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Abstract

This thesis investigates the asymptotic behaviour of algebraic invariants associated with
powers of monomial ideals, with particular emphasis on associated primes and the number
of minimal generators.

After introducing the necessary background on monomial ideals and their combinatorial in-
terpretations, we investigate the number of generators of high powers of bivariate monomial
ideals. We establish an explicit bound beyond which the number of minimal generators
becomes polynomial in the power, and provide a method for constructing the minimal
generating sets of these powers from certain subideals of a fixed power, thereby reducing
computational complexity. These results facilitate the effective computation of Hilbert
functions and related invariants.

We then study the structure of Buchberger graphs and their relation to associated primes,
introducing the lcm-complex to generalize results from strongly generic to arbitrary mono-
mial ideals. This framework allows for a combinatorial characterization of associated primes
in terms of simplicial complexes derived from least common multiples of the minimal gen-
erators of an ideal.

For monomial ideals in three variables, we apply the structural results from the bivariate
case to derive bounds on the stability index of associated primes, considering cases based
on the number and structure of minimal primes. Finally, we turn to monomial ideals in
an arbitrary number of variables and address the problem of bounding the copersistence
index—the power after which the sequence of associated primes of powers of an ideal is
weakly decreasing. We present a method to derive bounds based on systems of linear
inequalities that encode information about associated primes. Our approach yields upper
bounds for the copersistence index that improve the existing bound by an exponential
factor.

These results contribute to a better understanding of the asymptotic properties of monomial
ideals, particularly the behaviour of their associated primes and minimal generators under
powers, and provide new tools for their analysis within both algebraic and combinatorial
frameworks.
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Zusammenfassung

Diese Dissertation beschäftigt sich mit dem asymptotischen Verhalten von Potenzen von
Monomialidealen. Im Mittelpunkt stehen dabei insbesondere die assoziierten Primideale,
die Anzahl minimaler Erzeuger sowie die Potenz, ab der sich ein stabiles Verhalten einstellt
und anfängliche Irregularitäten nicht mehr auftreten.

Zu Beginn werden die notwendigen Grundlagen zu Monomialidealen und deren Potenzen
eingeführt. Anschließend analysieren wir die Struktur bivariater Monomialideale. Ein zen-
trales Ergebnis ist eine explizite Beschreibung hoher Potenzen solcher Ideale, basierend
auf der Verknüpfung der sogenannten Staircase-Diagramme bestimmter Teilideale einer
konkreten Potenz. Das ab einer gewissen Potenz auftretende periodische Muster in diesen
Diagrammen ermöglicht eine explizite Beschreibung der minimalen Erzeuger aller höheren
Potenzen und damit auch ihrer Anzahl. Diese Reduktion der strukturellen Analyse auf eine
einzelne Potenz erlaubt eine wesentlich effizientere Berechnung der minimalen Erzeuger
hoher Potenzen.

Im weiteren Verlauf untersuchen wir die Struktur von Buchberger-Graphen und deren
Zusammenhang mit assoziierten Primidealen. Zur Verallgemeinerung bekannter Resul-
tate von stark generischen auf beliebige Monomialideale wird der sogenannte lcm-Komplex
eingeführt. Dieses Konzept erlaubt eine kombinatorische Charakterisierung der assozi-
ierten Primideale in Form von Simplizialkomplexen, die sich aus den kleinsten gemeinsamen
Vielfachen der minimalen Erzeuger ergeben.

Für Monomialideale in drei Variablen übertragen wir die strukturellen Erkenntnisse aus dem
bivariaten Fall und leiten Schranken für den Stabilitätsindex der assoziierten Primideale ab.
Dabei zeigt sich, dass sich Ideale in drei Variablen im Wesentlichen drei Fällen zuordnen
lassen, die sich anhand ihrer minimalen Primideale unterscheiden.

Abschließend betrachten wir den sogenannten Kopersistenzindex—die Potenz, ab der die
Folge der assoziierten Primideale schwach monoton fallend ist—für Monomialideale in
beliebig vielen Variablen. Hierzu entwickeln wir eine Methode auf Basis linearer Ungle-
ichungssysteme, die Informationen über die assoziierten Primideale kodieren. Unser Ansatz
liefert obere Schranken, die unabhängig von der konkreten Wahl des Ungleichungssystems
sind und bestehende Resultate um einen exponentiellen Faktor verbessern.

Insgesamt leisten die erzielten Ergebnisse einen Beitrag zum tieferen Verständnis der asymp-
totischen Eigenschaften von Monomialidealen—insbesondere im Hinblick auf das Verhal-
ten ihrer assoziierten Primideale und minimalen Erzeuger bei Potenzbildung—und eröffnen
neue Perspektiven für deren algebraische und kombinatorische Analyse.

v



vi



Acknoledgements

First and foremost, I would like to express my deepest gratitude to my supervisor, Roswitha
Rissner. I could not have asked for a more dedicated, supportive, and inspiring mentor.
Thank you for sharing your knowledge, for always making time for discussions, for your
invaluable advice, and for your constant encouragement. Our discussions were one of the
most enjoyable aspects of this journey and greatly deepened my appreciation for research. I
am very grateful to have had such a kind, reliable, and encouraging person as a supervisor.
Thank you for all the time and effort you invested in me.

I am also sincerely grateful to my co-supervisor, Clemens Heuberger, whose influence on
my academic path began long before my PhD—during my very first semester as a student.
Your lectures left a lasting impression and your constant encouragement played a big role
in my decision to pursue a doctorate. Throughout my PhD, your steady support, and
insightful input have been invaluable. Thank you for being such a consistent and positive
presence throughout this journey.

I would also like to express my gratitude to the Department of Mathematics at the Uni-
versity of Klagenfurt for all the opportunities I was offered and the support I received
during this time. I want to thank all my colleagues at the department for making it such
a welcoming, and joyful environment.

My doctoral studies in the doc.funds doctoral school “Modeling–Analysis–Optimization
of discrete, continuous, and stochastic system” were generously funded by the Austrian
Science Fund (FWF) [10.55776/DOC78]. I want to thank the FWF and the principal
investigator, Michaela Szölgyenyi, for the funding, the opportunities, and the favourable
environment. As part of the project, I had the opportunity to participate in great confer-
ences, summer schools, and workshops.

