.46.

a

Fig. 3.1: On the left, we illustrate the integral closure of the ideal (2%, y®). The integral
closure includes all lattice points lying on or above the line segment connecting (a,0) and
(0,b), in addition to those already contained in the ideal. On the right, we present a
visualisation of Fact 3.1.1(2).

The program code associated with this chapter is available as ancillary file from the arXiv page of [48].
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Fact 3.1.1 (cf. [32, Proposition 1.4.6]). For a, b € Ny and a monomial g € k[z,y] the

following are equivalent:
(1) ay € (a2, yP),
(2) g-a"y’ € (g-2%g-9),
3) “+37>1

Moreover, % + 7 = 1 implies x"y" G((ma,yb)>.

Definition 3.1.2. Let f, g, h € k[z,y] be monomials such that f ¢ (g, h). We say that f

lies between g and h if

min{deg, g,deg, h} < deg, f and
min{deg, g, deg, h} < deg, f.

Remark 3.1.3. Let f be a monomial that lies between two other monomials, g and h in
klz,y]. Geometrically, Fact 3.1.1 says that f is in the integral closure of (g, h) if and only
if it lies above the line passing through ¢ and h, see Figure 3.1. If f lies precisely on said

line, then f is a minimal generator of the integral closure of (g, h).

Definition 3.1.4. Let I C k[x, y] be a monomial ideal. We define

dist, I = max{deg, g | g € G(Ig)} and
dist, I == max{deg, g | g € G(Ig)}.

We use dist, as a placeholder for either dist, or dist,, with the choice remaining fixed
within a given context. For a set of monomials G C k[z, y], we define diste G as diste of

the ideal generated by G.

Remark 3.1.5. We observe how dist behaves well additively and how diste I can be com-

puted from the minimal generators of the ideal I.

(1) Let f, g, and h be monomials such that f lies between g and h. Then diste(h, g)
can be written as
diste(h, g) = diste(h, f) + diste(f, g).

(2) For a monomial ideal I, the following identity holds:
diste I = max{deg, g | g € G(I)} —min{deg, g | g € G(I)}.

Note that if I is an anchored ideal, then the minimal z-degree and the minimal
y-degree among the elements of G(I) are both zero. Consequently min{deg, g | g €
G(I)} =0.
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Definition 3.1.6. Let g and h be two monomials. We define the non-standard grading
deg, ;, additively by setting

deg, 5 () = dist, (g, h) and
deg, ,(y) = dist.(g, h).

Further, we set dy , == deg, ,(g) = deg, ;,(h).

Remark 3.1.7. (1) For a, b € N, the identity d,a ,» = ab holds.
(2) Let g and h be two monomials, and let 2%y® := gcd(g, h). Then

U — « v—f
d [ONCARS — >1
egg,h(m y*) = dgh dist, (g, h) + disty(g,h) —

where equality holds on both sides simultaneously. Note that here %y need not lie

between ¢ and h.

(3) Geometrically, the equivalence in (2) states deg, ;,(z"y") > dg 4 if and only if 2"y"
lies on or above the line passing through g and h. Equality holds precisely when

x"y" lies on the line.

Lemma 3.1.8. Let f, g, h € k[z,y] be monomials such that f lies between g and h. Then
the following assertions are equivalent:

Moreover, deg,, \,(f) = dg,n implies f € G((g,h)).

Proof. (1) < (2) follows from Remark 3.1.7(1) and Fact 3.1.1. (2) < (3) and (2) < (4)
follow from Remark 3.1.7(3). O

3.2 The role of persistent generators

Definition 3.2.1. Let I be a monomial ideal in k[x,y]. We say f € G(I) is a persistent

generator of I if f ¢ (g,h) for all monomials g, h € I\ {f}. We denote the set of all
persistent generators of I by P(I), and define N(I) := G(I) \ P(I).

Remark 3.2.2. (1) The minimal generators of I with maximal z-degree and y-degree,

respectively, are persistent.

(2) The persistent generators of I are the corners of the Newton polyhedron of I.
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(3) If f e P(I), then f* € G(I™) for any n € N.

By Fact 2.2.14, a monomial f is an element of (g, h) if and only if f € (g, h)" for some

n. In the next proposition, we explicitly determine such an n. In addition, we show that if

f ¢ (g,h), an analogous relation holds among the three polynomials.
Proposition 3.2.3. Let g, h, f € k[z,y] with f lying between g and h, and define
a = diste(f,h) and n :=diste(g,h).

Then the following assertions hold:

(1) If f € (g,h)
h)

then g*h™=% | f™ and hence f" € (g, h)".

(2) If f ¢ (9,

Moreover, deg, ;,(f) = dgn if and only if there exist n € N and 0 < k < n such that
kpn—k n
gt ="

then f™ | g®h™~% and hence g“h"™"~* € (f)™.

Proof. Recall from Remark 3.1.5(1) that n — o = diste(g, f). Since f lies between g and
h it follows that all three monomials are divisible by gcd(g, h). Therefore, we can assume
that g = 4%, h = 2% and f = 2%y® with 0 < v < a and 0 < v < b. Note that

deg, (z*y"“™) = au = deg, (f*).
By Fact 3.1.1, f € I if and only if % —i—% > 1 which, in turn, is equivalent to
deg, (z7yb@=0)) = p(a — u) < av = deg, (f*).

This implies (1) and (2) in the case that diste = dist,. The respective assertions with

dist, = dist, are proven analogously.

For the last assertion note that the right-hand side holds if and only if
ak = un and b(n — k) = vn,

which is equivalent to = + ¢ = 1. The latter is equivalent to the left-hand side, cf. Re-
mark 3.1.7(2). O

Remark 3.2.4. Note that in the second assertion of Proposition 3.2.3, the assumption

that f ¢ (g,h) implies that the equality deg, (f) = dy 5 cannot hold. In particular, we
have that f™ # g®h"" .

Remark 3.2.5. The bound min{dist, (g, h), dist, (g, h)} for n in Proposition 3.2.3 is sharp,

see Example 3.2.6 below.
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Example 3.2.6. Let g = y° and h = 5. Then

min{dist,(g, k), disty(g,h)} = 5.

(1) The monomial f = 2%y is an element of (g, h) and one can easily verify that f* ¢
(25,4°)™ holds for n < 4.

(2) The monomial f = xy* lies between g and h and f ¢ (g,h). A straight-forward
computation shows that for all n € {1,2,3,4} there exist no a, 5 € N such that
a+ B =mn,and g*h® € (f)".

Definition 3.2.7. Let I be a monomial ideal in k[z,y]. We say that f € G(I) is weakly
persistent, if f € G(I™) holds for all n € N. We denote by P*(I) the set of all weakly

persistent generators of I.

Remark 3.2.8. Clearly, the inclusion P(I) C P*(I) holds. Let g1, ..., gkt1 be the
persistent generators of I, ordered in descending y-degree. Then Proposition 3.2.3 implies
that

P*(I) = P(I) W {f € N(I) | degy, ., (f) = g, g.., for some i € [k]} .

Notation 3.2.9. Let F' = {¢g1,...,gk+1} be a set of monomials such that g1, ..., gr+1

are ordered in descending y-degree. We set

Op = lrilfl}k{ min{dist (g, gi+1), disty (g, git1)}} — 1.

Corollary 3.2.10. Let I be a monomial ideal in k|z,y] and let P(I) C P C P*(I) such
that P = {g1,...,9k+1} and g1, ..., gx+1 are ordered in descending y-degree. For every
n>0p and f € G(I)\ P there exist 1 <i < k and a < dp such that

"€ (9i9i01)" " [

Proof. Note that G(I) \ P C N(I). By definition, there exist g, h € I\ {f} with
f € (g,h). We can choose g and h to be in P such that no other element of P lies
between them, meaning ¢ = ¢g; and h = g;+1 for some 1 < ¢ < k. We write d =
min{dist,(g;, gi+1), disty(gi, gi+1)}. Then n > dp > d — 1, so we can write n = gd + a

with ¢ € Ng and @ < d — 1. It follows from Proposition 3.2.3(1) that

= 1 (g, givn)® - fO

Corollary 3.2.10 immediately yields:
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Corollary 3.2.11. Let I C k|z,y| be a monomial ideal, n € N, and let P(I) C P C P*(I).

Then every minimal generator of I™ is of the form

ngg, H fkfa

gepr feG(I\P

where 0 < ky < dp forall f € G(I)\ P and > Ly +> s ks =n.

Remark 3.2.12. Singla [58, Proposition 2.1] established that the ideal a, generated by the
persistent generators P([), is a reduction of I. That is, there exists 6 € N such that for

all n € Ny,
15+n — anlé

Singla's result applies to monomial ideals in any number of variables. Through Corol-
lary 3.2.11 we recover Singlas's result for the bivariate case and further show that the
reduction number of I with respect to a is at most |G(1) \ P(I)|- dp(p).

With Proposition 3.2.3(2), we further refine the statement of Corollary 3.2.11 in Theo-
rem 3.2.14 below.

Notation 3.2.13. For a monomial ideal I and P(I) C P C P*(I). We set

J min{dist, I, dist, [} — 2, if |P|> 2,
p =

Note that |P| > 2 implies that min{dist, /, dist, I} > 2.

Theorem 3.2.14. Let I be a monomial ideal in k[z,y] and let P(I) C P C P*(I) such
that P = {g1,...,9k+1} and g1, ..., gk+1 are ordered in descending y-degree. Further,
let D > (u(I) —|PJ|)-dp +|P|-dp.

Then for all £ > 0,
k

P+ = > (g, giy1)'1P.

=1

Proof. The inclusion “D" is trivial. We prove “C". Write N := G(I) \ P. By Corol-
lary 3.2.11 we can write IP+¢ = 19" = q"]% where § := |N|-6p, and n := (k+1)dp +¢,
and a is the ideal generated by P. Thus, every minimal generator F' of IT™ is of the form

F =g- f, where g is a product of n elements in P and f € I°.

Claim. There exists 1 < ¢ < k such that

g € (gi, gir1) alkrDir,

We write g = g7* -~ 'gzil, where n; € Ng with ", n; = n. The assertion of the claim

holds trivially in the following cases:
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(1) at most one n; > dp,
(2) nj,njp1 > dp for some 1 < j <k and n; < dp forall i ¢ {j,j+ 1}.

Otherwise, we take a := min{i | n; > dp} and b := max{i | n;, > dp}. Note that
a+ 1 < b. The following argument may be repeated as needed; in every step either a
increases strictly or b decreases strictly. For readability, we may therefore assume without
loss of generality that « = 1 and b = k + 1 at the outset. By Proposition 3.2.3(2), we

then have

diste (91,9k+1) | diste(92,9k+1) diste(g1,92)
92 | 91 Ir11 :

Since g is a minimal generator, equality must hold, so

n1—diste (92,9 no+diste (g1,9% n —diste (91,9
g=g" (92 k+1)g22 (91 k+1)ggl3__'g£bkgkj_+ll (91.92)
We iteratively apply Proposition 3.2.3(2) until at least one of the exponents of g; and
g2 is less than or equal to dp. At this stage, we redefine ¢’ :== min{i | n; > dp} and
b == max{i | n; > dp}. Now a’ > a or ¥/ < b must hold. Hence, by repeating this
argument from the top we eventually must reach one of the trivial cases (1) or (2), where

the claim follows immediately. O

Remark 3.2.15. The set P may be chosen closer to either P(I) or P*(I), depending on
the specific context in which Theorem 3.2.14 is applied. For instance, if the objective is to
minimize (u(I) — |P|) - ép + |P| - dp, then P can be selected based on the values of dp
and 0p.

3.3 Ideals with regular staircase factors

In this section, we study the minimal generators of sums of

ideals of the form (g,h)".J, where g and h are monomials,

and J is a (fixed) anchored monomial ideal in k[z,y]. The

main result of this section is Theorem 3.3.16.

We begin with the special case (z*,y")"J for u, v € N. By

drawing its exponents in the zy-plane, the ideal (z*,y")"

looks like a “regular staircase” in the sense that all n steps Fig- 3.2
in its staircase are of the same size. The minimal generators
of the product (z*,y")"J are of the form z*("~)yVi f with f € G(J). In general, not all
elements of this form are minimal generators as divisibility relations may occur among them.
In Figure 3.2 we visualize the potential cancellations among the minimal generators in the
product (%, y")"J. Even though Figure 3.2 does not depict the actual generators of the
ideal J, the figure suggests that the “overlaps” of the shifted copies of .J result in a repeating
pattern with increasing n. We formalize this “pattern repetition” in Theorem 3.3.4 below.
Before that, we establish in Lemma 3.3.2 that partitioning the elements of (z",y")"J

based on their y-degrees reveals divisibilities by certain powers of z* or y". Figure 3.3
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visualizes this partition.

Remark 3.3.1. The choice of partitioning by y-degree is arbitrary; all results of this section

remain valid if we instead partition by z-degree, simply by interchanging roles of = and y.

Lemma 3.3.2. Let u, v € N and J C k[z,y| be an anchored monomial ideal. Moreover,
let r > [%W andn >1r. Forr <j <n, we set

Uy = {F € (=" y")"J ‘ deg, F' > jv} and
L;= {F € (", y°)"J ‘ deg, F < jv}.
Then, forr < j <mn,
Uj C y”(j_r) . (x“,y”)”_(j_’")J, and L; C (=) . (x“,y”)jJ.
In particular, forr < j<n-—1,

UiNLjp = g =G+ vG=r) {f € (x¥,y¥) T ’ rv <deg, f < (r+ 1)1)}.

Fig. 3.3: We partition the ideal (z*,y")"J into sections based on the y-degree, as indi-
cated by the dashed horizontal lines. Observe that the upper left corner of each rectangle
corresponds to a monomial in (z*,y")".J (we assumed J to be anchored). This bounds
the x-degree in each y-section; see Remark 3.3.3.

Proof. For the first two inclusions, we write F' = %"~y f with 0 < i <n and f € J

and separate into two cases.

U;: Note that degyf < dist, J. Hence, deg, F' > jv implies ¢ > j — dlSty >4—r>0,
that is, F = y*U~") . f with f = g@(n=0yv(=0=7)) f ¢ (gu 4)n—0- T)J.

L;: The condition deg, F' < jv implies : < j and n —i > n —j > 0. Therefore,
F = g0 . f with f = 20Dy f € (2%, y)IJ.

Finally, for the last equality, “C" follows from the above while “2" is obvious. O

39



Remark 3.3.3. As preparation for later arguments, we provide a bound on the x-degrees
of elements in U{;: Let J be an anchored monomial ideal with b = dist, J. With the
notation of Lemma 3.3.2, if n > j —r and j > r, then H = z%(n=3+7)v(i=")yb js an

element of (z%,y")"™J satisfying
deg, H=v(j —7r)+b<jv and deg,H=(n—j+r)u,
cf. Figure 3.3. Consequently, forn > j —r,
feU NGty ) = deg, f < (n+7—ju,

and equality can only hold if H = f. In particular, if there exists f € U; N G((z",y")"J)
with deg, f = (n 4+ — j)u, then H = f € U; which, considering the y-degree of H,
further implies r = % and deg, (f) = dist, (J).

Theorem 3.3.4. Let u, v € N and J C k|x,y| be an anchored monomial ideal.

Then, for all r > [%W and ¢ € Ny,

14
G(($u, yv)r+1+€J> _ yUKL W L_lj l,ujyv(ﬁ—j)M W xuﬂR’
j=1

where

L= {f € G((:U“,y”)THJ) ‘ deg, f > rv},
M = {f IS G((w“,y”)rHJ) ‘ rv < deg, f < (r+ 1)11}, and
{

R=<f¢€ G((m“,y”)rHJ) ‘ deg, f < rv}.

In particular,
(@ gy T ) = (@) ) e (M.
Proof. Note that the count is an immediate consequence of the first assertion.

With the notation of Lemma 3.3.2, we have

r44—1
(@) T =Low | U0 Ljsr) Wlppe (3.3.1)
j=r
We claim that the following three statements hold:

(1) Upie N G((a%,y°) 40T ) = gt - I,

(2) £, NG((a,y")+1HT) = v - R, and
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(3) forallr <j<r+¢-1,

Uy 1L540) N G((@",y") 1T ) = @y 00,

If the claim holds, then the assertion follows from (3.3.1) since, arranging the sets in reverse

order,
r+6—1 ¢ ] )
G((l‘u,yv)r+1+fj) N L_H (Uj N »Cj—i-l) — L_!_J mugyv(éfj) - M.
j=r j=1

In all three cases, the inequalities that the y-degrees must satisfy, are the same on both
sides of the equality. Moreover, the inclusions “C" all hold due to Lemma 3.3.2 and the
fact that a generator g - f of (2%, y)" 1 HJ with g € (2%, 3*)" '+ and f € J can only
be minimal, provided that f is a minimal generator of J (the same holds for g but is not

relevant here).

For the reverse inclusions, it is in all three cases left to show that every element of the set

on the right is a minimal generator of (2%, y%)" 174, To do so, take
H = xu(r+1+£7i)ym’h e (xu’ yv)r+1+€J

withheJand 0 <i</+7r+1.

(1) Let F = y¥*f with f € G((z*,y*)"**J) and deg, f > rv. Then deg, F = deg, f <
(r+1)u, cf. Remark 3.3.3. If H divides F', then deg, H < deg, F implies (r+1+{¢—i)u <
(r+ 1)u, thatis, i > £. We cancel out y”f to conclude that

xu(r—i—l—l—[—i)yv(i—f)h | 1.

which, since f € G((z%,y*)""1J), implies that H = F.

(2) Let F = 2% f with f € G((z% y*)""1J) and deg, f < rv. Again, assume that
H divides F. Then deg, H = iv + deg,h < rv and hence i < r. This implies that
r+f+1—1i>/¢+1, thus we can cancel out % on both sides and end up with the same

conclusion as in (1).

(B)Let r < j<r+¢—1and F = gurt=0)yvG=7) f with f € M. Then f € L, thus
by (1), ¥*U~")f is a minimal generator of (z%,4")7T1.J. As above, if H | F, then the
y-degree of H must be less or equal than the y-degree of F', and therefore ¢ < j+ 1. This

implies 7 +£4+1—1i>r+ ¢ — j, so we can cancel out z“"+¢=9) which leaves us with

$u(j—i+1)yvih | yv(j—r)f.
As y*U=") £ is minimal in (2%, y¥)7t1J, we get equality. O

Let us unravel Theorem 3.3.4 in an example.
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Example 3.3.5. Let u = 3, v =4, and
J = (y*, 2?7 2%y, 2Pyt 2Ty, o)

as depicted in the (grey) rectangle in Figure 3.4. We choose r = 3, which is the minimal
possible choice of 7 in Theorem 3.3.4. The lower two dashed lines in the figure mark the

areas where the y-degree is in between rv and (r + 1)v.

The left part of Figure 3.4 shows (23, y*)"*1.J. The set L consists of generators above the
line j = r, marked with (blue) circles. The set R consists of the (orange) squares below
j = r. The middle set M contains the two encircled (in red) generators between the two

lines j=rand j=7r+1.

On the right side of Figure 3.4, we see (23, y*)""3.J. The minimal generators are a disjoint
union of the sets
y* 2L, 23yiM, 232M, and 23?R.

($u7yv)r+1j (xu7yv)r+3j

Fig. 3.4: Visualisation of the sets L, M, and R in Example 3.3.5.

Corollary 3.3.6. Let u, v € N, J be an anchored monomial ideal, r > {dlStTyJ-‘ and
M = {f € G((m“,y”)’"“J) ‘ rv < deg, f < (r+ 1)1)}.

Then M + 0.

Proof. Let b := dist, J and choose any natural number ¢ > %. Assume that M = 0.
Then, by (3) in the proof of Theorem 3.3.4, we have

;N L51) NG (2", y") 1) =0
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for all 7 < j < r+ £+ 1. Consequently, there are no minimal generators of (z%,y?) +¢+1.J
satisfying
rv < deg, f < (r+{)v. (3.3.2)

However, by the choice of ¢, the element f := y vz (+1uyb e (2% y¥) HH1 T fulfills these
inequalities. Therefore, there must exist a minimal generator g € G((x”,y”)””lj)
dividing f. Then deg, g < (¢ + 1)u and by (3.3.2), deg, g < v must hold, and hence
g ¢ (x*, y¥) 1], a contradiction. O

Theorem 3.3.4 describes how the minimal generators of (2%, y?)"*1+¢J change in a pre-
dictable pattern as ¢ increases. In other words, the staircase of the ideal (z%,y?) 6]
is formed by aligning the staircases of certain repeatedly occurring subideals: from left
to right, we begin with the staircase of (L), then we repeat the staircase of (M) for ¢

consecutive steps, and finally add the staircase of (R).

We want to formalize this idea of “connecting” staircases.

Definition 3.3.7. For I, J C k[z,y] monomial ideals, we define the link /@.J (with respect
to y) as
T®J = I& . ydistyJ + J& . xdist;cI’

and we write 1% := T@T®@---®I. We call the monomial zdist= Iydisty / the link point
—_—
4

of I®J.

I®J =914 2T

Fig. 3.5: Visualisation of the link of ideals.

Remark 3.3.8. As mentioned above in Remark 3.3.1, we want to be able to reverse the
roles of  and y throughout. However, this affects the order of the arguments of the link.
Note that /@ J = J®I, which is why we have to include the variable used for the partition

in the notation of the link.

Remark 3.3.9. If I and J are monomial ideals with dist, I = a and dist, J = b, then the

minimal generators of I - y® and Jg - £ only intersect in one element, namely the link
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point 2%y®, cf. Figure 3.5 (indicated by an arrow). Therefore,

GUI®J)=G(Ig)-4° UG(Jy) - z°
= G(Iy) "W (G(Jg) \ {y'}) - 2.
This implies u(I ® J) = p(I) + p(J) — 1.
Remark 3.3.10. Let I be an anchored monomial ideal that can be written as the link of

ideals, i.e.,
I=Jy® - -®Jg

for some anchored monomial ideals Jy, ..., Ji. For 1 < i < k we denote the link point
between (Jo @ -+ ® Ji—1) and (J; @ -+ @ Ji) with h;, and we set hy = y¥stv! and
hiy1 = 238tz T Then it follows that

k
I=Y"ged(hi, hiy1)J;
j=0

and, in particular, I : ged(hi, hiy1) = J; for all 0 < i < k.

With the necessary tools in place, we now return to the goal of expressing (z%,y) 1+
as the link of the ideals generated by L, M, and R. However, there are “gaps” between

the staircases of these ideals, so we must first expand them by suitable link points.

Definition 3.3.11. Let u, v € N, J C k|z,y] be an anchored monomial ideal, and r >
{%-‘ Further, we set g :== 2%y” to be the minimal generator of (2, y")"1.J with

8= min{degyf ‘ fe G((m“,y”)rHJ) ,degyf > rv}.

With L, M, and R as in Theorem 3.3.4 we define the r-segments of (z%,y")J as

A= (L):y”,
H:= (M U {xo‘_“y’8+”}) c 2% %8 and
B:=(RU{g}): 2%,

For monomials g, h € k[x,y] we define the r-segments of (g,h)J as the r-segments
of (g,h)gJ.
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'77 a

Fig. 3.6: Left: Visualisation of the point g from Definition 3.3.11, with » = 3. Right:
Above 77 is the staircase of y®A (in blue), and to the right of 2 is the staircase of 2B (in
green). The striped area in the bottom-right corner of B is the staircase of 2®~"y”H.

Remark 3.3.12. With the notation of Definition 3.3.11, we have
= (@ ") 1) 1y,
((x“,y”)”“J) 2% y? . and

= ((a;“,y”)”lJ) HE

A
H
B
In particular, g = 2%9? is the link point of A@B = (z%,4")"*1.J, see Figure 3.6. Moreover,

L=G(A)’, R=G(B)a"\{g}, and M =G(H)}a" "y \ {2 " "},

Corollary 3.3.13. Let u, v € N and J C k[z,y] be an anchored monomial ideal, r >
[diSty JW, and A, H, B the r-segments of (z",y")J.

(2

Then, for all £ € Ny,
(z%,y*) 1T = A H? @ B.

Proof. It follows from Theorem 3.3.4 in combination with the last equalities in Remark 3.3.12

that

L
G(({Eu, yv>r+1+€J) _ yvéL W H_J xjuy(é—j)vM WaR

j=1
-1

_ yu€+,8G(A) W E‘J (xa+juy6+(é—j—1)vg(|_|) \ {xa+juy,8+(ﬁ—j)v})
§=0

W xa+u€G(B) \ {anruéy,B}'

This is exactly the minimal generating set of
-1

A® H®* ®»B = Ay”“ﬁ + Z Hxa+juyﬂ+(é_1_j)v + on“%“,
=0
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cf. Remark 3.3.9. Note that the generators z®T7uyf+((=)v for 0 < j < ¢ are the link
points in A@ H®! @ B. O

Remark 3.3.14. Corollary 3.3.13 confirms that r-segments behave as intended and rephrases
Theorem 3.3.4 in the language of ideal links. Continuing Figures 3.4 and 3.6, we provide

a visualisation in Figure 3.7.

Fig. 3.7: In (2% y")"™3J, the staircase of H
(striped black) is repeated ¢ = 2 times in the
middle. On the top left (in blue) is the staircase
of A and on the bottom right (in green) is the
staircase of B. Note that there is one H included
in A.

Remark 3.3.15. With the notation of Definition 3.3.11,
B<(r+1v and a<(r+1l)u

holds. The first inequality follows from Corollary 3.3.6, while the second follows from
Remark 3.3.3, since by definition, g = 2%y” is a minimal generator of (z*,y%)"*1J that
is in U,.. As noted in Remark 3.3.3, if we have equality a = (r 4+ 1)u, then this implies
rv = dist, J, g = g(rtDuydisty(J) 3nd 5 = disty(J).

We are now set to prove the main result of this section.
Theorem 3.3.16. Let I C k[z,y] be an anchored monomial ideal such that G(I) =

P*(I) ={g1,...,9k+1} and the g; are ordered in descending y-degree. Further, let J C
klz,y] be an anchored monomial ideal, and for 1 < i < k, let v; := disty(gi, gi+1),

{ {disty J }"
r > | max .
1<i<k V;

u; = distz(gi, giv1), and

Then, for all ¢ > 0,

k k
Z(Qz’, gir1) T = Co @@ (Hg@f ® C"),
i=1 i=1

where, for 1 < i < k, A;, H;, B; are the r-segments of (gi, gi+1)J,

C, =B, - y(r+1)vi+1—disty(B¢+1) + A - x(r—l—l)ui—distz(Ai)

)

CO = Al, and Ck = Bk.
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'}_(7', + 1)viy1 — disty(Biy1)

—I-LL‘ g;<+1+£/!'E

Iﬁ, (r+ Du; — d::tl(A[),
b
“.‘ . -

Fig. 3.8: Left: The lower section of (g;_1,¢;)"t'T¢J and the upper section of
(9i, gir1) 14T, where g7 H1+ appears as the lowest and uppermost (red) dot, respec-

i
tively. Right: B;_; (dotted green) and A; (shaded blue) overlap at gf*”f resulting in a

new staircase, namely that of C;. Note the required shifts in the z- and y-directions to
align B;_1 and A; before summing them up.

Proof. Throughout, we use the notation o, = dist;(A;) and j; = disty(B;). By Re-
mark 3.3.15,
(7“ + 1)ui —o; >0 and (’I” + 1)1}1'_;_1 — Bi—i—l > 0. (333)

We argue that for 1 <i <k —1
distx(Ci) = Q41 + ui('r + 1) — (334)

and
diSty(Ci) =B + Ui+1(7“ + 1) — Bit1- (3.3.5)

(3.3.4): Both ideals A; 1 and B; are anchored. Hence, the maximal xz-degree appearing in
the minimal generators of A;4; - ("t ~% comes from a monomial with y-degree equal

to zero and is given by
dist, A1 + (’I" + 1)ui — oy = 041+ (’l“ + 1)ui — Q.

Further, the minimal z-degree in the minimal generators of B; - y("t1vi+1 is equal to zero.
All elements in the summand B; - y("tDvi+1 have positive y-degree which implies that

dist,(C;) is determined by the maximal x-degree in A;;1 grtDui—as

(3.3.5): If (r+1)u; —a; > 0, then we can argue analogously as above. If (r+1)u;—a; =0,
then Remark 3.3.15 implies that rv; = dist, J and f3; = dist, (B;) = dist, J. Since dist, C;

is given by the maximum of the y-degrees of the two summands of C;, i.e.,
dist, C; = max{dist, B; + (r + 1)vi41 — disty (By1), disty A1},

and, by Remark 3.3.12, dist, Aj11 = (7 + 1)viy1 + disty J — Bi41, the assertion follows.
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We turn our attention to the assertion of the theorem and proceed by induction on k. The
basis kK = 1 is Corollary 3.3.13.

Now let & > 1. By the assumption that (gi,...,gx+1) is anchored, it follows that
ged(gi, ..., gk) = deg, gr = vg.

We can apply the induction hypothesis to the anchored ideal (g1 /y"*, ..., gx/y"*) to con-
clude that

k—1

((9i7 9i+1)7"+1”J) = (L@ By,_y) yrHiF0u
1

.
I

where L
L=Co(¥) (H@Z ® ci) @ HY
i=1

Similarly, setting u = deg, gx, we know that

(ks k)" T = (Ac @ R) - 2" HH) with R = HP @ G,

Therefore,
k
Z ( 9is Gi+1 TH“J) = (L@ Byp_1)y"* "1 H0 4 (A, @ R) - 24 F1+0)
i=1

which is equal to

<Ly,3k,1 4 Bk_lxdistz L) . yvk(r+1+€) 4 (AkydiStyR 4 Rxak> . mu(r+1+€)‘ (336)

Before we continue manipulating (3.3.6), we verify a few handy equations. Note that
dist,(H;) = w; and dist,(H;) = v; for 1 < i <k, and recall that © = deg, g, = Z 1 ;.
Thus, using (3.3.4),

k—1 k—2
dist, L = 041‘*‘52%‘4- ZdiStx(C =ap1+lu+(r+1 Zuz
i=1 '
=ap 1+ +1+0u—(r+1ug_q.
It follows that

disty (L ® Cy—y) = disty L + dist,(Cp—1) = g + (0 +7r+ 1)u (3.3.7)

and
u(r+14+4¢) —disty L = (r + Dug—1 — ax—1 >0, (3.3.8)

where the last inequality comes from (3.3.3). Moreover, since dist, R = i, + fvj, we have
(using (3.3.3) again)

vp(r+1+0) —disty R= (r+ 1)vy — x>0 (3.3.9)
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and, using (3.3.5),
disty(Cy—1 ® R) = disty(Cp—1) + disty R = fr—1 + (£ + 7+ 1)vg. (3.3.10)
Using (3.3.8) and (3.3.9), the middle two summands of (3.3.6) can be rearranged to

<Bk_1y(7'+1)vk_ﬁk + AkJ:(T-‘rl)ukfl—ak*l) pdista Lydisty R
Thus, using (3.3.7) and (3.3.10), we conclude that (3.3.6) equals
Lydisty(ck—l@R) 4 Cpqapdiste Lyydisty R 1. Rgdist=(LOC—1) — [ C, @ R

which completes the proof. O

Remark 3.3.17. Let hq, ..., hy be the link points of
k k
S=3 (959i+1) T =G
i=1 i=0
Using the observation of Remark 3.3.10, C; = S : ged(hg, hit1), where hy == g{“ and
higy1 = g,'gﬂ The link points can be determined by their y-degree, that is,

deg, h; = min{degy f ‘ f€G(9),deg, f > (r+1)v; +rdeg, gi+1}.