I have benefitted greatly from research experience abroad, and for this I would like to thank
the research council of the University of Klagenfurt, and my doc.funds doctoral program
(FWF DOC 78) for their generous support. Additionally, I am grateful to my hosts and host
institutions: Irem Portakal and the mathematics department of the Max Planck Institute
for mathematics in the sciences, and Susan Morey and the mathematics department at
Texas State University.

I would also like to express my gratitude to my examiners, Carmelo Antonio Finocchiaro
and Lorenzo Guerrieri. Thank you for sharing your time and expertise in evaluating this
thesis.

I would like to thank all my long-time and newly-found friends. Thank you, Nathan, for
always being there, supporting me, and for bringing so much joy into my life. Thank you,

vii



Diane, for adding so much to this period of my life, and for making our office such a warm
and joyful place—you made me look forward to coming to work every day. Thank you,
Tobi, for regularly brightening my days and for all the delicious food and shared laughter.
Thank you, Daniel and Leanne, for keeping me grounded, for the fun activities, and the
many insightful and enjoyable conversations. Thank you, Teresa, for being by my side
in Klagenfurt from the very first day and for sharing this journey with me. Thank you,
Moritz, for your kindness and your contagious enthusiasm for mathematics. Thank you,
Laura, Sarah, and Patrick, for helping me maintain a healthy balance in life and for the
friendship and support you offered along the way.

Zuletzt möchte ich ganz besonders meiner Familie für ihre bedingungslose Unterstützung
danken. Ich danke meinen Eltern, Astrid und Michael, meiner Schwester Johanna sowie
Lilith und Emil. Ich danke von Herzen meinem Bruder Benjamin, der mich zu diesem
Studium—und zu so vielem mehr—ermutigt hat.

viii



Contents

Notation xi

List of Figures xiii

1 Introduction 1

2 Preliminaries 5
2.1 General facts about monomial ideals . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Staircase diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Primary decomposition and associated primes of monomial ideals . 8
2.1.3 Associated primes and localization . . . . . . . . . . . . . . . . . . 12
2.1.4 Conditions for the maximal ideal to be associated . . . . . . . . . . 15
2.1.5 Common divisors of the minimal generators of an ideal . . . . . . . 17

2.2 Monomial ideals and related objects . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Edge ideals and cover ideals of graphs . . . . . . . . . . . . . . . . 19
2.2.2 The Newton polyhedron, integral closure, and reductions . . . . . . 21

2.3 Powers of monomial ideals . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 Minimal generators of powers of monomial ideals . . . . . . . . . . 27
2.3.2 Associated primes of powers of monomial ideals . . . . . . . . . . . 28

3 Minimal generating sets of large powers of bivariate monomial ideals 31
3.1 Integral closures of bivariate monomial ideals . . . . . . . . . . . . . . . . 32
3.2 The role of persistent generators . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Ideals with regular staircase factors . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Minimal generating sets of powers . . . . . . . . . . . . . . . . . . . . . . 50

3.4.1 Runtime in practice . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Buchberger graphs and the lcm-complex 59
4.1 The Buchberger graph of a monomial ideal . . . . . . . . . . . . . . . . . 59

4.1.1 Definition and some properties of the Buchberger graph . . . . . . 59
4.1.2 Complete subgraphs of Buch(I) and m . . . . . . . . . . . . . . . 60

4.2 The lcm-complex of an ideal . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.1 Definition and properties of the lcm-complex . . . . . . . . . . . . 62
4.2.2 Connections between L(I) and Ass(R/I) . . . . . . . . . . . . . . 64

5 Associated primes of powers of monomial ideals in three variables 67
5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Upper bounds for the stability index . . . . . . . . . . . . . . . . . . . . . 68

ix



5.2.1 One minimal prime: Min(R/I) = {(x, y)} . . . . . . . . . . . . . . 70
5.2.2 Two minimal primes: Min(R/I) = {(x, y), (x, z)} . . . . . . . . . . 72

6 Bounds on the copersistent index of general monomial ideals 83
6.1 Graded factor modules related to systems of linear inequalities . . . . . . . 84

6.1.1 Estimates on the generators of the solution spaces . . . . . . . . . 87
6.1.2 Homogeneous elements of the factor module Hb/H0 . . . . . . . . 89

6.2 Upper bounds for the copersistence index BI⊇ . . . . . . . . . . . . . . . . 90
6.2.1 Notes on the bound-parameters d, s, and r . . . . . . . . . . . . . 90
6.2.2 Copersistence of prime ideals p(M) . . . . . . . . . . . . . . . . . 90
6.2.3 Approach 1: m ∈ Ass(R/In) if and only if (sat(In) ∩ In−1) 6= In . 92
6.2.4 Approach 2: m ∈ Ass(R/In) if and only if (In : m) 6= In . . . . . . 92
6.2.5 Approach 3: m ∈ Ass(R/In) if and only if sat(In) 6= In . . . . . . 95

6.3 Comparison of the different approaches . . . . . . . . . . . . . . . . . . . . 96

Bibliography 97

x



Notation

A ∪B Union of A and B
A ]B Disjoint union of A and B
A ∩B Intersection of A and B
|A| Cardinality of A
A \B Set difference {x ∈ A | x /∈ B}
⊆ Subset
( Proper subset
N The natural numbers
N0 The natural numbers and 0
Z The integers
[n] The set {1, . . . , n}
conv(A) The convex hull of a set A
cone(A) The cone generated by a set A
∅ The empty set
Q The rational numbers
R The real numbers
[a, b] Closed interval {x ∈ R | a ≤ x ≤ b}
R A commutative ring with unity
(F ) The ideal generated by a set F
k Field of characteristic 0√
I Radical of an ideal I

I : J The ideal quotient of two ideals I and J
Ass(R/I) Set of associated primes of an ideal I in the ring R
⊕ Direct sum
kerϕ The kernel of a map ϕ
I Integral closure of an ideal I
max Maximum
min Minimum
dxe Ceiling function
lcm Least common multiple
gcd Greatest common divisor
Kr Complete graph on r vertices
spank A The span over k of the elements of A

xi



xii



List of Figures

2.1 An example of a staircase of an ideal in two variables. . . . . . . . . . . . . 7
2.2 An example of the staircase of an ideal in three variables. . . . . . . . . . . 8
2.3 Staircase diagrams of primary ideals. . . . . . . . . . . . . . . . . . . . . . 9
2.4 A decomposition of a staircase diagram into primary components. . . . . . 10
2.5 A different decomposition of a staircase diagram into primary components. 10
2.6 An example of how localisation can be used to compute the associated

primes of an ideal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 A visualisation of how associated primes can be read off from the staircase

diagram of an ideal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.8 The staircases of I : m and sat(I). . . . . . . . . . . . . . . . . . . . . . . 16
2.9 The minimal vertex covers of a graph. . . . . . . . . . . . . . . . . . . . . 20
2.10 The Newton polyhedron of a monomial ideal in two variables . . . . . . . . 22
2.11 A comparison of the symbolic and ordinary power of a monomial ideal. . . . 23

3.1 The behaviour of the integral closure of a monomial ideal under shifts. . . . 32
3.2 Ideal with regular staircase factors. . . . . . . . . . . . . . . . . . . . . . . 38
3.3 The partition of an ideal with regular staircase factors based on y-degrees. . 39
3.4 Visualisation of the sets L, M , and R in Example 3.3.5. . . . . . . . . . . 42
3.5 Visualisation of the link of ideals. . . . . . . . . . . . . . . . . . . . . . . . 43
3.6 r-segments of an ideal with regular staircase factors. . . . . . . . . . . . . 45
3.7 A visualisation of Corollary 3.3.13. . . . . . . . . . . . . . . . . . . . . . . 46
3.8 The concatenation components Ci. . . . . . . . . . . . . . . . . . . . . . . 47
3.9 Visualisation of the (s, •)-stable components . . . . . . . . . . . . . . . . . 51

4.1 The Buchberger graph of a monomial ideal. . . . . . . . . . . . . . . . . . 60
4.2 An ideal whose Buchberger graph is a triangle. . . . . . . . . . . . . . . . 61
4.3 The Buchberger graph of an ideal can change when dividing the ideal by

its gcd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4 The lcm-complex of a monomial ideal. . . . . . . . . . . . . . . . . . . . . 64

5.1 An illustration of how to apply Proposition 5.2.15. . . . . . . . . . . . . . . 75
5.2 Some staircases of monomial ideals with three variables and two minimal

primes of height two. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1 Depiction of the argument in the proof of Proposition 6.1.13. . . . . . . . . 89

xiii



xiv



1. Introduction

Monomial ideals play a central role in commutative algebra and due to their many com-
binatorial interpretations, they are one of the main objects in combinatorial commutative
algebra. There are several properties of monomial ideals that make them so useful.

Performing algebraic operations is often far simpler on monomials than on arbitrary polyno-
mials. Thus, certain invariants are more easily determined for monomial ideals. It is more
efficient to analyze monomial ideals computationally than arbitrary ideals, as their structure
allows for more efficient algorithmic techniques in computer algebra systems.

Monomial ideals are closely related to combinatorial objects such as graphs, simplicial
complexes, and posets, which allows algebraic techniques to be applied to combinatorial
problems and vice versa. The study of the connection between Algebra and Combinatorics
was encouraged by Stanley’s proof of the Upper Bound Conjecture [59] for simplicial
spheres. This marked the beginning of a deep and ongoing interplay between algebra and
combinatorics. For instance, properties of finite simple graphs can be studied through the
squarefree monomial cover and edge ideals. This connection between graphs and monomial
ideals has been first explored by Fröberg [17], Villarreal [66], and Simis, Vasconcelos, and
Villarreal [57].

With the development of Gröbner basis theory, many problems concerning polynomials
can be reduced to analogous problems on monomials by defining a suitable term order.
This allows to deduce certain properties of an ideal from its initial monomial ideal. Bruno
Buchberger introduced Gröbner bases in his 1965 Ph.D. thesis, named after his advisor
Wolfgang Gröbner. His algorithm to compute Gröbner bases builds on what he called S-
polynomials. Buchberger’s criterion states that a set of polynomials F is a Gröbner basis if
each S-polynomial can be reduced to zero. The S-polynomials depend on the initial terms
of the polynomials in F and yield a set of elements that generate the module of first syzygies
of the (monomial) initial ideal of F . This set is generally not a minimal generating set.
According to Buchberger’s second criterion, knowing a smaller one allows the algorithm
to compute Gröbner bases more efficiently. Thus, the study of monomial ideals and their
syzygies play a central role in understanding the structure of general ideals.

One of the main topics of this thesis, and a fundamental tool for gaining insight into the
structure of an ideal, is the study of its associated primes. Broadly speaking, associated
primes generalize the notion of prime factorization for integers and can be viewed as the
minimal building blocks of an ideal. The concept often becomes clearer when demonstrated
through examples involving structures related to ideals. For instance, edge ideals are
monomial ideals generated by the edges of a graph; their associated primes correspond
to the minimal vertex covers of the graph (cf. [6, Lemma 2.13]). The cover ideal is the

1



Alexander dual of the edge ideal, and its associated primes correspond to the edges of the
graph (cf. [6, Lemma 2.12]). For finite simple hypergraphs, there is an intrinsic relation
between the associated primes of powers of the cover ideal and colouring properties of
the underlying graph [16]. In algebraic geometry, the associated primes of the defining
ideal of a variety correspond to the defining ideals of its irreducible components (cf. [11,
Section 3.8]). And in perhaps the simplest and most intuitive case, the associated primes
of an ideal in the ring of integers correspond precisely to the prime factors of the integer
that generates the ideal.

Main objectives. A key property of monomial ideals is that products are again monomial
ideals. In particular, if I is a monomial ideal than all powers In are again monomial
ideals. This naturally leads to the question of how certain invariants of a monomial ideal
behave as we consider its powers. The aim of this thesis is to better understand the
asymptotic structure of powers of monomial ideals. While many invariants behave highly
irregular for small powers and are sometimes only understood in special cases, it is known
that the changes in certain invariants eventually stabilise. For instance, the sequences
(depth(R/In))n∈N and (Ass(R/In))n∈N are eventually constant [4, 5], the regularity of In

is given by an affine function of n for all sufficiently large n, i.e., there exist constants a
and b such that reg(In) = an + b for n � 0 [10, 35], and there exists a polynomial
function in n that describes the number of generators µ(In) for n large enough. We focus
on the associated primes and number of generators, with the aim of bounding the power
of stabilisation and describing the stabilised form.