In particular, this means that we can determine the minimal generators of C; directly from

the minimal generators of S, that is,

Ci= (g € G(S5) | deg, hiy1 < deg, g < deg, hi)$-

Moreover, also H; can be determined from S by choosing its elements according to their
y-degree. By Remark 3.3.12 and Theorem 3.3.4,

G(H;) = {g € G((gi,giﬂ)?’lJ) | rv; < deg, g < (r+ 1)112-} w {gdiuigfitvil

where x&iyﬁi = W‘W. The elements in {g € G((gs, gir1)"THIP) | rv; < deg, g <

(r 4+ 1)v;} “survive the concatenation” of A; and B,_; to C;_; as minimal generators
(shifted by 2("+Dui-1=distz(Ai-1)) |t follows that

Wi

. hi
H; = ((g € G(9) | deg, hi < deg, g < deg, gi—l) + (y 1))$

= (g € G(S) | deg, hi < deg, g < degygf_1)$ + (y™).
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Corollary 3.3.18. With the assumptions and notation from Theorem 3.3.16, we have

k k k
u(Z(gagm)T”“J) =14+ (u(Ci) = 1)+ £ (u(Hi) = 1).
i=1 i=0 i=1
Proof. This is an immediate consequence of Theorem 3.3.16 in combination with Re-
mark 3.3.9. 0

3.4 Minimal generating sets of powers

We now apply the preceding results to describe the minimal generators of large powers
of an ideal I. At the beginning of Section 3.3 we chose to partition the elements of
ideals with regular staircase factors based on their y-degrees (Lemma 3.3.2, Remark 3.3.1).
Consequently, most definitions and results are phrased with assertions about the y-degree
of elements. However, by interchanging the roles of the variable names, the analogous

results hold for the z-degrees, too. In this section we take this into account.

Remark 3.4.1. Switching the roles of variables affects the link, cf. Remark 3.3.8, and

reverses the order of g1, ..., gx+1-

Notation 3.4.2. Let [ be a monomial ideal and P = {g1, ..., gx+1} such that P(I) C P C
P*(I) and the g; are ordered in descending y-degree. Further, with dp as in Notation 3.2.9,
and dp as in Notation 3.2.13, let D > Dp = (u(I) — |P|) - ép + |P| - dp. For e € {z,y},
we denote

diste I
re(P, D) := {D- max IS—‘ :
1<i<k diste(g;, git1)

Remark 3.4.3. Ordering the elements of P in ascending y-degree instead of ascending

x-degree does not affect the values of 74(P, D).

Definition 3.4.4. Let I be a monomial ideal, fix @ € {z,y}, and let P = {g1,...,9k+1}
such that P(I) C P C P*(I) and the g; are ordered in descending e-degree. Further, let
D> Dpand s> D +r(P,D)+ 1.

We write r := s — D — 1 and for 1 <14 < k, we set h{ to be the minimal generator of I*
such that

degc hz. = min{deg. f | f € G(IS) 7dego f 2 TdiSt'(giugH-l) + (T + ]-) dego gi-‘rl}a

and we set h = gi and h}_ | = g; . We define the (s, e)-stable components of I (with
respect to P and D) to be

Ci:=1I%:gcd(hf,hi ) for 0 <i <k

19
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T

g1 =ho g5 = ha

Fig. 3.9: A simplified visualisation of the (s,)-stable components (C;)¥_, and (H;)F_;

(e = x on the left and e = y on the right) of an ideal with k¥ = |P| = 3.

and for 1 <4 <k,

Hi = (g € G(I®) | deg, h{ < deg, g < deg, g )4 + (875 (0-0:11)),

If I is not anchored, then we define its (s, e)-stable components to be the (s, e)-stable

components of Ig.

Remark 3.4.5. The monomials hf, ..., h{ in Definition 3.4.4 are by the definition of
(Ci)¥_, the link points of Co @ ---® Cy. Note that S, ..., h$ are ordered in descending
e-degree, see Figure 3.9. Further, for 1 <i <k,

dego giSJrl < dego hz. < (T + 1) ( diStO(gia gH—l) + dego gi+1) = dego g§+1'

The lower bound is due to r > (P, D) > % and the upper bound follows from
Corollary 3.3.6.

We are now set to prove the main theorem of this section, bringing Theorems 3.2.14
and 3.3.16 together.

Theorem 3.4.6. Let I C k[z,y] be a monomial ideal, € {z,y}, P(I) C P C P*(I),
D > Dp, and s > D +74(P, D)+ 1. Further, let (C;)¥_, and (H;)%_, be the (s, ®)-stable
components of I with respect to P and D.

Then for all ¢ > 0,

1+ = ged(1)* - (C @(’f) (H*eoc)).
=1

Proof. Without restriction, we assume that ¢ = y. As P and D are fixed, we write
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ry = 1y(P,D). Since I = gecd(I) - Ig, we can carry out the proof under the assumption
that I is anchored and multiply by ged(1)** in the end. Let g1, ..., gry1 be the elements
of P ordered in descending y-degree. We apply Theorem 3.2.14 and obtain that for all

t>0
k

Pt = > (g, giv1)' 1P,

i=1
Note that the weakly persistent generators of the ideal generated by P are precisely the
elements of P. Further, we observe that dist,(/”) = Ddist, I and hence

. D
r=s—D-12>r,= | max dlSty—(I) .
1<i<k dlSty(gi;giJrl)

Therefore, the conditions for Theorem 3.3.16 are satisfied and by applying it, we obtain
that for all £ >0

k

k
st — Z(gijgi+1)r+1+€ID o) @@ (HQ@Z ® C;),
i=1 i=1

where H; and C; are as in Theorem 3.3.16. Observe that the link points of
IS5 = 6 @@ C;ﬂ

are precisely hzl/, h% as in Definition 3.4.4 (cf. Remark 3.3.17). With Remarks 3.3.10
and 3.3.12 this implies that C;, = C; and H} = H; are the (s, y)-stable components of I. [

Notation 3.4.7. With the notation of Theorem 3.4.6, let

r(P, D) = min{r,(P, D),y (P, D)}.

Remark 3.4.8. Theorem 3.4.6 states that all information about large powers of I is en-
coded in I® for any s > D +r(P,D) + 1.

Corollary 3.4.9. For s > Dp+r(P,Dp)+1 and ¢ > 0, the computation of G(I***) from
G(I°) takes O(¢) additions of (monomial) exponents.

Remark 3.4.10. Theorem 3.4.6 leads to significantly faster computations of large powers

of I. For a runtime comparison we refer to Section 3.4.1.
Recall that the Hilbert function of the fibre ring of a monomial ideal—which counts the
number of generators of its powers—eventually becomes a polynomial function (cf. [25,

Theorem 6.1.3]). Theorem 3.4.6 provides an explicit description of this polynomial.

Corollary 3.4.11. Let I C k[z,y] be a monomial ideal, P(I) C P C P*(I), D > Dp,
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and s > D+ re(P,D)+ 1. Then for all { >0
k k
(I =1+ (1 £ (u(Hi) — 1),

i=0 =1

where (C;)¥_, (H;)%_, are the (s, e)-stable components of I with respect to P. In partic-

ular,
(1) = (1) + £ () = (1))

Remark 3.4.12. For e € {z,y} and |P| > 2, we have r,(P,Dp) < Dpdiste(I) and
Dp < p(I)(diste I —1). Thus

Dp +14(P, Dp) +1 < p(I)(dista(1)* = 1) + 1.
If |P| =2, then (P, Dp) = Dp and hence
Dp +1(P,Dp) + 1= 2(u(I) - 2) (min{dist, I, dist, I} — 1) + 1.

Corollary 3.4.13. Let I C k[z,y] be a monomial ideal with P(I) = {z%y*}, d =
min{a, b}, and s > 2(u(I) —2)(d — 1) + 1.

Then for all ¢ > 0
= CooHY ® ¢,

where Cy, Cq, Hy are the (s,e)-stable components of I with respect to P = P(I) and
D = Dp.

Proof. This is the special case of Theorem 3.4.6 with k = 1. O

Remark 3.4.14. Note that in the case P = {z% 1%}, the s-segments of (z¢,y®)IPP
(Definition 3.3.11) coincide the (s, y)-stable components of I with respect to P, i.e.,

A:CO, H:H17 and B:C1

We now summarize how the minimal generators of I° and I°™! can be explicitly described

from the (s, ®)-stable components.

Corollary 3.4.15. Let I C k[z,y] be an anchored monomial ideal, ® € {z,y}, P(I) C
P C P*(I), where g1, ..., gx+1 are the elements of P, ordered in descending e-degree.
Let hf, ..., hi,y and (C;)¥_o, (H;)%, be as in Definition 3.4.4, using D > Dp, and
5 > D—{—r.(P D) +1. We set q; = ged(hy,hi, ) for 0 < i <k and §; = fl where for
1<i<k

disty(9i,:9i+1)  jf @ = .

pdist=(9i:9i+1)  jf ¢ = ¢ and
fi=
Y
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Then

G(IS) = G(quo) ] H‘J G (chl)a
=1
k
G(ISJFI) =g - G(C_IOCQ) W ZL:‘Hl gi+1 (G*(Qlcz) w G*(@HZD’

and
k k
G(IHQ) = 91G(qCo) ¥ | g711 (G*(Qici) & G*(@'Hz’)> W 4 gigi1G*(G:H,),
i=1 i=1

where G*(J) denotes the minimal generating set of a monomial ideal J excluding the

minimal generator of maximal e-degree.

Proof. Without restriction, we assume that e =y and write h; := h}. The first assertion
follows from Theorem 3.4.6 in combination with Remarks 3.3.10 and 3.4.5. Note that

dist;(Co®...®Ci—1) =deg, h; and  disty(C; ®...® Cy) = deg, h;.

Moreover, again by Theorem 3.4.6, we have

I't'=CooH ® - @H ® Cp. (3.4.1)

Let o == dist, H; = disty(gi, gi+1) and 3; = dist, H; = disty(gi, git1) for 1 < i < k.

With this notation, deg, ¢; = Z;;ll a; and deg, g; = Z?:i Bj.

For 1 <i < k, let w; be the link point of (Co@ HH®---®H;_1 @Ci—l) and (HZ' ®C ®

i—1 k
deg, w; = deg, h; + Z aj and deg,w; = deg, h; + Z Bj,
=1 j=i

which implies w; = h;g;.

Similarly, for the link point m; of (Co@H; ®---®C;—1 ®H;) and (C;®--- @ H ® Ci) we

conclude that m; = h;g;41.

The monomials wy, my, we, ..., wg, my are the link points of the link (3.4.1) from left

to right. With mg = hog1, wg+1 = hk+19k+1 and Remark 3.3.10, we have

k

k
PP =3 " ged(my, wir1)Ci + Y ged(wi, m)H;.
i=0 i=1

A straight-forward verification shows that for 1 <i <k

ged(mg, wig1) = giv1q; and  ged(my, wy) = ged(gs, giv1)hi = Git1Gi-
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Finally, it follows from the definition of the link that the individual summands intersect
exactly at the linking points which are excluded in G*(H;) and G*(C;), making them

pairwise disjoint. This proves the second assertion.

For the third assertion, we proceed analogously. We determine the link points of

(CoaHP?@--- @ H? @ C;_y) and (H2 9 C@--- o H? @ Cy)
(CooHP?@---oH?2 @C, 1 @H;) and (Hi®C@---@HPZ @ Cy)
(CooHP?@--- @ H”? @ C;_; @ H”2) and (C;o---@HZ @)

which are w; = higf, u; = hig;gi+1, and m; = higi%rl. With mg = hog% and wiy1 =

hk+1g,%+1, we have

k

k k
2 = " ged(mi, wig1)Ci + Y ged(wi, ug)H; + Y ged(ug, m;)H;.
1=0 =1 =1

Since ged(my, wiy1) = gi2+1qi, ged(ug, m;) = gl-2+1@-, and ged(u;, w;) = gigi+1G;, the third
assertion follows. O

Remark 3.4.16. It follows from the corollary and its proof that H; = It : g, 14;.

Remark 3.4.17. Corollary 3.4.15 shows how the minimal generators of I°*! and 1512 are
¢

computed from G(I*). For I*** one multiplies the ¢;C; with ng, and H; with gilgfil for

all 41, ¢o with ¢1 + 05 = ¢.

Corollary 3.4.18. With the assumptions and notation of Corollary 3.4.15,

G(IS+1) = L-H f ' Gf7
feG(I#)

where, with the notation w; = diste(g;, gi+1),
{gi} if1 <i<k, and deg, h{ +w; < deg, f < degy h}_;,

Gr=11{9,9i+1} if1<i<k, and deg, h? < deg, f < deg, h? + w;,
{gr+1} if deg, f < deg, hj.

Proof. Observe that for 1 <i¢ <k +1,

Si = {f € G(I*) | deg, h{ +w; < deg, f < deg, h}_1}
C{f € G(I*) | degy hy < deg, f < deg, ht_,}
= G(¢i-1Ci—1).
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Moreover, for 1 <3 < k,

T, = {f € G(I°) | degy h? < deg, f < deg, h} + w;}
C G(qi—1Ci—1) U{f € G(I?) | degy h; < deg, f < degq hi + w;}
= G(gi—1Ci—1) U G(g;H;).

The assertion now follows from Corollary 3.4.15. O

Corollary 3.4.19. With the assumptions and notation of Corollary 3.4.15, let ¢ € {1,2},
g € G(I°tY) and i such that deg, gfif < deg, g < deg, g:**.

(2

If¢ =1, then
giG(I?) if deg, g > deg, h$g;
S
gi+1G(I°)  if deg, g < deg, hfg;.

If ¢ =2, then
giG(I5t) if deg, g > degy h?gigit1
g€
Gir1G(I5TY)  if deg, g < deg, hgigit1-

Proof. In the proof of Corollary 3.4.15, we have seen that hfg; is the link point be-
tween g; i1 (qici + @-Hi) and g;q;C;. Moreover, deg, h?g;gi+1 is the link point between

Jit1 (qici + @Hi) and ¢;g9;+1q:H; + 9i¢;C;. The assertion follows from a comparison of
degrees. O

We now present examples to conclude this section.

Example 3.4.20. Let I = (y2, 2%y, 23). We apply Corollary 3.4.13 with
P = P() = {4,")
to give a complete description of the generators of large powers of I.

(1) We start by computing Dp =1, 7 = ry(P,Dp) = r,(P,Dp) =1, and s = 3.

(2) Next, we compute that h} = 2%y is the minimal generator of I® with y-degree at
least 7 -2+ 0 = 2. Recall hY = yb and h§ = 2°.

(3) We compute the (3, y)-stable components with respect to P

CO = .[3 : y2 = (y4,$2y371’3y27$5y7x6)7
H1 = I3 . x3y2 = (y271'2y,l’3), and
2

Cy =13 : 2% = (42 22y, 23).
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From this we obtain that for all £ > 0,
=yt 2y’ 28y 2Py, 2% 0 (v, 2%y, 2% @ (v, 2%y, 27),

and hence
e . .
G(I*) = y*"*G(Co) & ] 2™y DG () w216 (C),
j=1

where G*(J) denotes the set of minimal generators of an ideal J, without the minimal

generator of largest y-degree. In particular, we have pu(I37¢) = 74 2¢.

Example 3.4.21. Let I = (y'°, 2y°, 2%¢°, 2ty?, 2593, 2992, 212y, 2'5). The computations

for this example are done in SageMath3. We compute the persistent generators of I
P(I) = {y', 2%®, 252, 215},
and with P = P(I) we obtain Dp =40, r(P,Dp) = r,(D, P) = 200, and s = 241.
With Theorem 3.2.14, we compute
7241 _ ((ylo,m2y5)201 + (x2y57$6y2)201 + (m6y27x15)201) T40
Now, with the notation of Definition 3.4.4,
hY = y 2410, hY = 1622005 hY = 7531002

hY = 1815400 py _ ;3615

i 9 I

and hence the (241, y)-stable components of I with respect to P are

241 . 2005 __ 7241 . _.160,,2005
CO = I . y 5 Hl - I X y 9
Cl _ 1241 . $162y1002, Hy = I241 . $749y1002,
Cy = I241 . 4753400, Hy = [241 . ;1806400

Cy = 1241, 51815

Analogously to the example above, these ideals can be used to write down the minimal
generators of I241+¢ explicitly. Further, it follows that for all £ > 0, u(1?41%) = 1688 4-7¢.

3.4.1 Runtime in practice

We compare the runtime of our method, implemented in SageMath (Version 9.5), against
computations performed in Macaulay2 (Version 1.21; ideals are of type MonomialIdeal)
All computations were done on a machine equipped with an AMD EPYC 9474F 48-Core
Processor @ 4.10GHz (192 cores) and 1536GB RAM.

3section_5_1.ipynb as ancillary file on the arXiv page of the paper [48].
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We tested the method on four different ideals, which are provided in an additional file3
and choose P = P(I) in all four cases. In the following, we write D := Dp and s :=
D +r(P,D)+ 1. We use (s,y)-stable components whenever (P, D) = ry(P, D) and

(s, x)-stable components otherwise.

The results of the computational comparison are summarized in Table 3.2. The ideal from
Example 3.4.21 is I5 in the table.

I 5 3 7
I 8 4 15
I3 10 7 12
Iy 15 4 24

Table 3.1: An overview of the parameters ;(I), |P(I)|, and dist I = max{dist, I, dist, I}
of the four test ideals.

Our SageMath implementation begins by computing I?, after which it applies Theo-
rem 3.2.14 to efficiently compute I°. Even the initial computation of I takes advantage
of the fact that all ideals involved are bivariate. For higher powers, we employ Theo-
rem 3.4.6, which offers a substantial speed advantage over the built-in exponentiation of
in Macaulay2. For additional comparison, we have included runtimes for Macaulay2 when
using Theorem 3.2.14 to compute IP*¢ from IP, which already demonstrates significant

runtime improvements.

preprocessing s+102 s4+10° s+10* s+10° s+10°
]D I8 IS-H’.

D =13 s =45

I this method 0.005 0.01 0.04 0.35 4.30 51.35 584.89
M2 with 3.2.14 0.0006 * 0.05 1.69 1503.34 - -
M2 (built-in) . * 008 2225 34898.4 - -

D =40 s =241
Is this method 0.12 0.30 0.13 0.69 7.44 87.12 980.50
M2 with 3.2.14 0.02 * 0.36 8.53 3152.86 - -
M2 (built-in) « * 8.02  411.03 - - -

D =176 5 =989
I3 this method 0.73 6.29 0.52 1.49 12.12 139.68 1551.92
M2 with 3.2.14 0.18 « 1539 69.82 187245 - -
M2 (built-in) : «  607.32  5050.71 - - -

D =238 s =2064
Iy this method 28.45 47.13 2.28 4.15 20.53  209.50 2305.38
M2 with 3.2.14 84.81 * LT 176.13  13546.8 - -
M2 (built-in) * * > 12h - - - -

Table 3.2: The two columns under “preprocessing” show the times required to compute I and I°, where

won

*" indicates that the corresponding method does not use that preprocessing step. The remaining columns
Is+107’

present the additional times needed to compute after preprocessing. Cells containing indicate

that the estimated computation time would be prohibitively large and is therefore omitted.
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4. BUCHBERGER GRAPHS AND THE
LCM-COMPLEX

In this chapter, we examine two combinatorial structures and the insights they provide into
the associated primes of a monomial ideal. We begin with the Buchberger graph, exploring
how its subgraphs relate to the associated primes of the underlying monomial ideal. We
then introduce the lcm-complex of an ideal and use it to characterize when the maximal

ideal is associated to a monomial ideal.

4.1 The Buchberger graph of a monomial ideal

4.1.1 Definition and some properties of the Buchberger graph

In Buchberger's algorithm for computing Grdébner bases, the S-pairs formed from the cur-
rent set of polynomials are examined, and redundant ones are discarded. An S-pair is a
specific combination of two polynomials designed to eliminate their leading terms, which
helps detect whether the current set of generators is a Grobner basis. The minimal set of
S-pairs defines a graph on the minimal generators of a monomial ideal. This graph was
introduced by Miller and Sturmfels [42] and first appeared under the name "Buchberger
graph” in [43].

Definition 4.1.1 (cf. [43, Definition 3.4]). The Buchberger graph Buch([) of a monomial
ideal I with minimal generators G(I) = {g1,...,9s} has vertices g1, ..., gs and an edge
(9i,95) whenever lcm(g;, gj) is not properly divisible (Definition 2.1.7) by any minimal

generator, that is, if lcm(g;, g;) is a surface monomial of I.

Example 4.1.2. Let I = (22, 23y, 2%y?, 2y3, yz). The only pair of generators whose least
common multiple is properly divisible by a generator is (z3y, zy3): lem(23y, zy3) = 2393
is properly divisible by 222, c.f. Figure 4.1.

Remark 4.1.3. Let I C k[x,y] be a monomial ideal in two variables. Then Buch([) is a
path. To see that, we write G(I) = {g1,...,9s} and g; = z%y" for i € [s]. Since g1, ...,

gs are minimal generators of I, we can assume that their degrees in x and y are ordered

1The content of this chapter is the subject of a paper in preparation.
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Fig. 4.1: On the left: the 3-dimensional staircase surface of the monomial ideal I =
(222, 2%y, 2%y?, xy3, y2); on the right: the Buchberger graph of I.

as follows:

a; <az < --- < asg,

by > by > -+ > bs.

By this ordering it is clear that g; |, lem(g;, gx) if and only if i < j < k. Therefore,
Buch(7) is a path with edges {g;,gi+1} foralli e {1,...,s —1}.

Definition 4.1.4 (cf. [43, Definition 3.8]). A monomial ideal I C k[z1,...,z,| is called
strongly generic if every pair of minimal generators g and h satisfies deg;(g) # deg;(h)
or deg;(g) = deg;(h) = 0 for every i € [r].

Remark 4.1.5. If I C k[z,y,z| is a strongly generic monomial ideal, then Buch([) is

planar and connected, see [43, Proposition 3.9].

4.1.2 Complete subgraphs of Buch(/) and m

In the following, we study the connection of properties of the Buchberger graph of a

monomial ideal and its associated primes.

Proposition 4.1.6. Let I C k[x1,...,z,] be a monomial ideal. If m € Ass(R/I), then
Buch(I) has the complete graph K, as a subgraph.

Proof. Let w € N{j such that m = I : 2% and my, ..., m, be minimal generators of I
with m; | 2% - z; for 1 < i < r. We show that {m;,m;} is an edge in Buch([) for all
i # j € [r]. For each 1 <i <7 we have m; { % and m; | 2% - z;. So, deg;(m;) = w; + 1

and deg,(m;) < wy for £ # i. This implies that the cardinality of the set {m1,...,m,} is
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equal to r, and

"UJ(-Fl, EE{Z',]'},

deg(lem(mi, mj)) = {g we, e\ {ij).

Assume that there exists a minimal generator m of I such that m |, lem(m;, m;). If

degy(lem(m;, m;)) = 0, then

degy(my) = degy(lem(m;, m;)) = 0 < wy.
On the other hand, if deg,(lem(m;, m;)) > 0, then

degy(my) < degy(lem(m;, m;)) — 1 < wy,

hence my, | £ which is a contradiction. Therefore, the subgraph of Buch(/) induced by

mi, ..., my is the complete graph K. O

Remark 4.1.7. The reverse implication is not true. For example, the Buchberger graph of
I = (xzz,xy,yz) is a triangle but m ¢ Ass(R/I) = {(z,y), (z,2), (y,z)}, see Figure 4.2.

xz Y
O\ /3
O
Yy

Fig. 4.2: The 3-dimensional staircase surface of the monomial ideal I = (zy, zz,yz) from
Remark 4.1.7 is depicted on the left. On the right is the Buchberger graph of I.

z

Remark 4.1.8. Note that for any monomial ideal I, the sets of associated primes of height
> 2 of the two ideals I and I : ged(I) coincide. The Buchberger graphs of I and I : ged (1)
can differ. For example, the Buchberger graph of I = (232, xyz,y32) is a triangle but the
Buchberger graph of I : ged(232, 2yz,3%2) = I : 2 = (23, vy, y?) is a path, see Figure 4.3.

Lemma 4.1.9. Let I C k[z1,...,x,| be a strongly generic monomial ideal. Then m €
Ass(R/I) if and only if Buch(I) has the complete graph K, as a subgraph.

Proof. If m € Ass(R/I), then Buch(I) has the complete graph K, as a subgraph by
Proposition 4.1.6. Note that for strongly generic ideals, if we take any r minimal generators
mi, ..., my such that lem(my, ..., m,) is a surface monomial of I, then for all i € [r] with
deg;(lem(mq,...,m,)) > 0 we have |{m; : deg;(m;) = deg;(Iem(m1,...,m,))}| = 1.
That implies that deglem(my, ..., m,) > 0 in every component, and furthermore my, .. .,
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Fig. 4.3: The staircase on the left is of the ideal I = (232, 2yz,9%2). There is an edge
between the generators 232 and 3z in its Buchberger graph since xyz does not properly
divide lem(232,%32). In the ideal I : z, the minimal generator xy divides lem(z3,y3)
properly. Therefore, its Buchberger graph is a path. The staircase of I : z is depicted on
the right.

m, induce a complete graph K, in Buch(/). Also note that in this case,

lem(myq,...,my)
ajl DY x""
is a witness of m in I.
Now let mq, ..., m, be generators of I inducing K, in Buch(I). If lem(mq,...,m,) is

a surface monomial, then we are done. If there exists a generator m of I that properly
divides lem(my,...,m;), then we replace m; by m. If lem(m,mq,...,m,) is a surface
monomial, then, again, the observation in the beginning completes the proof. Otherwise
we repeat this process which has to end after a finite number of steps, since the degree of

the least common multiple decreases each time. O

4.2 The Icm-complex of an ideal
As pointed out in Remark 4.1.7, the equivalence
m € Ass(R/I) <= K, is a subgraph of Buch([I)
does not hold for general monomial ideals. With the motivation to find a similar charac-
terization, we introduce the lcm-complex of an ideal.
4.2.1 Definition and properties of the lcm-complex
Notation 4.2.1. For a set F' of monomials, we write mp = lem(F).

Definition 4.2.2. Let I be a monomial ideal. The lcm-complex £(7) of I is the collection
of all subsets F' C G(I) such that

(1) no minimal generator of I properly divides mp and

(2) mp # mg for all G C F.
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Remark 4.2.3. If we consider the graph that has all 0-dimensional faces of £(I) as vertices
and all one-dimensional faces as edges, then, by definition, we obtain the Buchberger graph
of I.

2

Example 4.2.4. From left to right, we denote the generators of I = (222, 23y, 2%¢%, 233, y2)

from Example 4.1.2 by g1, ..., g5 . Then £(I) consists of

= subsets with one element: {g1}, {92}, {93}, {94}, {95}

» subsets with two elements: {g1,92}, {91,93}, {91,94}, {91, 95}, {92,935}, {92,095},
{93, 94}, {93,95} {94, 95}

= subsets with three elements: {g1,92,93}, {92,93,95}, {93, 94,95}

Remark 4.2.5. Let F' € £(I). Then by condition (2) in the definition, for each f € F
there exists an ¢ € {1,...,7} such that deg; f > max{deg;¢9 | g€ F\ {f}}.

We recall some notions about simplicial complexes:

Definition 4.2.6. A simplicial complex A on a set {1,...,n} is a collection of subsets
of {1,...,n} such thatif c € A and 7 C o, then 7 € A. An element o € A with |o| =i
is called an (¢ — 1)-dimensional face of A. The dimension dim(A) of A is defined as
the maximum of the dimensions of its faces. If o is a maximal face, that is, o € 7 for all

7 € A, then o is called a facet of A.

Proposition 4.2.7. Let I be a monomial ideal in k[z1,...,x.|. Then its lcm-complex is a

simplicial complex and its dimension is at most r — 1.

Proof. Let F' € £(I) and G C F. We claim that G € £(I). If some m € G(I) properly
divides m¢, then m \p mp, a contradiction. For the second condition, assume that
HCGCF. If mg=mg, then

mp = lem((F\ G) UG) = lem(mp\g, ma) = lem(mp\ g, my) = lem((F\ G) U H).

This is a contradiction since (F\ G)UH C F.

For the dimension count, it follows from Remark 4.2.5 that there can be at most r elements

in each face. O

Example 4.2.8. The Icm-complex from Example 4.2.4 has dimension 2 and its facets are

{91792793}7 {92793795}7 {93,94,95}, {91795}7 {91794}-
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g2 g3 ga

2

Fig. 4.4: The simplicial complex £(x2z, 23y, 2%y, xy3,yz) with g1 = 22z, go = 23y,

g3 = y?, ga = xy’, g5 = y2.

Notation 4.2.9. Let f, g € k[z1,...,z,] be monomials. Then we denote by f : g the
monomial with exponent vector (max{0, deg; f —deg; g} :i € {1,...,r}).

Lemma 4.2.10. Let I be a monomial ideal and f € R. Then £(I : f) is isomorphic to a

simplicial subcomplex of £(I).

Proof. Let 0 = {uy,...,uq} € £(I : f). Then there exist my, ..., my; € G(I) such that
w; = m; : f. We show that ¢/ := {my,...,my} € £(I). First, we observe that for all
i€r],

deg; my = max{deg; u;} = max{max{0, deg; m; — deg; f}}
J€ld] j€ld]
= max{0, max{deg; m;} — deg; f}
j€ld]
= max{0, deg; m, — deg; f}

= deg;(my : f),

so my = mg @ f. This observation implies that if there exists a generator m € G(I) that
properly divides m/, then (m : f) |, (my : f) = my. And furthermore, if 7/ C o’ with
My = Mg, then 7:={m : f | m € 7'} is a proper subset of o. By the same argument as

above, m; = m, : f = my : f = mg, a contradiction. O

4.2.2 Connections between £(7) and Ass(R/I)

Proposition 4.2.11. Let I be a monomial ideal in k[xy,...,z,]. If I has an associated

prime of height n then £(I) has a face of dimension n — 1.

Proof. Let P = (z; | i € S) for some set S C [r] with |S| = n. We assume that P is
associated to I, i.e., P = I : w for some monomial w ¢ I. Then {z; |i € S} € £(P) and
since £(P) = £({ : w), Lemma 4.2.10 completes the proof. O

Remark 4.2.12. The reverse implication of Proposition 4.2.11 is in general not true. All
primary ideals are counterexamples, for example, if I = (z,y, z), then {z,y} € £(I) is a
face of dimension one, but Ass(R/I) = {(z,y, 2)}.
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Proposition 4.2.13. If £(1) has a facet of dimension n—1 then I has an associated prime

of height n.

Proof. Let F' = {my,...,my} be a facet of £(I). Then for every i € [n] there exists an
ij € [r] such that deg;, (m;) = deg; (mp) and deg; (my) < deg;, (m;) for all k € [n]\ {i}.
Otherwise we could remove m; from F' without changing the least common multiple.
Without loss of generality, we can assume that i; = i for all i € [n]. We show that
w = mpg/T1 - Ty is a witness of P = (z1,...,x,) in I. By the degree conditions, none
of the m;'s divides w. Also no other generator m € G(I) \ F divides w, since if m | w
then m |, mp, which contradicts F' € £(I). Therefore, we obtain that w ¢ I. Clearly,
w-x; €I foralli € [n], so P CI:w. Assume that z; € [ : w for some k > n, then
there exists a generator g € G(I) such that

TEmp

gl——— and gf —ro.
X1 Ty X1 Ty

mpg

Then the degrees of g must fulfill

degy.(g9) = degy(mp) + 1,
deg;(g) < deg;(mp) — 1 for i € [n], and
deg;(g) < deg;(mp) for i & [n] U {k}.