Overview of the thesis.

Chapter 2: Preliminaries. We begin by recalling fundamental definitions and key prop-
erties of monomial ideals and their associated prime ideals. We use staircase diagrams as
a tool to visualize certain properties. Especially, we point out their relation to the asso-
ciated primes of an ideal. An overview of some related combinatorial objects is provided,
including a selection of results that are relevant for this thesis. Finally, we discuss powers
of monomial ideals, providing a brief summary of the tools and frameworks used in their
study and introducing some questions explored in this context.

Chapter 3: Minimal generating sets of large powers of bivariate monomial ideals.
This chapter is based on the submitted preprint [48] and is joint work with Roswitha
Rissner. We provide an explicit description of the minimal generating sets of large powers
of bivariate monomial ideals. Specifically, we show that for sufficiently large s ∈ N, every
higher power Is+` can be constructed from certain subideals of Is. We further show that
such an s can be chosen to satisfy s ≤ µ(I)(d2− 1) + 1, where d is a constant determined
by the degrees of the minimal generators of I, bounded above by the maximal x- or y-
degree appearing in G(I). This yields an explicit description of G(Is+`) in terms of G(Is),
which significantly reduces the computational complexity of determining high powers of
bivariate monomial ideals. Further, this description enables the computation of the Hilbert
polynomial of I, and thus µ(In) for all n ≥ s. We include runtime measurements for

2



the SageMath implementation, which is available as an ancillary file on the arXiv page
of [48].

Chapter 4: Buchberger graphs and the lcm-complex. The content of this chapter
is the object of a paper in preparation. Buchberger graphs were originally introduced to
reduce the generating set of the module of first syzygies of the initial ideal of a set of
monomials to enable a faster computation of Gröbner bases. We explore some properties
of Buchberger graphs of ideals in three variables and study the connections of Buchberger
graphs of ideals in r variables to the associated primes of the underlying ideal. Since some
results apply only to strongly generic ideals, we introduce the lcm-complex of an ideal as a
tool to extend these findings to general monomial ideals. We provide a description of the
associated primes of an ideal in terms of the faces of its lcm-complex.

Chapter 5: Stability of ideals in three variables. The content of this chapter is the
object of a paper in preparation jointly with Rowitha Rissner. We build on the structural
results for bivariate monomial ideals from Chapter 3 to establish bounds on the stability
index of associated primes of monomial ideals in three variables. Specifically, when the ideal
has one or two minimal prime ideals of height two, the stabilisation point of the staircases
associated with certain related bivariate monomial ideals—described in Chapter 3—serves
as a bound for the stability index of the ideal in three variables.

Chapter 6: Bounding the copersistence index in any number of variables. This
chapter is based on joint work with Clemens Heuberger and Roswitha Rissner [30], published
in the Journal of Linear Algebra and its Applications. Lê Tuân Hoa [31] gave an upper
bound for the stability index of arbitrary monomial ideals. This bound depends on the
generators of the ideal and is obtained by separately bounding the powers of I after which
the sequence of associated primes is non-decreasing and non-increasing, respectively. In this
chapter, we focus on the latter and call the smallest such number the copersistence index.
We take up the proof idea of Lê Tuân Hoa, who exploits a certain system of inequalities
whose solution sets store information about the associated primes of powers of I. However,
these proofs are entangled with a specific choice for the system of inequalities. In contrast
to that, we present a generic ansatz to obtain an upper bound for the copersistence index
that is uncoupled from this choice of the system. We establish properties for a system of
inequalities to be eligible for this approach to work. We construct two suitable inequality
systems to demonstrate how this ansatz yields upper bounds for the copersistence index
and compare them with Hoa’s. One of the two systems leads to an improvement of the
bound by an exponential factor.

3
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2. Preliminaries

We start with a short historical overview of ideals and their associated primes. By the
Fundamental Theorem of Number Theory, every integer can be uniquely decomposed into
a product of prime numbers. The prime numbers appearing in this factorization, along with
their exponents, are uniquely determined. This property of uniquely decomposing elements
into a product of elements that cannot be reduced further does not hold in any commutative
ring with identity. For example, in the ring Z[

√
−5] there are two fundamentally different

factorizations of the element 6, namely 2·3 = 6 = (1+
√
−5)·(1−

√
−5). As a workaround,

Ernst Kummer and Richard Dedekind established in the 1800s that uniqueness is restored
by factoring elements into products of ideals, which are, in a sense, idealized versions of
numbers.

In the 1900s, Emanuel Lasker and Emmy Noether observed that decomposing ideals into
finite intersections—rather than products—of irreducible ideals, i.e., ideals that cannot be
written as a nontrivial intersection of two ideals, offers certain advantages. The Lasker-
Noether Theorem (1905, 1921) states that every ideal in a commutative Noetherian ring
has such a decomposition.

Interpreting this in terms of ideals, we see that any ideal in the ring Z can be uniquely
expressed as an intersection of ideals generated by powers of prime numbers. For example,
consider 140 = 22 ·5 ·7. The ideal generated by 140, consisting of all its multiples, is given
by the intersection of the ideals (22), (5), and (7). That is, (140) = (22)∩ (5)∩ (7) is the
unique way to write (140) as an intersection of ideals generated by prime powers.

However, when generalizing such decompositions to other settings, uniqueness is generally
lost. Despite this, the underlying prime ideals—the associated primes—remain uniquely
determined.

2.1 General facts about monomial ideals

We introduce some terminology and facts about monomial ideals and associated primes
of monomial ideals. For a thorough introduction we refer to Chapter 1 in Jürgen Herzog’s
and Takayuki Hibi’s textbook [25] on monomial ideals.

An ideal in a commutative ring R is a nonempty subset that is closed under addition
and invariant under multiplication by elements of R. We write (g1, . . . , gn) for the ideal
generated by the elements g1, . . . , gn ∈ R, that is, (g1, . . . , gn) = {r1g1 + · · · + rngn |
r1, . . . , rn ∈ R}. Let k[x1, . . . , xr] be the polynomial ring in r variables over a field k of
characteristic 0. A monomial is a product of powers of the variables xa1

1 · · ·xar
r for a1,

. . . , ar ∈ N0.

5



Notation 2.1.1. For a = (a1, . . . , ar) ∈ Nr0, we use the notation xa := xa1
1 · · ·xar

r .

Notation 2.1.2. Let f = xa ∈ k[x1, . . . , xr] with a = (a1, . . . , ar) ∈ Nr0. For every
i ∈ {1, . . . , r}, we write degi f := ai (sometimes also degxi

f). Further, we write deg f :=
(a1, . . . , ar).

Naturally, the set of all monomials forms a k-basis of R. A monomial ideal is an ideal
generated by monomials and again, the monomials contained in a monomial ideal form a
k-basis of that ideal. Consequently, a monomial ideal is described entirely by its mono-
mials. In fact, it suffices to choose those monomials which are minimal with respect to
divisibility.

Proposition 2.1.3 (cf. [25, Proposition 1.1.6]). Each monomial ideal I has a unique min-
imal set of monomial generators. More precisely, let G be the set of monomials in I which
are minimal with respect to divisibility. Then G is the unique minimal set of monomial
generators.

Notation 2.1.4. For a monomial ideal I, we denote by G(I) the set of its minimal monomial
generators. Further, we denote by µ(I) := |G(I)| the number of minimal generators of I.

Monomial ideals behave nicely under algebraic operations, as listed below.

Fact 2.1.5 (cf. [25, Chapter 1.2]). Let I, J ⊆ R be monomial ideals. Then the following
properties hold:

(1) The sum I + J is a monomial ideal and G(I + J) ⊆ G(I) ∪ G(J).

(2) The intersection I∩J is a monomial ideal and G(I∩J) ⊆ {lcm (u, v) | u ∈ G(I), v ∈
G(J)}.

(3) The product I · J is a monomial ideal and G(I · J) ⊆ G(I) · G(J).

(4) The colon ideal I : J := {w ∈ R | wJ ⊆ I} is a monomial ideal.

(5) The radical
√
I := {w ∈ R | ∃n ∈ N : wn ∈ I} is a monomial ideal.

Throughout, we often implicitly use these basic properties of monomial ideals without
referring to Fact 2.1.5.

Remark 2.1.6. If I is a monomial ideal, then the radical of I is a squarefree monomial
ideal and it is generated by the monomials obtained by setting every non-zero exponent in
the generators of I to 1.
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2.1.1 Staircase diagrams

We often identify a monomial in r variables with the point in Rr defined by its exponent
vector. We use this translation to visualise ideals in two or three variables. Moreover, the
minimal generators of a monomial ideal in two variables x and y are always of the form
xa1yb1 , . . . , xasybs , where

a1 < a2 < · · · < as, and

b1 > b2 > · · · > bs.

Definition 2.1.7. We say a monomial u properly divides a monomial v, write u |p v, if
u | v and the degree of u is different from the degree of v in every variable that occurs
in v. We call a monomial v ∈ I a surface monomial of I if it is not proper divisible by
any monomial in I.

x

y

(a1, b1)

(a2, b2)

(a3, b3)

(a4, b4)

Fig. 2.1: A visualisation of the ideal
(y4, x2y3, x3y, x6) in two variables.
All the grid points in the shaded
area correspond to monomials in
the ideal. The grid points on the
staircase-line connecting the min-
imal generators correspond to the
surface monomials of the ideal.

Definition 2.1.8 (cf. [43, Definition 3.6]). The staircase surface (or staircase diagram)
of a monomial ideal I in r variables is the topological boundary of the space of vectors
v ∈ Rr for which there is some monomial f ∈ I satisfying degi f ≤ vi for all 1 ≤ i ≤ r.

Remark 2.1.9. The integer points on the staircase surface of an ideal are precisely its
surface monomials.

Example 2.1.10. Figure 2.2 illustrates the staircase surface of the monomial ideal

I = (x2z, x2y, yz, xy3) ⊆ k[x, y, z].

All grid points on the coloured surface correspond to surface monomials of I. The empty
boxes indicate that the surface continues infinitely in the corresponding directions.

The “inward-pointing corners” (white dots) correspond to the minimal generators of I.
The “outward-pointing corners” are marked with black dots and we will refer to them as
“outer corners”.
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x

y

z

x2z

x2y

yz

xy3

Fig. 2.2: The 3-dimensional staircase surface of the ideal I = (x2z, x2y, yz, xy3).

Definition 2.1.11. A surface monomial m is called outer corner if x1 · · ·xr | m and

m∏
j 6=i xj

is a surface monomial for every i ∈ {1, . . . , r}.

Throughout this thesis, we use staircase diagrams to help illustrate key results and ex-
amples, as they provide a powerful means of visualising certain properties of monomial
ideals.

2.1.2 Primary decomposition and associated primes of monomial ideals

Primary decomposition is a standard topic in most introductory texts on commutative
algebra; see, for example, Atiyah and Macdonald [2, Chapter 4]. In this section, while
reviewing the fundamental definitions, we place particular emphasis on the behaviour and
properties of monomial ideals in this context.

Definition 2.1.12. An ideal I in a ring R is called primary if for every product a · b ∈ I,
either a ∈ I or bn ∈ I for some n ∈ N. Denoting by p the prime ideal

√
I, we then say

that I is p-primary.

Remark 2.1.13. Monomial prime and primary ideals can be characterized by their minimal
generating sets.

• A monomial ideal I ⊆ k[x1, . . . , xr] is primary if and only if for every i ∈ {1, . . . , r},
whenever xi divides any minimal generator of I, then xni ∈ G(I) for some n ∈ N,
i.e., its staircase diagram is bounded in the direction of xi (see Figure 2.3).

• A monomial ideal is prime if and only if it is minimally generated by a subset of the
variables.
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Fig. 2.3: From left to right: (x3, xz2, z3) is (x, z)-primary; (x2, y) is (x, y)-primary;
(y2, yz, z2) is (y, z)-primary; (x3, xy2z, y3, z2) is (x, y, z)-primary.

Definition 2.1.14. Let I be an ideal in a ring R. A decomposition I = Q1∩Q2∩· · ·∩Qn
for primary ideals Q1, Q2, . . . , Qn ⊆ R is called a primary decomposition. A primary
decomposition is called irredundant, if

•
√
Q1, . . . ,

√
Qn are distinct, and

• for all j ∈ {1, . . . , n}, I 6=
⋂
i 6=j Qi.