We show that F'U {g} € £(I). If some generator m divides m g4y, then either m | mp
but m {, mp, or deg,(m) = degy(mpyggy). In both cases m does not properly divide
mpyuigy- By the conditions on the degrees of the m;’s and g, we cannot remove any
element from F'U {g} and obtain the same least common multiple. So F'U {g} is a face,

which is a contradiction to the maximality of F. O

Example 4.2.14. Proposition 4.2.13 implies that the ideal I from Example 4.2.4 has at
least one associated prime of height two, and (z,y, z) € Ass(R/I).

The reverse implication of Proposition 4.2.13 is not true: The ideal (z%y,zy?,2) has
associated primes {(z,y,z2), (x, 2),(y,2)}. In particular, there are associated primes of
height two. However, its Icm-complex consists of {x?y, zy?, 2} and its subsets, so it has
no facet of dimension one. Despite that, we can characterize when the maximal ideal is

associated in terms of the facets of I:

Corollary 4.2.15. Let I be a monomial ideal in k[x1,...,x,]. Thenm € Ass(R/I) if and
only if dim £(1) =r — 1.

Proof. This immediately follows from Propositions 4.2.11 and 4.2.13. O

Corollary 4.2.16. Let I be a monomial ideal in k[z1,...,x,] and f a monomial. If m €
Ass(R/I : f) then alsom € Ass(R/I).
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Proof. If m € Ass(R/I : f), Proposition 4.2.11 implies that £(/ : f) has a face of
dimension r — 1. By Lemma 4.2.10 also £(/) has a face of dimension  — 1, which must
be a facet. Consequently m € Ass(R/I). O
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5. ASSOCIATED PRIMES OF POWERS OF
MONOMIAL IDEALS IN THREE VARIABLES

Let I be a monomial ideal in k[z,y, z]. To study the associated primes of powers of I, we
draw on the results from Chapter 3 about the structure of monomial ideals in two variables.
For a monomial ideal in any number of variables, we define the pattern-stability number
of I as

u(l) ((dist 1)2 = 1) +1,

where dist I denotes the maximum exponent of any variable appearing in the minimal gener-
ators of Ig. If I is a monomial ideal in k[, y, 2], then dist I = max{dist, I, dist, I, dist, I'},
cf. Definition 3.1.4.

From Chapter 3, we recall that after this number, the staircases of powers of a bivariate
monomial ideal follow a regular, predictable pattern, described explicitly in Theorem 3.4.6.
This structural behavior of bivariate monomial ideals will be a key ingredient for arguments
of this chapter, where we relate the pattern-stability number to the stability index of

monomial ideals in three variables.

Recall from Fact 2.3.19 that the set of minimal primes of a monomial ideal remains invariant
under taking powers; that is, for any monomial ideal I, we have Min(R/I"™) = Min(R/I)
for all n > 0. By Corollary 2.1.49 and Remark 2.1.33, it suffices to consider ideals whose
minimal primes all have height at least two. If (z,vy,2) is a minimal prime of I, then it is
the unique associated prime of I, and consequently, I and all of its powers are (z,y, z)-

primary.

Therefore, it remains to consider the case in which all minimal primes of I have height
exactly two. In this setting, the only possible embedded associated prime is the maximal
monomial ideal (z,vy, z). It follows that the stability index stab(l) < s if either

(x,y,2) € Ass(R/I") for all n > s,

or
(x,y,2) ¢ Ass(R/I") for all n > s.

We give a bound for stab(I) in terms of the pattern-stability numbers of certain related
bivariate monomial ideals in the two cases Min(R/I) = {(x,y)} (Theorem 5.2.11) and
Min(R/I) = {(x,y), (x,z)} (Theorem 5.2.20). We suspect that similar techniques can be
applied to the case Min(R/I) = {(z,y), (z,2), (y, 2)}.

!The content of this chapter is the subject of a paper in preparation jointly with Roswitha Rissner.
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5.1 Preliminaries

We begin by establishing preliminary properties that will be used throughout the remainder
of this chapter. The following lemma is stated in the general setting of monomial ideals

in r variables, although our primary applications will concern the case r = 3.

Notation 5.1.1. For a monomial f = z{*--- 2% in k[z1,...,2z,] and i € [r], we denote

by fz; the monomial that is obtained by setting the exponent of x; to zero, that is,

01 -1 ikl ay
fa; =1y Tic1 Tig1 " Ty -

Definition 5.1.2. For a monomial ideal I C k[zy,...,z,] and 1 <14 <r, we denote by I,

the saturation of I with respect to z;, that is, I, = 1 : z3°.

Lemma 5.1.3. Let I be a monomial ideal in k[z1,...,x,], and let 1 < i < r. Then for

every n € N, we have
("), = (L)

Proof. For an easier notation, we write x instead of ;. In order to prove that the ideal on
the right is included in the ideal on the left, take f1, ..., fn € I : °°, that is, there exists
an N € N large enough such that for all i € [n] we have f;z"¥ € I. This implies that
1, fixN = f1--- fuo™¥ € I™, and hence fy --- f, € I"™ : . For the reverse inclusion,
take f € I"™ : 2™, that is, there exists an N € N such that fz?v € I". Then we can write
fxN =TI, gi, where g; € I. We have

n n

(f2")e = ([T9:) =II(90)e € (1:2%)".

i=1 T =1

Since (fx™), = f. | f, this finishes the proof. O

5.2 Upper bounds for the stability index

Recall from Chapter 3, that we denote the set of persistent generators of a monomial
ideal I in k[z,y] by P(I) (Definition 3.2.1), and the set of weakly persistent generators
by P*(I) (Definition 3.2.7). By Remark 3.4.12, for any set of monomials P satisfying
P(I) C P C P*(I), the pattern-stability number of I can be bounded from below by

u(I) ((dist 1)? = 1) +1 > Dp + min{r,(P, Dp),ry(P, Dp)} +1, (5.2.1)

where 7, (P, Dp), r,(P,Dp), and Dp are as in Notation 3.4.2. In particular, this bound
guarantees that Theorem 3.4.6 applies to all powers greater than or equal to the pattern-

stability number.
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Remark 5.2.1. Let I be a monomial ideal in k[z,y, z]. Then
dist(l,) < dist I, and p(le) < p(I)

holds for @ € {x,y, 2z}. Thus, the pattern-stability number of I is an upper bound for the
pattern-stability numbers of I, I,, and I..

We extend the notion of weakly persistent generators of bivariate monomial ideals to

monomial ideals in any number of variables, that is, if I C k[x1,...,z,], then

P*(I)={feG)| f*eGU") for all n € N}.

The weakly persistent generators of an ideal can be characterized geometrically using its
Newton polyhedron C(I) (Definition 2.2.15):

Lemma 5.2.2. Let I be a monomial ideal in k[z1, ..., x|, and let z* € I for some a € N.
Then x* € P*(I) if and only if a is in the topological boundary of the Newton polyhedron
of I, ie, z* € OC(I).

Proof. Let G(I) = {z®,..., 2%} for a1, ..., as € Njj. If @ € Nj such that % € I and
a ¢ OC(I), then there exists ¢ € IC(I) N Q" such that ¢ < a and ¢ # a. We can write

c=o1a1 + -+ asag

for a, ..., as € QN[0,1] with a; +- - -4+ a5 = 1. Let d € N be the common denominator
of ay, ..., as. Then z% € I¢ and further zd¢ \ 2% and gde % 2% Thus, this implies
that 2 ¢ P*(I).

On the other hand, if z% € G(I)\ P*(I), then there exists an n € N such that 2" ¢ G(I").
That is, there exist 81, ..., Bs € Ng such that 5y +---+ 85 = n,

S S
Zﬂiai <na, and Zﬁiai # na.
i=1 i=1

Dividing by n yields
Z @ai <a, and Z &ai # a.
i=1 " i=1

Since Y5, %ai € C(I), this implies that a ¢ 9C(I). O

Remark 5.2.3. By Lemma 5.2.2, every weakly persistent generator of an ideal [ is an
element of a face of C(I). Since the preimage of a face of a polytope under any projection
is again a face, cf. [70, Lemma 7.10], it follows that if f € G(I) satisfies fo € P*(l,),
then f must belong to P*(I).
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From now on, if not explicitly stated otherwise, all ideals are in three variables z, y

and z.

5.2.1 One minimal prime: Min(R/I) = {(z,y)}

We begin by examining ideals whose minimal prime ideals consist of a single prime of
height two. We assume that Min(R/I) = {(z,y)}. The choice of (z,y) as the only
minimal prime of height two is arbitrary; analogous results hold for any other such prime
by permuting the variables.

Remark 5.2.4. Let I be a monomial ideal in k[z,y, z] with Min(R/I) = {(z,y)}.
(1) By Remark 2.1.35(2) no power of z appears as a minimal generator of I.

(2) Again by Remark 2.1.35(2), since (x), (2) and (z, z) are not associated primes of I,
the staircase of I must be bounded in y-direction. Analogously, it is also bounded

in z-direction. Thus, there exist generators z* and y® for some a, b € N.

(3) By the minimality of (x,y) it follows with Fact 2.1.31 and Remark 2.1.32 that I,
is the uniquely determined (x,y)-primary component of I. Specifically, this implies
that m € Ass(R/I) if and only if I # I.

Notation 5.2.5. For a monomial ideal I C k[z,y, z], we denote
lo=(f €G(I): 21 f) Cklz,y|.

Remark 5.2.6. Observe that dist Iy < dist I, and u(lp) < w(I). Thus, the pattern-
stability number of Ij is at most the pattern-stability number of I.

Lemma 5.2.7. Let I be a monomial ideal in k[z,y, z] with Min(R/I) = {(z,y)}. Then
(x,y,z) € Ass(R/I™) if and only if I} # I7.

Proof. Note that I)' = (I")o and, by Lemma 5.1.3, we have I = I" : 2. Therefore, it
suffices to prove the claim for the case n = 1. The inclusions I C I, and Iy C I always
hold. Therefore, I, = Iy implies I = Iy = I,. By Remark 5.2.4(3), we conclude that

(z,y,2) ¢ Ass(R/I).

Conversely, suppose (z,y,2) ¢ Ass(R/I). Then, by Remark 5.2.4(3), it follows that
I = I, which implies supp(I) = {x,y}, and therefore I = I. O

Lemma 5.2.8. If [} = I" for some n € N, then also IJ"! = ["+1.

Proof. Let fi--- fni1 € G(I™"1). Then for every i € {1,...,n + 1} the product

gi=[[/

J#i
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is a minimal generator of I™. Since no minimal generator of I™ is divisible by z, it follows
that z { g; for all i € {1,...,n 4+ 1}. Since z { g1 it follows that z { f; for all j > 1, and
since z { go it also follows that z 1 f1. Hence z{ f1--- fn+1- O

Lemma 5.2.9. If Min(R/I) = {(x,y)} and (x,y,z) ¢ Ass(R/I™) for some n € N, then
(z,y,2) & Ass(R/IN) for all N > n.

Proof. By Lemma 5.2.7 we know that (z,y,z) ¢ Ass(R/I") if and only if I" has no z in

any of its minimal generators and by Lemma 5.2.8 the assertion follows. 0

Proposition 5.2.10. /f Min(R/I) = {(z,y)} and P*(1y) # P*(I.), then m € Ass(R/I")
for all n € N and hence, stab(I) = 1.

Proof. Note that Iy C I, and also P*(I,) NIy C P*(Ily). By the assumption that
P*(Iy) # P*(1,), there exists a g € P*(1,) \ Io and hence g" € G(I7)\ I for all n € N.

The assertion follows from Lemma 5.2.7. O

We are now set to prove the main result of this section.

Theorem 5.2.11. Let I be a monomial ideal in k[z,y, z] such that Min(R/I) = {(x,y)}.
Then the pattern-stability number of I is an upper bound for the stability index of I, i.e.,

stab(1) < (1) ((dist 1) = 1) +1.

Proof. In Proposition 5.2.10 we established that stab(7) = 1 in the case that P*(Iy) #
P*(I,). We now consider the case that P*(Ip) = P*(I,). By Lemma 5.2.9 it is left to
show that if (z,v, 2) is associated to a power s > u(I)((dist I)? — 1) + 1, then (z,y, 2)
is also associated to all higher powers. So we assume that (z,y, z) € Ass(R/I*®), which is
by Lemma 5.2.7 equivalent to I§ # I7, and show that

I £

holds, which then proves the claim.

By Remarks 5.2.1 and 5.2.6 the pattern-stability numbers of both I, and Iy are bounded
above by s. Therefore, due to the inequality (5.2.1), we can apply Theorem 3.4.6 to Iy
and I, using e =y, P = P*(I,) = P*(ly), and D = (u(Il) — |P|) - ép + |P| - dp for
both Iy and I,. With the notation from this theorem there exist C; and C; such that

I = ged(Ip)” - (Co® - - @ Cy) (5.2.2)

and
I =ged(L)* - (Ch@- @ Cy,), (5.2.3)
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where k£ + 1 = |P|. Note that under the assumption Min(R/I) = {(z,y)}, we have
ged(Ip) = ged(l;) = 1 (see Remark 5.2.4(2)). Let hq, ..., hy denote the link points
in (5.2.2) and let h), ..., h}, denote the link points in (5.2.3).

Case 1: If h; = h} holds for all i € [k], then by the assumption that [§ # IZ, there
must exist an i € {1,...,k} such that C; # C.. In this case, Theorem 3.4.6 implies that
I5TE # I3t for all £ > 0.

Case 2: We now consider the case that there exists an i € [k] such that h; # h.
Let g1, ..., gr+1 be the elements of P ordered in descending y-degree. We recall from
Definition 3.4.4 that with e =y, D = Dp, and r := s — D — 1 and d = r disty(g;, gi+1) +
(r+1)deg, gi+1, the monomial h; is defined to be the minimal generator of I such that

deg, h; = min{degy flfe G(Ig),degyf > d},
and A/ is defined to be the minimal generator of I? such that
deg, h; = min{deg, f | f € G(I3),deg, f > d}.

Thus, under the assumption that h; and h} are not equal, it must hold that either h; ¢
G(I3) or b ¢ G(I§). If hy ¢ G(IS), then necessarily g;r1h; ¢ G(IST!). However, by
Corollary 3.4.18, we have g;11 - h; € G(ISH), and therefore ISH # IST1. The analogous
argument holds if h ¢ G(I§). O
5.2.2 Two minimal primes: Min(R/I) = {(x,y), (z,2)}

We now turn to the case where the set of minimal primes of I consists of two primes of

height two. Without loss of generality, we assume that

Min(R/I) = {(z,y), (z, 2)}.

Equivalent results hold for all other configurations involving two minimal primes of height

two and are covered by permuting the variables.

Remark 5.2.12. Let I be a monomial ideal with Min(R/I) = {(z,y), (z,2)}. Then we
recall from Remark 2.1.35(2) that the following hold:

= There exists m € N such that 2™ € G(I).
= No power of y or z lies in I, that is, neither y* € I nor 2* € I for any k, £ € N.

Furthermore, by Fact 2.1.31 and Remark 2.1.32, I, is the unique (z, y)-primary component

of I and I, is the unique (z, z)-primary component of I. In particular,

meAss(R/I) <= IT1#I1,N1,

We present a generalized version of Lemma 5.2.7:
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Lemma 5.2.13. Let I be a monomial ideal in k[z,y, 2], and j € N. Write d<; := ged{g €
G(I) : deg, g < j}. If there exists a minimal generator g € G(I) such that deg, g > j and
d<j | g, thenm € Ass(R/I).