Remark 2.1.15. By splitting up products of variables, we find that every monomial ideal
has a primary decomposition with monomial primary components: If I has a minimal
generator f that is not a power of a variable, then we can factor f = f1 · f2, where
gcd(f1, f2) = 1, f1 6= 1, and f2 6= 1. Then

I =
(
J + (f1)

)
∩
(
J + (f2)

)
,

where J is the ideal with minimal generators G(I)\{f}. Repeating this process until every
generator of each component is a power of a variable leads to the desired decomposition.
To obtain an irredundant decomposition, we combine all components that have the same
radical: If p =

√
Q1 =

√
Q2, then we replace Q1 and Q2 with the intersection Q1 ∩ Q2.

Note that
√
Q1 ∩Q2 = p.

Example 2.1.16. To compute a primary decomposition of the monomial ideal given by
I = (x3z, y2z2, x2yz2, y4), we split up all appearing products step-by-step (Remark 2.1.15):

(x3z, y2z2, x2yz2, y4) = (x3, y2z2, x2yz2, y4) ∩ (z, y2z2, x2yz2, y4)

= (x3, y2z2, x2yz2, y4) ∩ (z, y4)

=
(
(x3, y2, x2yz2, y4) ∩ (x3, z2, x2yz2, y4)

)
∩ (z, y4)

= (x3, y2, x2yz2) ∩ (x3, z2, y4) ∩ (z, y4)

= (x3, y2, x2) ∩ (x3, y2, y) ∩ (x3, y2, z2) ∩ (x3, z2, y4) ∩ (z, y4)

= (x2, y2) ∩ (x3, y) ∩ (x3, y2, z2) ∩ (x3, z2, y4) ∩ (z, y4).

We can stop at this point, since the components in the last line are primary according to
Remark 2.1.13. Using Remark 2.1.6, we compute their radicals to be (x, y), (x, y, z), and
(y, z). To obtain an irredundant primary decomposition, we combine the components that
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have the same radical:

(x2, y2) ∩ (x3, y) = (x3, x2y, y2), (x3, y2, z2) ∩ (x3, y4, z2) = (x3, y4, z2).

We end up with the irredundant primary decomposition

I = (x3, x2y, y2) ∩ (x3, y4, z2) ∩ (z, y4).

See Figure 2.4 for the decomposition of the staircase of I.

= ∪ ∪

Fig. 2.4: The left-most staircase is the one of I = (x3z, y2z2, x2yz2, y4). We decompose
the staircase into a union of three staircases that correspond to the primary components
of I.

Remark 2.1.17. We can modify the (x, y, z)-primary component of the ideal in Exam-
ple 2.1.16 to obtain a different irredundant primary decomposition. For instance, it can
be replaced with (x4, x3y2, x3z, y4, x2z2, y2z2, z4). This alteration does not affect the
overall intersection, as can be clearly seen from the staircase decomposition illustrated in
Figure 2.5.

= ∪ ∪

Fig. 2.5: A different primary decomposition of I = (x3z, y2z2, x2yz2, y4).

Definition 2.1.18. Let I be an ideal in a Noetherian ring R with irredundant primary
decomposition I = Q1 ∩ · · · ∩Qn. Then the elements of the set

Ass(R/I) :=
{√

Q1, . . . ,
√
Qn
}

are called associated primes of I. The associated primes which are minimal with respect
to inclusion are calledminimal primes of I and are denoted by Min(R/I). Every associated
prime that is not minimal is called embedded prime.

We state a second definition of associated primes that does not require the use of primary
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decomposition and applies to arbitrary (not necessarily Noetherian) rings. In the Noetherian
case, this definition agrees with the one above (cf. [25, Chapter 1.3.2]).

Definition 2.1.19. For any ideal I in a ring R, a prime ideal p is an associated prime
of I if there exists an element w ∈ R such that

p = I : w = {r ∈ R | rw ∈ I}.

The element w is called a witness of p with respect to I.

Example 2.1.20. In Example 2.1.16 we computed an irredundant primary decomposition
of the ideal I = (x3z, y2z2, x2yz2, y4). From this decomposition, we obtain the set of
associated primes:

Ass(R/I) = {(x, y), (y, z), (x, y, z)}.

Its minimal primes of I are (x, y) and (y, z), while (x, y, z) is an embedded prime. Ac-
cording to Definition 2.1.19, these associated primes can also be identified via witnesses
as follows:

(x, y) = I : x2z2, (y, z) = I : x3y3, (x, y, z) = I : x2y3z.

For monomial ideals, the set of associated primes can be described as follows:

Fact 2.1.21 (cf. [25, Corollary 1.3.10]). If I is a monomial ideal in R = k[x1, . . . , xr], then

Ass(R/I) = {p prime ideal | there exists xa ∈ R such that p = I : xa},

that is, monomial witnesses always exist.

Notation 2.1.22. For r ∈ N we write [r] := {1, . . . , r}.

Notation 2.1.23. Let M be a subset of [r]. We denote by p(M) := (xi | i ∈ M) ⊆ R,
the prime ideal generated by the variables xi, i ∈M . Further, we write mR := (x1, . . . , xr)
for the unique maximal monomial ideal in R. We simply write m if the ring is clear from
the context.

Notation 2.1.24. For a monomial ideal I in k[x1, . . . , xr], we denote by

supp(I) :=
{
i ∈ [r] | xi divides a minimal generator of I

}
and we call this set the support of I.
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Fact 2.1.25 (cf. [25, Section 1.3]). Let I be a monomial ideal in k[x1, . . . , xr]. Then

Ass(R/I) ⊆
{
p(M) |M ⊆ supp(I)

}
.

Remark 2.1.26. As an immediate consequence of Fact 2.1.25, we get that if xi - g for all
g ∈ G(I), then xi /∈ p for all p ∈ Ass(R/I).

2.1.3 Associated primes and localization

Localizing at a suitable multiplicative set can simplify the computation of the associated
primes of a monomial ideal.

Notation 2.1.27. Let M ⊆ [r]. We denote by

RM := (k[xi | i /∈M ] \ {0})−1R

the localization of R at k[xi | i /∈M ]\{0}. If I is an ideal in R, then we write IM := IRM .

Remark 2.1.28. In contrast to the localization of R at p(M), the ring RM remains a
polynomial ring. Specifically, it is a polynomial ring in |M | variables and over an extended
field, that is, RM = k′[xi | i ∈M ] where k′ = k(xi | i /∈M).