Proof. We write d := lem(d<j, 27) and g : d as in Notation 4.2.9. Then from d<; | g, it
follows that g : d is a minimal generator of I : d, and since deg, g > j, the z-degree of
g : d is positive. Further, we have Min(! : d) = {(z,y)}, so we can apply Lemma 5.2.7 to
obtain that m € Ass(R/I : d) and by Corollary 4.2.16 also m € Ass(R/I). O

Proposition 5.2.14. Let I be a monomial ideal with Min(R/I) = {(x,y), (z,2)}. If

{feG) [ f: e PL)} #{f € GU) | fy € P*(1y)},
then m € Ass(R/I™) for all n > dist, I and hence stab(l) < dist; I.

Proof. Without loss of generality we can assume that there exists an f € G(I) such
that f, € P*(I.) and f, ¢ P*(I;). Recall that f, € P*(I.) implies that f € P*(I)
(Remark 5.2.3). Since f, & P*(I), there exist an n € N and H € I" such that H, | f
and Hy, # f;'. Thus,

(1) deg, H < deg, ",
(2) deg, H < deg, ",

and, since f" € G(I™) and at least one of the inequalities (1) and (2) must be strict, also
(3) deg, H > deg, f".

We show that we can choose H such that deg, H < deg, f™:

Since f, ¢ P*(I,), it follows that also f, ¢ P(I,) and hence there exist g, h € G(I)\ {f}

such that f,, is in the integral closure (gy, hy). Therefore, f, lies between g, and h,, and we

can assume that deg, g < deg, f < deg, h, and consequently deg, g > deg, f > deg, h.
Furthermore, by Proposition 3.2.3, we obtain the divisibility relation gjhy =< | f.', where
n = dist,(g,h) and a = dist,(f,h). As outlined in the proof of Proposition 3.2.3, the
degrees fulfill

= deg, g“h"™* < deg, f™ and
s deg, g*h" " = deg, f™.
We choose H = g*h"~> € I".

Since Min(R/I) = {(z,y),(z,2)}, we recall from Remark 5.2.12 that there exists an
m € N such that 2™ is a minimal generator of I. Then m > deg, f must hold. Write
j:=deg, H. Then deg, f* > 7 and

ged{g € G(I") : deg, g < j} | ged(H,2™") = a9 T | f™.
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It therefore follows that m € Ass(R/I™) by Lemma 5.2.13. We can lift the same argument

to higher powers of I, since
gcd(Hfé,l,(m—&-Z)n) _ xdegz H+{¢deg,, f | fn+€
and deg, (f"*) > j 4 fdeg, f = deg,(H f*), so we can again apply Lemma 5.2.13. [

It remains to consider the case {f € G(I) | f. € P*(I,)} = {f € G(I) | fy € P*(1)}.

We develop a number of preliminary results.

Proposition 5.2.15. Let I be a monomial ideal in k[z,y, z].

= For every g € I, denote h, the minimal generator of I, with x-degree equal to
max{deg, h | h € G(I,),deg, h < deg, g}.

= For every h € I, denote g;, the minimal generator of I, with x-degree equal to
max{deg, g | g € G(I,),deg, g < deg, h}.

Then G(. 1 I,) = {lem(g, hy) | g € G(I.)} U {lem(gn, h) | h € G(I,)}.
Proof. Let g € G(I,). Then
lem(g, hy) = 298z 9 degy 9 ydeg; by
For every h € G(I,) with deg, h < deg, hy it follows that deg, h > deg, hy and therefore
lem(g, hy) | lem(g, h) = aees gy, 9 des. .
To show that lem(g, hg) € G(I; N I,), we assume that
lem(g', ') | lem (g, hy) (5.24)

for some ¢’ € G(I.) and b’ € G(I,). If the z-degree of ¢’ is less than the z-degree of g,
then deg, ¢’ > deg, g must follow and hence the divisibility relation (5.2.4) is not fulfilled.

Since we also cannot choose ¢’ with a larger x-degree than g, it must follow that ¢’ = g.

We already excluded the case where deg, h' < deg, h,. However, if deg, h' > deg, hy,
then by the choice of hy, it follows that deg, b’ > deg, g and therefore

degm (lcm(gv hg)) < degm (lcm(ga h/))

Again, the divisibility relation (5.2.4) is not fulfilled. The assertions for lem(gp,h) are

proven analogously. O
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Fig. 5.1: An illustration of an example of how to apply Proposition 5.2.15: We consider

an ideal with I, = (37, zy5, 2%¢°, 23y*, 24y? 2%y, 27), whose generators are ordered in

increasing z-degree at the bottom, and I, = (2%, z2*, 2322, 2%2, ") with generators listed

at the top of the figure. The intersection I, N I, is minimally generated by the labels of
the edges connecting the top row with the bottom row. The edges of this bipartite graph
are precisely {g, hy} for g € G(I.) and {gn,h} for h € G(I), with hy and gy, as defined in
Proposition 5.2.15.

Corollary 5.2.16. If Min(I) = {(z,y), (z,2)} and there exist f1, ..., fs € G(I) such that

G(L:) = {(f1)z,-- -, (fs)z} and
{(fl)y’ RS (fs)y}a

then I =1, N 1y. In particular, m ¢ Ass(R/I).
Proof. Note that I C I, N I, always holds. Due to Proposition 5.2.15, we have
1.0y = (lem((f)=, (f)y) |1 <0 < ).

Therefore, I, N I, = (fi,..., fs) which is a subset of I. As mentioned in Remark 5.2.12,
it now follows that m ¢ Ass(R/I). O

Fig. 5.2: From left to right are the staircases of I = (x4, 2%yz, y*2*, xy*23), where k =
5,4,3. In all three cases, the sets {f € G(I) | f. € P*(I)} and {f € G(I) | f, € P*(1,)}
coincide and are equal to {2*, x%yz,y*2%}. In the ideals on the left and in the middle,
the corresponding projection of the generator zy*z3 is in G(I,) but not in G(I.). The ideal
on the right fulfills the requirements of Corollary 5.2.16.

Remark 5.2.17. Let f = lem(fy, fo) for fi = 2% € I, and fo = a2 2¢ € I,. Then
f = amax{aa’}yboc and therefore, if @ > @/, then f. = fi and if a < &/, then fy = fo

Lemma 5.2.18. Let I be a monomial ideal in k[z,y,z]. Then G(I, N I,) NI C G(I).

75



Proof. Let f € G(I,N1,)NI and g € G(I) such that g | f. We can write g = lem(g., g,) €
I.N1,, and therefore, since f is a minimal generator of I, N I, it follows that f =g¢g. [

Next, we describe how the minimal generators of the intersection I7' N I;j behave for n
larger than the pattern-stability numbers of both I, and I,;, under the assumption that the

sets of weakly persistent generators coincide.

Lemma 5.2.19. Let I be a monomial ideal in k|z,y, z] with Min(R/I) = {(x,y), (z,2)}
such that
Pi={9€G()|g. € P'(L:)} = {g € G(I) | gy € P"(Iy)}-

Letn € N be greater than or equal to the pattern-stability number of I. Then the following

two assertions hold:
(1) For every f € G(I? N1}'), there exists a g € P such that fg € G(I2T! N I;‘“).

(2) For every u € G(I}T2 N I)H?), there exist f € G(I2T! N IMT) and g € P such
that u = fg.

Proof. We apply the results from Section 3.4 to I, and I, such that in both cases the -
degrees of the g; will determine the link points (that is, we choose @ = z in Definition 3.4.4).
For this, we first set up the notation for Definition 3.4.4. Let g1, ..., gk+1 € G(I) be

ordered in descending z-degree such that

P, = P*(I;) = {(91)z-- -, (gk+1)=} and
Py = P*(Iy) = {(g1)ys - - (Gk+1)y }-

We set
D = wax { (u(I:) = |P:D)) - dp. + | P.| - de., (1) = [By]) - 0p, + Py - dp, }

Note that dp, and dp, depend on the (z, y)-degrees of the g; if ® = z and on the (z,
z)-degrees of the g; if @ = y (cf. Notations 3.2.9 and 3.2.13). Since n is greater than or
equal to the pattern-stability number of I, it follows from Remark 5.2.1 and (5.2.1) that
r==n—D—12>r.P,D).

For 0 < i < k+1 let £ = h¥ be as in the Definition 3.4.4 of the (n,z)-stable com-
ponents of I, (with respect to P, and D). While the dependence of x was essential in
Definition 3.4.4, we now apply that definition uniformly with respect to = in both cases.
However, to distinguish between the settings I, and I., we use the notational convention

¢Y and (7 accordingly.

For 1 <i <k and e € {2,y}, the monomial ¢ is defined to be the minimal generator of
I with
deg, (¢ = min{deg, f | f € G(I2), deg, f > d;},
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where d; == rdisty(gs, gi+1) + (r + 1) deg,, gi+1, see Definition 3.4.4.
For (1), let f == lem(f1, f2) € GUI? NI;) with f1 € G(I7) and f2 € G(I}).

Without restriction, we assume that deg, fo < deg, f1, thatis, fo = hy, with the notation
of Proposition 5.2.15. We split into two cases:

Case 1. There exists i such that d; < deg, fo < deg, fi < d;—1. In this case
deg, (7 < deg, f1 < deg, 7 ; and deg, (! <deg, fo < deg, Y |,
which, according to Corollary 3.4.18, implies that
fi-(gi)- € GUIT) and  fo-(gi)y € G(I;*).

It now follows from Proposition 5.2.15 that
frgi =lem(fi - (9i)z, f2 - (90)y) € GUIT NI},

Case 2. There exists ¢ such that deg, fo < d; < deg, fi. Since disty(f2, f1) <
dist, (€Y, f1) by Proposition 5.2.15 and fo = ¢/ is excluded by the degree condition,
it follows that deg, fi < deg, ¢/. With similar reasoning, we deduce that i = k or
dit1 < deg, fa. Hence, i =k or

diy1 < deg, 07, < deg, fo < deg, {}.

In addition, according to Remark 3.4.5 it follows that deg, 6? < d; +dist;(gi, gi+1), which

further implies
d; < deg, £; < deg, f1 < deg, £} < d; + disty(gi, gi+1) < deg, £7 + diste(gi, giv1)-

It follows by Corollary 3.4.18 that fi - (gi1). € G(IZ™) and fa - (gi41)y € G(IF1). This
completes the proof of (1).

For (2), let u = lem(u®,u¥) € G(I2T> N I'2) with u* € G(IZ?) and w¥ € G(I}'"?).
Then there exists an i € [k + 1] such that

deg, g2 < deg, u < deg, g/

)

As in the proof of (1), we denote by (£2)F_; the link points of the (n, x)-stable components
of I,.
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By Corollary 3.4.19 it holds that u® € qq - G(1]}), where

(9i+1)? if deg, u® <deg, £?9igi+1
Qe = (gigi-i-l)' if degx e;glgl-i-l < degx u® < degz Ez.ng
(9:)? if deg, u® > deg, (3g?.

Therefore if deg, £2g;gi+1 < deg, u® holds for both @ =y and @ = z, then u € g;(I2T!1 N
I;‘“). Similarly, if the reverse inequality deg, ¢7g;gi+1 > deg, u® holds for both ¢ =y
and e = z, then v € g; 1 (171 N Ig]*l). Thus, the only case left to consider is, without

loss of generality, if
deg, u¥ < deg, {(gigi+1)y and  deg, u” > deg, £ (gigi+1)s-

If deg, u® < deg, £;g7, then as above it follows that u € g;1(I2! N I;'+h), hence we
consider the case that deg, u* > deg, (?g?. With d; as defined in the proof of (1), note
that

deg, 0! < d; + disty(g1, gi+1) < deg, €7 + disty (91, git1)

and thus, deg, ¢Yg;gi+1 < deg, ¢7g?. This further implies that
degw u¥ < degaz g?glgl-i-l < degaz 612912 < degx u”

and hence lem(uy, ug) ¢ G(IZT N IJ+!) by Proposition 5.2.15, a contradiction

O]

We are now ready to prove the main result of this section, which provides a bound on the

stability index for ideals with two minimal primes of height two.

Theorem 5.2.20. Let I be a monomial ideal in k|z,y, z] with Min(R/I) = {(z,y), (z,2)}.
Then the stability index of I is at most the pattern-stability number of I plus one, i.e.,

stab(I) < u(I) ((dist I)? - 1) +2.

Proof. Write n := u(I) ((dist I)> — 1)+1. By Remark 5.2.1, the pattern-stability numbers

of I, and I, are both at most n.

If {g € G(I) | g. € P*(I.)} # {9 € G(I) | gy € P*(Iy)}, then by Proposition 5.2.14 it

follows that stab(/) < dist, I < n. It remains to consider the case

{9€6(I) | g- € PX(L:)} = {g € G(I) | gy € P*(L)}.

78



Let g1, ..., gk+1 € G(I) be ordered in descending z-degree such that

P(I)
P(ly)

{(91)2’7 s (gk+1)z} and
{(gl)lﬁ AR (ngrl)y}-

Claim 1: If m ¢ Ass(R/I™!), then m ¢ Ass(R/I"T1+) for all £ > 0.

We assume that m ¢ Ass(R/I™!), and hence I"*! = I7*1 N I, see Remark 5.2.12.
By the inequality (5.2.1), we can apply Lemma 5.2.19(2). Therefore, every minimal gener-
ator u of I7T2 N I7*2 can be written as u = f - g; for some f € G(IZHINI)H) = G(I™HT)
andi € {1,...,k+1}. It follows that fg; € I"*2. Since the inclusion I"*2 C [7F2 N [)+?
is always fulfilled, we can conclude that I"*2 = I7*2 N [7+2 and hence m ¢ Ass(R/I"*?),
Inductively, we obtain that m ¢ Ass(R/I"1*) for all £ > 0.

Claim 2: If m € Ass(R/I™), then m € Ass(R/I"*) for all £ > 0.

To prove Claim 2, we assume that m € Ass(R/I™). Again by Remark 5.2.12, this is the
case if and only if I C I N I}}. Hence there exists a monomial f € G(I7 N I}) such that
f ¢ I". Write f = lem(f1, fa) for f1 € G(I7) and f2 € G(I'). Then, by Remark 5.2.17,
fz = fi or fy = fo. In both cases we proceed analogously. If f, = fi, we apply the
theory of Section 3.4 to I, if f, = f2, we do the same with I,. In both cases, xy = x
and hence the monomials g; are already ordered correspondingly. Throughout, we choose
P = P*(I.) and P = P*(1,), respectively. Thus, the two cases differ only by a renaming

of variables. Without restriction we assume f, = fi.

For 0 <i < k+1 let h; := h? as in Definition 3.4.4 with the ideal I, ¢ =z, P = P*(I,),
D = Dp and s = n (by (5.2.1), n is large enough such the requirements in Definition 3.4.4
are fulfilled). Recall from Remark 3.4.5 that the monomials h; are ordered in descending

x-degree. Thus, there exists an ¢ € {1,...,k} such that
degz hz < degm f < degm hifl. (5.2.5)

By Lemma 5.2.19(1), fg; € G NI)*+h) for some j € {1,...,k+ 1}, and by Corol-
lary 3.4.18 and the Conditions (5.2.5) on the z-degree of f, it follows that i = j. To

simplify notation, we write g == g;.

We claim that fg ¢ I"*1. If this claim holds true, then fg € G(I2*H! N I;*H!)\ I, and
thus m € Ass(R/I™"!). We assume otherwise that fg € I"!, then by Lemma 5.2.18 it
follows that fg € G(I"*1), so we can write

fa=rF fa+, (5.2.6)

where f; € G(I). We will show that there exists an i € {1,...,n+ 1} such that f; = g,
which then leads to the contradiction f € I". From (5.2.6) it follows that

(fg)z = f29. = (fl)z te (fnJrl)z-
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Among these factors, we group the generators in P together and obtain the representation

f29: = Hpjp' quqa

peEP qgeEN

of f,g. as a product

where N := G(I,) \ P and
it dg=n+1. (5.2.7)

peP qgeEN

By (5.2.1), we can write
n=D+r+1, (5.2.8)

where D := Dp = |N|ép + |P|dp and r > min{r, (P, D), r,(P, D)}, see Notation 3.4.2.