Fact 2.1.29 (cf. [11, Theorem 3.1]). Associated primes of ideals behave well with respect
to localization, that is,

Ass(RM/IM ) =
{
pRM | p ∈ Ass(R/I) and xi /∈ p for all i ∈ [r] \M

}
.

Remark 2.1.30. Let M ⊆ [r]. By Fact 2.1.29 we have

p(M) ∈ Ass(R/I) ⇐⇒ mRM
= p(M)RM ∈ Ass(RM/IM ).

This equivalence allows us to focus on the maximal monomial ideal mR only. For non-
maximal prime ideals p(M) we localize to RM where p(M)RM is maximal. To sum up,
the following holds:

Ass(R/I) =
⋃

M⊆[r]

{
p(M) | mRM

∈ Ass(RM/IM )
}
.

In Example 2.1.16 and Remark 2.1.17, we observed that primary decompositions are gen-
erally not unique. However, for primary components corresponding to minimal primes, the
following holds:

Fact 2.1.31 (cf. [40, Theorem 6.8(iii)]). The primary components corresponding to mini-
mal primes are uniquely determined by I. Specifically, if p ∈ Min(R/I) then the p-primary
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component of I is π−1(Ip), where π : R→ Rp is the canonical projection.

In particular, note that for p = p(M), the projection π is equal to π̂ ◦ ϕ : R→ RM → Rp

where π̂ and ϕ are the canonical projections. Hence, if p(M) is a minimal prime of I then
ϕ−1(IM ) = π−1(Ip(M)) is the p(M)-primary component of I.

Remark 2.1.32. Note that for any M ⊆ [r], the preimage ϕ−1(IM ) of IM under the map
ϕ : R→ RM is equal to the saturation of I at p

(
[r] \M

)
, i.e.,

ϕ−1(IM ) = I : p
(
[r] \M

)∞ =
⋂

i∈[r]\M
I : x∞i .

Remark 2.1.33. By Remark 2.1.30, the ideal (xi) is associated to I if and only if I{i} 6=
R{i}; that is, if and only if xi | g holds for all g ∈ G(I). Furthermore, by Fact 2.1.31,
it follows that in this case, ϕ−1(I{i}) is the uniquely determined (xi)-primary component
of I.

We illustrate the results of this section on an example:

Example 2.1.34. Let I = (x4w, x3yz2, x2y3wz, yz2w, z3w) be an ideal inR = k[x, y, z, w].
In this example, we adapt the notation from Notation 2.1.27 by replacing the set M with
the set of the corresponding variables. We begin by localizing at k[x] \ {0} which gives
the ring R{y,z,w} = k′[y, z, w] and I{y,z,w} = (w, yz2). (Note that the base field changes
from k to k′, but this does not affect our arguments about associated primes.) We observe
that mR{y,z,w} = (y, z, w) /∈ Ass

(
R{y,z,w}/I{y,z,w}

)
, and hence by Remark 2.1.30 it follows

that
(y, z, w) /∈ Ass(R/I).

Next, we localize further at k′[y] \ {0}, obtaining R{z,w} = k′′[z, w] and I{z,w} := (z2, w).
Now, the maximal ideal (z, w) in this localized ring is associated, so

(z, w) ∈ Ass(R/I).

This process of localization allows us to compute the associated primes of I by progressively
reducing the number of variables, simplifying the computations. Applying this technique,
we obtain (see Figure 2.6):

Ass(R/I) \ {(x, y, z, w)} =
{

(x, z), (x,w), (y, w), (z, w), (x, y, z)
}
.

The remaining question is whether the maximal ideal (x, y, z, w) is also an associated prime
of I. Using Figure 2.6 and Fact 2.1.31, we can directly identify the primary components
of I corresponding to its minimal primes

Min(R/I) =
{

(x, z), (x,w), (y, w), (z, w)
}
.
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For example, the (x, z)-primary components of I is

ϕ−1(I{x,z}) = (I : y∞) ∩ (I : w∞) = (x4, x2z, z2).

(x4w, x3yz2, x2y3wz, yz2w, z3w)

(w, yz2)
����(y, z, w)

(x4w, x3z2, x2wz, z2w)
�����(x, z, w)

(w, x3y)
�����(x, y, w)

(x4, x2y3z, yz2, z3)
(x, y, z)

x y z
w

(z2, w)
(z, w)

(y, w)
(y, w)

(1)
���(y, z)

(x3, w)
(x,w)

(x4, x2z, z2)
(x, z)

(1)
�
��(x, y)

y z w
z wx yx w

x

y z

(1)
�
�(w)

(1)
��(z)

(1)
��(y)

(1)
�
�(x)

z w y w

y zx
wx z x y

Fig. 2.6: We start on the top with the ideal I from Example 2.1.34. From top to bottom,
in each layer we reduce the number of variables by one. We then check if the maximal
ideal in the corresponding ring is associated (crossed out in red if it is not associated; blue
if it is associated).

We conclude with a remark that combines the results of this section with the use of the
staircase diagram as a visual tool for extracting information about Ass(R/I):

Remark 2.1.35. Let I be a monomial ideal in k[x, y, z].

(1) The ideal (z) is associated to I if and only if no generator of I lies in the x-y-
plane—that is, if every minimal generator has positive z-degree. This follows from
Remark 2.1.33. Analogous statements hold for the primes (y) and (x).

(2) If the ideal (x, y) is associated to I, then the staircase diagram of I is unbounded in
z-direction, that is, there exists no minimal generator g of I lying on the z-axis. To
see this, we assume that (x, y) = I : w for some monomial w. Then znw /∈ I must
hold for all n ∈ N, which is only possible if no power of z is in I.

The reverse implication of this statement holds under the assumption that neither
(x) nor (y) is an associated prime of I. In that case, by (1), there exist minimal
generators of the form ybzd and xazc. The exponents of these generators fulfill

14



a 6= 0 and b 6= 0 since otherwise, the staircase diagram of I would be bounded in
z-direction. Thus, I : z∞ is (x, y)-primary and in particular, by Fact 2.1.31 and
Remark 2.1.32 it is the (x, y)-primary component of I.

Again, analogous statements hold for (x, z) and (y, z).

We provide examples in Figure 2.7.