Note that by Proposition 3.2.3, an element in I”*! which is divisible by power ¢* with
g € N and k > Jp cannot be a minimal generator of IQH. Therefore, since f.g, €
G(I21h), it follows that j, < dp for all ¢ € N. Hence > qen Jq < |N[dp. This inequality,
in combination with (5.2.7) and (5.2.8) gives

r+24 |Pl-dp <3 gy
peEP

Thus, there must exist at least one p € P such that j, > dp. We write
B:={peP|jp>dp}

Then B # (), and we claim that neither deg, p < deg, g nor deg, p > deg, g can hold for
all p € B. We denote

VZ:quq and o= H e,

qeN pEP\B

With this notation, (fg). =v -0 -[l,ep pr. Let n, = > qen Jgr and ng =37 p\ B Jp-
Then n, + n, = D — £ for some £ > 0. Furthermore,

S jp=D4r+2— (D) =r+2+1. (5.2.9)
pEB

Case 1: Assume that for all p € B, the z-degree of p is less than or equal to the z-degree
of g;11. Then the z-degree of fg fulfills

deg,(fg) < deg,(vo) + deg, giy1 Y jp < (D — £)dist, I + deg, gir1(r +2 + )
pEB

< Ddisty I + (r + 2) deg,, gi+1,

On the other hand, in (5.2.5), we assumed that deg, f > deg, h;. Further, by the choice

of r, we have that
dist, I

dist, (g, git1)
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and hence rdist, (g, gi+1) > D dist, I. By definition, h; is the minimal generator of I7

with x-degree equal to
degz h; = min{degz h | h € G(I,?)a degz h > TdiStUE(ga gi+1) + (1” + 1) degz gi+1}'
Thus

degx(fg) > degx hl + degaz g >r dlSt:c(gu gi-‘rl) + (7’ + 1) dega: 9i+1 + degx g
> Ddist, I + (r 4+ 1) deg, gi+1 + deg, g > Ddist, I + (r + 2) deg, gi+1,

a contradiction.

Case 2: Assume that for all p € B, the z-degree of p is greater than or equal to the
x-degree of g;_1. In this case, we use (5.2.9) to bound the z-degree of fg from below as

follows:

deg,(fg) > deg,(vo) + deg, gi—1 Y jp > (r+ 2+ €)deg, gi_1 > (r + 2) deg, gi—1.
pEB

By definition, h;_; is the minimal generator of I7" with z-degree equal to
deg, hi—1 = min{deg, h | h € G(I7),deg, h > rdisty(gi—1,9) + (r + 1) deg, g},

and by Remark 3.4.5, deg, h;—1 < (r+1)(deg, g+distz(gi—1,9)). The assumption (5.2.5)
that deg, f < deg, h; now implies that

deg,(fg) < (r+2)deg, g + (r+ 1)disty(gi—1,9) < (r+ 2)deg, gi—1,

a contradiction.

Since both Case 1 and Case 2 lead to a contradiction, it follows that either g, € B or
there exist p1, p2 € B such that g, lies between p; and po.

Note that every p € P*(I.) can be written as p = (g¢). for some ¢ € {1...,k+ 1}. If
Jp > 0, then there exists a j € {1,...,n + 1} such that (f;). = (g¢).. Since both f; and

g¢ are minimal generators of I, it follows that f; = gs.

(1) If g. € B, then in particular j,, > 0 and hence there exists an ¢ € {1,...,n + 1}
such that (fy), = g, and f; = g, yielding

1o fast
9

eI™.

f=

This contradicts the assumption that f ¢ ™.

(2) Hence, there exist p1, p2 € B such that g, lies between p; and py. By Proposi-

tion 3.2.3, there exist m < j, and o € N such that g7* | p{'p5' ™. Since (fg).
is a minimal generator, g" = p{py'~ " must hold. We write p; = (g;). and
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m—a

p2 = (g¢).- Then gf and gy appear as factors in the product f--- fni1. If

deg, g™ < deg, gjg/""“ then the monomial obtained by replacing gj'g;" “ with

g™ in the product fi--- foy1 is in 1™t and strictly divides fi--- f,41. Hence
o, Mm—a o, Mm—

deg, g™ = deg, 959, and thus g™ = gi'g;""“. We replace gf'g; in the prod-

uct with ¢ and end up with the same contradiction as in (1).

We summarize that fg € (17"t N I7) \ I and therefore m € Ass(R/I™*!). This
concludes the proof. O
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6. BOUNDS ON THE COPERSISTENT INDEX
OF GENERAL MONOMIAL IDEALS

As outlined in the introduction, the sequence of associated primes of powers of any ideal
eventually stabilises. A natural question that arises is whether there exists a universal
bound for the stability index at which this stabilisation occurs. Hoa [31] provides an upper
bound for the stability index of monomial ideals in terms of the number of variables, the
number of generators, and the maximal total degree of the generators (see Fact 2.3.24). In
the same work, Hoa illustrates through examples that any such bound necessarily depends

on both the number of variables and the degrees of the generators.

However, this bound is in general very large. For instance, for the ideal I = (zy,yz) in
k[z,, 2], the bound is greater than 8-107, even though the actual stability index is 1; see [6,
Example 2.17]. For certain classes of monomial ideals, sharper bounds have been found.
Herzog, for example, conjectured that for square-free monomial ideals in 7 variables, the
stability index can be bounded above by r —1, cf. [6, Section 2.3]. A lot of research in that
area focuses on edge and cover ideals of graphs; see for example [8, 16, 37, 39, 57, 63]. Also
other classes of ideals have been studied over the last decades, cf. [23, 28, 34, 64].

Hoa's strategy for deriving the mentioned upper bound involves bounding separately the in-
dices after which the sequence (Ass(R/I™)),cn becomes non-decreasing and non-increasing,
respectively. Based on this, we define the persistence index BIg as the smallest integer
such that

Ass(R/I™) C Ass(R/I™1) for all n > BIQ.

If BIg =1, then [ fulfills the persistence property, see Definition 2.3.21. Analogously, we

define the copersistence index BI2 as the smallest integer such that
Ass(R/I™) D Ass(R/I™1) for all n > BIQ.

With these definitions, the stability index is the maximum of the persistence and the
copersistence index, i.e.,
stab(/) = maX{BIQ, BIQ}

Hoa [31] proved that for a monomial ideal I, we have

BL < d(rs + s+ d)(v/r)" T (v2d)THIE-D,

'This chapter is based on joint work with Clemens Heuberger and Roswitha Rissner [30], published in
the Journal of Linear Algebra and its Applications.
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where 7 is the number of variables, s is the number of generators of I and d is the maximal
total degree of a minimal generator of I (see Subsection 6.2.3). Beyond this bound,

however, little is known about B]D in general.

In this chapter, we develop a general framework to derive upper bounds for the coper-
sistence index BI2 of a monomial ideal I C k[zy,...,z,]. This framework is based on
characterising membership in monomial ideals through appropriately chosen systems of

linear inequalities.

From a methodological perspective, the central results are Theorem 6.2.7 and Proposi-
tion 6.2.8, which together offer a flexible approach to bounding BIQ. Unlike Hoa's original
argument, which intertwines the proof with a particular system of inequalities, our approach
decouples the method from any specific system. The advantage of this abstraction is that
it allows the derivation of multiple bounds by selecting different inequality systems that

satisfy prescribed properties.

We briefly recall some relevant results from Chapter 2. In Section 2.1.3, we showed that
via localisation, it suffices to determine whether the maximal ideal m = (x1,...,2,) is
associated to I. Remark 2.1.43 gives the following characterisation: Let U, be one of the
sets

I":m, sat(I"), or sat(I")nI"L

Then m € Ass(R/I"™) if and only if I"™ # U, noting that I" C U, always holds. In other

words, the maximal ideal is associated to I" if and only od the component of degree n of

P (vi/17) ¢

>0

the graded module

is nonzero, where t denotes the grading variable.

In Section 6.2, we model this module using systems of linear inequalities of the form
Ax < b. Prior to this, Section 6.1 develops necessary theory regarding the sizes of integer
solutions to such systems and interprets these results in the context of graded modules.
This approach provides insights into the behaviour of U, /I™ as n increases and ultimately
yields a new upper bound for Bi, formalised in Theorem 6.2.11. Finally, Section 6.3

compares this newly derived bound with existing bounds in the literature.

6.1 Graded factor modules related to systems of linear in-

equalities

With the overall goal in view, we begin by considering a more general framework, estab-
lishing the connection to the specific class of ideals at a later stage (see Example 6.1.6
and Section 6.2). The methods developed here build upon techniques discussed by Fields
in [15, Section 7].

Convention 6.1.1. Throughout this section, Az < b denotes a system of (componentwise)
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inequalities, where A € Z™*" and b € Nj".

Remark 6.1.2. Our focus lies on the non-negative integer solutions of such systems, which
can always be enforced by appending the constraints —I,,@ < 0, where I,, denotes the v x v
identity matrix. For the sake of readability, however, we omit these additional rows and

instead consider the intersection of the solution space with N.

Definition 6.1.3. Let A € Z™*”. For any b € Ni’, we denote the set of all integer

solutions of the system by
Sy ={x € Nj | Ax < b}.
Furthermore, we define the following subset of the polynomial ring k[WW/1,..., W, ]:

Sp == span {W?* | x € Sp}.

Remark 6.1.4. Note that all the sets introduced in Definition 6.1.3 depend on the ma-

trix A. However, for the sake of readability, we omit this dependence from the notation.

Remark 6.1.5. We observe that the set So = {x € Nj | Az < 0} is a submonoid of N,
because 0 € Sp and for &1, 2 € Sp we have A(x1 + x2) = Ax; + Axs < 0, hence

x1 + x2 € 5p. (6.1.1)

This implies that &g is a ring.

Note that Sg C Sp since b > 0. Furthermore, if * € Sg and y € S, then it follows that
A(x+y) = Az + Ay <0+ b =1>b. Hence,

T+yeS, (6.1.2)

holds which in turn implies that G is an Gg-module.

Example 6.1.6. Let [ = (z,...,2%) be a monomial ideal. Then
" = (($a1>k1...(xas>ks ’ ki,...,ks € Ny, n:k1+...+ks> )

We want to set up a system of linear inequalities that describes when a monomial z" is
an element of 1. We have z" € I" if and only if there are kq, ..., ks € Ny such that
n = ki + -+ ks and 2" is divisible by (%)% ... (2% )ks It suffices to demand that

n <k +- --+ks since I™ C I" for all m > n. So we are looking for a non-negative
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integer solution of

ar ki + - A as ks —hy <0,
—(ky 4+ ks) +n <0

for all j € [r]. In other words, 2™ € I™ if and only if there exists k € N§ such that
0
k
al an ag _IT‘ § 0.
h
0

-1 -1 -1 10 0l1)) \(n)

Given a solution to this system of linear inequalities, the key information we need—the
exponents h and the power n—is stored in the last r + 1 components of the solution. For

the first s components, only their existence matters, not their exact values.

Definition 6.1.7. Let » € Ny with » < v and 7,: Nj — Ng“ be the projection of a

v-tuple onto its last  + 1 entries, i.e., m.((z1,...,2,)) = (Tp—p, ..., Ty).

Definition 6.1.8. Let A € Z™*". For any b € Ni’, we define
Hp = spank{xm'(z) | z € Sp} Cklz, ..., 241

In particular, Ho = span, {2™(*) | z € Sp}. By setting deg2™(*) = my(z) we impose a

grading on Hp. This gives

Ho = P Hon,

n>0
that is,
Hy, = spank{x”’"(z) | z € Sp,mo(2) =n}.

We call Hy,, and Hp ,, the n-th solution spaces corresponding to Az < b.

Remark 6.1.9. For every n € Ny the sets Hp, and Hy, are additive subgroups of

k[x1,...,zy+1] and the following properties hold:
(1) Ho,n € Hp,y, since Sg € Sp (Remark 6.1.5).

(2) For all n, m € Ny we have that
HO,mHO,n - HO,m-l—n‘

holds by Equation (6.1.1) in Remark 6.1.5. Therefore, Hg is a graded subring of the
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graded ring k[z1,...,z,4+1] (graded in z,41).

(3) By Equation (6.1.2) in Remark 6.1.5

HO,ng,m c Hb,n+m

holds for all n, m € Ny, hence Hy is a graded Ho-module.

Example 6.1.10. In Example 6.1.6 we have b = 0 and Hg, = I"xy  for all n € No.
Therefore, Hg is equal to the Rees algebra of I, cf. 2.3.7, that is,

Ho = @ I},

n>0

6.1.1 Estimates on the generators of the solution spaces

We now aim to analyse the sizes of the generators of G as an Gg-module. We use the
fundamental fact from linear programming that any polyhedron can be decomposed into a
sum of a finitely generated convex hull and a finitely generated cone, denoted by conv and
cone, respectively. More precisely, we use known bounds on the entries of the generators
of these components. The following fact summarises this result; for a detailed proof, we
refer to [55, Theorem 17.1].

Fact 6.1.11 ([55, Proof of Theorem 17.1]). Let A € Z™*", b € Z%; and P = {z €
Yo | Az < b}. Let A denote the maximum absolute value of the subdeterminants of the
matrix (A | b).

Then there exist z1, ..., zg € P and y,, ..., y, € So with all components at most A in

absolute value such that
P = conv{zi,...,z¢} + cone{yy,...,y,}

holds.

Moreover, every x € Sy can be written as © = x +y withy € Sg and © € M NSy, where

S
M = conv{zy,...,z¢} + {Z a;y; | 0 < «a; <1, at most v of the «; are nonzero} .
i=1

(6.1.3)

For our purposes, (6.1.3) is crucial: the set M is bounded because the maximum norm of

each of z, ..., zg as well as y;, ..., y, is bounded by A; therefore the maximum norm

S
of all vectors in M is bounded by A(v+1). Note that while z1, ..., z; might be rational
vectors, the set M N Sy consists of integer vectors by definition. Rewriting x = + y in

terms of &g and &, immediately leads to the following corollary.
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Corollary 6.1.12 (cf. [31, Lemma 2.2]). Let Ax < b be a system as in Convention 6.1.1.

Then the Gg-module Gy, is generated by finitely many monomials all of whose exponents
are at most 0 = A(A | b)(v + 1), where A(A | b) is the maximum absolute value of the

subdeterminants of (A | b) and v is the number of columns of A.

We use Corollary 6.1.12 to get a bound for the degree of the generators of Hp as an

Ho-module.

Proposition 6.1.13. Let Ax < b be as in Convention 6.1.1. Then Hy is generated as an

Ho-module by homogeneous elements whose degree is less than or equal to
o=AA|b)(r+1),
where A(A | b) is the maximal absolute value of the subdeterminants of the matrix (A | b).

Proof. To simplify notation, we write 7 instead of 7, within this proof. We restrict the

ring epimorphism

o: kW, ..., W] = k[z1,. .., 2r41]

W? xw(z)
to &y resulting in an epimorphism of additive groups

o' Gy — Hp

WZ i 273,
A further restriction to the ring &g results in the ring epimorphism
(p”: 60 — Ho.

Let L be the kernel of ¢”. Then ¢(LSp) = ¢(L)p(Sp) = {0}. Therefore, LSy is a
subgroup of the kernel of ¢'. In fact, L&y is an Gg-submodule of the kernel of ¢’ and
Sp/LGy is an S/ L-module.

By Corollary 6.1.12, there exist elements 21, ..., 2y with mg(2;) < o for 1 <14 < £ such
that &, is generated as an Gg-module by W#t, ..., W#?t. Hence &,/LGy is generated
as an Gg/L-module by W#! + L&y, ..., W#¢ 4+ LSy. By the isomorphism induced by ¢”

we have
So/L ~ Hog

and furthermore, since ¢’ is surjective, we get that z™(*1), ... 2™(%0) are generators of
Hp as an Ho-module. The isomorphism and the correlation between the generators is

visualised in the commutative diagrams in Figure 6.1.
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0—»710
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Go/L
(W= + L&),

(W=)iza

&,/ LG,

/N

Gb—»Hb

Fig. 6.1: Depiction of the argument in the proof of Proposition 6.1.13 how Gg-generators
of &y are mapped to Ho-generators of Hy, via Sg/L-generators of S /LGy, .

This completes the proof since deg(z™(*)) = m(2;) < o holds for all i € {1,...,¢}. O

Remark 6.1.14. The special case of Proposition 6.1.13 applied to Hg,, = I" and Hp,, =
sat(I™)NI™"1 is already proven by Hoa [31, Lemma 3.3, Lemma 3.4, and Proposition 3.1].

6.1.2 Homogeneous elements of the factor module H;/H,

The ring Ho is an Ho-submodule of Hp. A straight-forward verification yields

Hy/Ho ~ €D (Hpn/Hon)-

n>0

This is a graded Hg-module with scalar multiplication
hn : (um + HO,m) = hnum + HO,m—l—n

for hy, € Hoy and uy, € Hp . Again, the maximal degree of the generators of Hy/Ho
is bounded by the value o given in Proposition 6.1.13 because the generators of Hj as an

Ho-module map to generators of Hp/Ho under the projection modulo Hp.

Proposition 6.1.15. Let Ax < b be as in Convention 6.1.1 such that the corresponding
solution spaces fulfill Ho ,,Ho n = Hom4n for all n, m € Np.

Then the following property holds: If Hy, ,/Hg,, = 0 for somen > o = A(A|b)(v + 1),
then Hy n/Ho,ny = 0 for all N > n.

Proof. It suffices to prove that Hp,41/Hont1 = 0. Recall that the Ho-module H is
generated by elements with degree at most ¢ according to Proposition 6.1.13. Thus, the
homogeneous elements in Hy, 11/ Ho n41 are of the form hp, (up+Ho 1) = hmur+Ho m+k,
where k+m = n+1, k < o, hy, € Hop, and uy, € Hy .. Since by, € Ho;m = Ho,1Hom—1
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we can write h,, = ab, where a € Ho 1 and b € Hg;,—1. Then
hmug + Ho ik = a - bug + Ho i1 =0,

since buy, € Hy,, = Ho, and aHo, C Hopg1- ]

6.2 Upper bounds for the copersistence index Bé

We now apply the results from the previous section to derive upper bounds for the coper-
sistence index BID. Before doing so, we establish several properties of the parameters d, s

and r, on which the resulting bound will depend.

6.2.1 Notes on the bound-parameters d, s, and r

Definition 6.2.1. Let d denote the maximum total degree of the minimal generators of
the monomial ideal I and let ged(I) = 2t be the greatest common divisor of I. We define

the reduced maximal degree of I as
T
drea =d — > t;.
i=1

Remark 6.2.2. We recall Corollary 2.1.49 which states that if a monomial x? divides all

minimal generators of a monomial ideal I, then

Ass(R/I™)\ {(z1),...,(z,)} = Ass(R/(I : 2)")\ {(z1),..., (x)}

holds for all n € N. In particular, this implies that stab(/) = stab(7 : z*). Since the
bounds we develop in this section depend on the maximal total degree d of I, and the

inequality d.q < d always holds, these bounds can be improved by replacing d with dyeq.

Fact 6.2.3 ([45, Lemma 2.1]). If the number of generators of a monomial ideal I is smaller
than the number of variables, i.e., s < r, then m ¢ Ass(R/I") for all n € N.

Remark 6.2.4. The stability index of a monomial ideal in a polynomial ring with two
variables (r = 2) is equal to 1. This follows from [45, Theorem 2.7], which implies
that the maximal ideal m is either associated to no powers or to all powers of said ideal,

depending on whether it is a principal ideal or not.

6.2.2 Copersistence of prime ideals p(M)

Recall that for a subset M C [r], we write p(M) = (z; | i € M).

Definition 6.2.5. Let I C k[z1,...,2,] be a monomial ideal and M C [r]. Then we
denote by BI;(M) € N the smallest number such that the following statement holds: If
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for some N > BIQ(M) the prime ideal p(M) is not associated to IV, then it follows that
foralln > N
p(M) ¢ Ass(R/I").

Remark 6.2.6. It follows from the definition that BI2 = max{BIQ(M) | M C [7’]} We

argue that in fact
BL = max {BL(M) | M C [r] and |M] < s}

where s is the number of generators of .

Indeed, if s < |[M| < r then mp,, ¢ Ass(Rr/I};) for all n by Fact 6.2.3 since Ry is a
polynomial ring in | M| variables (Remark 2.1.28) and the ideal I/ has at most s generators.
By Remark 2.1.30 it follows that p(M) ¢ Ass(R/I™) for all n, i.e., Bé(M) = 1. This

proves the claim.

Theorem 6.2.7. Let I be a monomial ideal in k[z1,...,x,| and M C [r]. Further, let

A€ Z™ and b € Z% such that for every n € N the associated n-th solution spaces
Ho,, and Hy,,, (Definition 6.1.8) fulfill

(1) p(M) € Ass(R/I™) if and only if Hy,,/Ho,n # 0, and
(2) for all ny, ny € N we have Ho n, Hony = Hony+4ns-

Then BL(M) < A(A| b)(v + 1),

Proof. This theorem is a special case of Proposition 6.1.15, where the system matrix A
and the right-hand side b are chosen such that the conditions (1) and (2) are satisfied. [

The bound obtained in Theorem 6.2.7 depends on the specific choice of the system Ax < b.
As a next step, we narrow our focus to the maximal ideal m, rather than considering all
prime ideals p(M), having Remark 2.1.30 in mind. For certain systems, it is then possible to
further estimate BL ([r]) by a new bound o/(d, s, ) which eliminates the explicit dependence
on the system matrix. Instead, this bound depends only on the number of variables r, the
number s of generators of I and their maximal total degree d. As the following lemma
shows, whenever such a function o exists and is non-decreasing in each variable, it provides

an upper bound for the copersistence index.

Proposition 6.2.8. Let o: N®> — N be a map that is non-decreasing in all three variables
such that for all d, s, r € N the inequality BL([r]) < o(d,s,r) holds, whenever I is
a monomial ideal in r variables, s generators, and whose minimal generators have total
degree at most d. Then o(d,s,r) is an upper bound for the copersistence index BI2 of
every such ideal 1.

Proof. Let M C [r] and I the ideal generated by I in the localization Rjys of R at p(M).
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Further, let § the number of minimal generators of I; and d be their maximal total degree.
Then d < d and § < s. Moreover, Iy is an ideal in Ry which is a polynomial ring in
|M| < r variables. We can conclude that

BL(M) = BY (M) < o(d, 5,|M|) < o(d,s,7),

where the leftmost equality is due to Remark 2.1.30 and the middle and rightmost inequality
follow from the hypotheses of the proposition. Since B, = max{Bé(M) | M C [r]} this
finishes the proof. O

In order to find a suitable function o to bound Bé([r]) we set up suitable systems Az < b
for Theorem 6.2.7 to be applicable with M = [r]. In Remark 2.1.43 we gave three
statements that characterize m € Ass(R/I™). They are of the form

m € Ass(R/I") < U,/I"#0

where U,, € {sat(I") N I"~!, I" : m, sat(I™)}. The resulting bounds are discussed below
in Subsections 6.2.3, 6.2.4, and 6.2.5. We point out that even for a fixed choice of U,
there are in general multiple options to set up a suitable system Ax < b. We restrict our

investigation to specific choices.

Notation 6.2.9. In contrast to Section 6.1, we write © = (x1,...,x,) and ¢ instead of
Zy41 to distinguish notationally between the variables of the ambient ring k[x1, ..., z,] of
the ideal I and the variable ¢ we use for the grading of Hp.

6.2.3 Approach 1: m € Ass(R/I") if and only if (sat(I")N 1" 1) £ "

This is the approach followed by Hoa [31], yielding the upper bound for the copersistence
index BI2

01(d,5,7) == d(rs + s+ d) (V) (V2d) T,
where 1 is the number of variables, s is the number of generators of I and d is their

maximal total degree. For more details, we refer to the original proofs. Proposition 2.1.48
and Remark 6.2.6 further imply

BIQ < 01(dyed, S, min{r, s}).

6.2.4 Approach 2: m € Ass(R/I") if and only if (I" :m) # I

We set up a system of linear constraints Az < b such that Hp,, = (I" : m)t" and later
show that Hg, = I"t" (in the notation of Section 6.1 with Notation 6.2.9). A first idea

how to set up such a system was introduced in Example 6.1.6.

If I = (2%,...,2%), then I" = (ghrart+heas | ke No, ky + -+ ks = n). A

monomial 2" is an element of I : m if and only if 2"2; € I™ for all i € [r], i.e., there
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exists a generator of I™ that divides zhx;. That is, for every i € [r] there exist k; 1, .
ki s € No such that k; 1 +---+ k; s = n and

ghinart+kisas | :L,h"rei’

where e; € Z" is the i-th unit vector. This is equivalent to the componentwise inequal-
ity

kmal + -+ ki7sa8 < h +e;.

It suffices to demand that k; 1 +--- + k; s > n, since I"™ C I" holds for all m > n.

In conclusion: A monomial z" is an element of I™ : m if and only if for every i € [r] there
exist k;1,...,k;s € Ng such that

kirar + -+ ki sas < h+e;,
n— (kig+--+kis) <O0.

So for every i € [r] we get a block of inequalities:

ki
0 :
a, ao a —Ir Kis ) <[ &
hy = 0
0 :
-1 -1 -1, 10 01 :
Lhy )

We now combine these blocks to obtain a matrix representation of the system of inequal-
ities.

Notation 6.2.10. Let m = (r + 1)r and v = rs + r + 1. We define the matrix An.m €
Z™ VXV and the vector byn., € Z™ TV in the following way:
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r o
r &
r »
=
+
—

_Ir tr+1
0 o)
_IT rr+ 1
0 oflL)
O @]
0 0
@] @]
a1 s _Ir r—+1
-1 —1]0 01
where I, denotes the r x r identity matrix. Further, we set
binm = (€],0,...,e},0)T €z,
Theorem 6.2.11. Let I be a monomial ideal in the ring k[x1,...,x,] with s generators,

reduced maximal degree d..q (Definition 6.2.1), and

oo(d, s,7) = (Vd*+1)"° (\/77)74+2 (rs+r+2).

Then B%_) < 09(dred, s, min{r, s}) holds.

Proof. Let Arn. and byn., be as introduced in Notation 6.2.10. To simplify notation, we
write A = Ajn.y and b = byn.y in this proof. As explained above, Hy, = (I" : m)t"
holds.

Considering the homogeneous system Ax < 0, the conditions k; a1+ - -+ k; sa; < h+e;
change to k;1a1+- - - +k; sas < h, that is, pki1ait+kisas | gh Hence the homogeneous

system describes the set of monomials in 1", that is, Ho , = I"t".

This system satisfies the hypotheses of Theorem 6.2.7. Note that Ho ,Ho.m = Hont+m

holds trivially for all non-negative integers n and m. Therefore,
BIQ([T]) <A(A|b)(rs+r+2)

holds.

We use Hadamard's inequality to give an upper bound for A(A | b). The norms of the

first rs columns of A are at most

max /a2, + - +a?, +1< VR +L

i€[s]
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The remaining r + 1 columns of A and b have norm /r. Therefore,
BL([r]) S A(A|b)(rs +7+2) < (Va2 + 1) (/1) P (rs + 1 +2) = a2(d, 5,7).

A straight forward verification shows that o9 is non-decreasing in all three parameters.
Hence we can apply Proposition 6.2.8 and obtain Bé < o9(d, s,r). The assertion follows
from Proposition 2.1.48 and Remark 6.2.6. O

6.2.5 Approach 3: m € Ass(R/I") if and only if sat(/™) # I"™

Not too surprisingly, this approach turns out to be very similar to the one we presented in
Section 6.2.4. Indeed, the augmented system matrices are almost identical. The resulting
bound for Bé is greater than o2 (dyeq, s, min{r, s}) of the previous subsection. However,
we briefly describe this approach here to demonstrate that there are several options to

construct a system of linear inequalities that is suitable for Theorem 6.2.7.

By definition, sat(I") = Ugen, I" : mF.  As an increasing sequence of ideals in the
Noetherian ring R, the sequence I™ : m® C I : m! C I" : m? C ... becomes stationary
at some power N € N of m. Hence, sat(I") = JN_, I" : m*. We will see in Remark 6.2.13
below that the precise value of N is not relevant in what follows. By Remark 2.1.40 we
have sat(I™) = (i—; (I" : 5°) which implies

sat(I™) = U I (ah k) D U I (b k.
(K1 oerohir ) ENE (K1, o) ENE, ki SN

The reverse inclusion also holds, since if w € sat(I™), then there exists a k < N such that

w e I":mF. As (af, 25, ... %) C m*, this implies that w € 1™ : (2}, 25,...,2F). We
conclude
z" € sat(I™) <= there exist ki, ...,k < N such that for all i € [r], we have z"z% ¢ I"

— zPzN e 1" for all i € [r].

This is equivalent to the existence of k; 1, ..., k; s > 0 for all ¢ € [r] with

—(kip+ -+ kis)+n <0,
kiiay +---+k;sas < h+ Ne,.

Notation 6.2.12. Let Ajn.y and byn., be as in Notation 6.2.10. Then we set

Asat(]") = A[nm and bsat(ln) = N N b[nm

Remark 6.2.13. By construction, Hp,, = sat(I")t" holds for the system Ag,i(nyx <
bgai(rn)- The same argument as in Subsection 6.2.4 yields Ho , = I"t".
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Remark 6.2.14. Since A(Asat(ln) ‘ bsat(ln)) — A(Alﬂm ‘ N . b[nm) Z A(Alnm ‘ bIﬂm)
holds, using the system Ag,(jn) T < bgay(ny in Theorem 6.2.7 and the same technique as

in Theorem 6.2.11 does not improve the upper bound for BI2 obtained in Theorem 6.2.11.

Remark 6.2.15. As pointed out earlier, there may be more than one choice to set up a
system matrix. Another idea was to use that sat(I™) = (I™ : 23°) N --- N (I™ @ x2°).
However, the corresponding system is already homogeneous and hence Theorem 6.2.7 is

not applicable.

6.3 Comparison of the different approaches

We already established that our approach in Subsection 6.2.5 does not result in a bet-
ter bound than o2(dred, s, min{r, s}). It remains to compare the bounds from Subsec-
tions 6.2.3 and 6.2.4.

Proposition 6.3.1. Let 2 <r <sandd > 2. Then

q(d)™

oa(d, s, 1) < T

: 02(d7 S, T) < g1 (d) S, T)

holds, where q(d) := \/‘% > 1.

Proof. Due to the hypothesis, we can estimate

Ul(d,S,T) _ d(?’S + s+ d) (\/;)T-H (fd)(r+1 - - drs+s—r\/§"s+3—7"—1
o2(dsr) - (VR sk o+ 2) T (VR DV

<s <d
= q(d)™* - V2 gld)
V2r T V2r

This proves the second inequality in the statement of the proposition. For the first in-
equality, we show that qf} > 1 holds. Since ¢(d) is increasing in d and s > r, it follows

that

2

a(d)® _ a2
Var TV

The latter expression ¢(r) is increasing in r, because

=: ¢(r).

q(2)r2 q(2)r2+2r+1

VIr SR TD

where the inequality on the right-hand side holds since ¢(2)2"*1) > ¢(2)'° = (8/5)> > 10.
Evaluating (2) gives 64/50 > 1. O

= r+1<q(2)?@H .
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