Fig. 2.7: The staircase on the left is of the ideal (x2z, yz). Every minimal generator of
this ideal is divisible by z, hence (z) is associated. Further, (x) and (y) are not associated,
thus, the fact that the staircase is unbounded in z-direction implies that (x, y) is associated.
The staircase on the right belongs to the ideal (x3, x2y, xy2, y3). It is unbounded in z-
direction and has no minimal primes of height one. Therefore, (x, y) is associated to this
ideal.

2.1.4 Conditions for the maximal ideal to be associated

By Remark 2.1.30, we have p(M) ∈ Ass(R/I) if and only if mRM
∈ Ass(RM/IM ). This

subsection therefore focuses on maximal ideals.

We start with the following well-known characterizing statement:

Fact 2.1.36. Let I be a monomial ideal. Then m ∈ Ass(R/I) if and only if I : m 6= I.

Remark 2.1.37. There is a one-to-one correspondence between the witnesses of m and
the monomials in I : m \ I. Clearly, if w is a witness of m, then w ∈ I : m \ I. On the
other hand, if f ∈ I : m \ I, then f · xi ∈ I for all i ∈ [r] and f /∈ I, thus, I : f = m.

Corollary 2.1.38. Let I ⊆ k[x1, . . . , xr] be a monomial ideal. Then m ∈ Ass(R/I) if and
only if I has an outer corner. In particular, there is a one-to-one correspondence between
the witnesses of m and the outer corners of I.

Proof. Let m be an outer corner of I. We claim that w := m/x1 · · ·xr is a witness of m.
First, observe that for each i ∈ [r] the product xi ·w is a surface monomial by the definition
of outer corners, and therefore lies in I. Moreover, if f | w, then f | w · x1 · · ·xr = m

which is by definition a surface monomial and thus not properly divisible by f ; hence, there
exists an i ∈ [r] such that degi f = degim = degiw+ 1, a contradiction. This shows that
w /∈ I and therefore w is indeed a witness of m.
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On the other hand, if w is a witness of m, then we show that m := w ·x1 · · ·xr is an outer
corner of I. Since w /∈ I but wxi ∈ I for every i ∈ [r], it follows that

w · xi = m∏
j 6=i xj

is a surface monomial.

Combining the above, we observe that the staircase of I : m is obtained from the stair-
case of I by removing all cubes whose endpoints correspond to an outer corner, see Fig-
ure 2.8.

Definition 2.1.39 (cf. [11, Section 15.10.6]). For a monomial ideal I, let

sat(I) := I : m∞ =
⋃
k∈N0

(I : mk)

be the saturation of I with respect to m.

Remark 2.1.40. Since sat(I) =
⋂r
i=1(I : x∞i ) holds (cf. [36, Lemma 3.5.12]), sat(I) is

again a monomial ideal.

Fig. 2.8: Let I = (x4z2, x4yz, x4y2, x2yz2, x2y2z, y2z2, xy4z, x2y4). The staircase of I
is on the left. Its three outer corners x4y2z2, x4y4z, and x2y4z2 are marked by black
dots. The staircase of I : m is obtained by removing the cubes corresponding to the outer
corners. The result is illustrated in the middle. By repeating this process we end up with
the staircase on the right, which belongs to sat(I).

Fact 2.1.41 ([9, Chapter 4, Exercise 14]). Let I be a monomial ideal. Then m is associated
to I if and only if sat(I) 6= I holds.

Lemma 2.1.42. Let I be a monomial ideal. For any n ∈ N, sat(In) 6= In if and only if
sat(In) ∩ In−1 6= In.

Proof. Note that the following inclusions hold:

In ⊆ sat(In) ∩ In−1 ⊆ sat(In).

Therefore, sat(In) ∩ In−1 6= In implies sat(In) 6= In. For the reverse implication, note
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that In = In : m implies In = sat(In). Hence, if In 6= sat(In) then there exists a
monomial xa ∈ (In : m) \ In. Let i ∈ [r]. Since xaxi ∈ In, there exist g1, . . . , gn ∈ I
such that

xaxi = g1 · · · gn.

This further implies that xi | gj for some j, say j = 1, and hence

xa = g1
xi
g2 · · · gn ∈ In−1.

Since In : m ⊆ sat(In), we conclude that xa ∈ (sat(In) ∩ In−1) \ In.

Remark 2.1.43. To summarize this subsection, we provide a list of statements that char-
acterize when the maximal ideal m is associated to In. The following statements are
equivalent:

(1) m ∈ Ass(R/In),

(2) In : m 6= In (Fact 2.1.36),

(3) sat(In) 6= In (Fact 2.1.41),

(4) sat(In) ∩ In−1 6= In (Lemma 2.1.42).

2.1.5 Common divisors of the minimal generators of an ideal

Many properties of monomial ideals—such as the number of minimal generators—remain
invariant under shifts. It is often convenient to shift ideals prior to performing computa-
tions. We develop several relevant properties below.

Lemma 2.1.44. Let I be a monomial ideal in k[x1 . . . , xr] and m a monomial. Then

(I : m)n ⊆ In : mn

holds for all n ∈ N. If m | g for all g ∈ G(I), then equality (I : m)n = In : mn holds.

Proof. Let f = f1 · · · fn be in (I : m)n, for fj ∈ I : m. Then f1 · · · fn · mn =
f1m · · · fnm ∈ In. If m divides every minimal generator of I, then

(I : m)n =
( 1
m
I

)n
= 1
mn

In = In : mn.

Notation 2.1.45. For a monomial ideal I, we denote by gcd(I) the greatest common
divisor of all monomials in I.
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Definition 2.1.46. For a monomial ideal I , we write I := I : gcd(I). We call the ideal I
anchored, if I = I.

Remark 2.1.47. By Lemma 2.1.44, (In) = (I )n holds for all n ∈ N.

Clearly, µ(I) = µ(I ). We now show that common divisors of the generators of I do not
play a role for the associated primes of In.

Proposition 2.1.48. Let I be a monomial ideal in r > 1 variables and let t ∈ Nr0 such
that xt divides all of the generators of I. Then for all n ∈ N, m ∈ Ass(R/In) if and only
if m ∈ Ass(R/(I : xt)n).

Proof. By Lemma 2.1.44 it suffices to show the assertion for n = 1. If m is associated to
I : xt, then there exists a xw such that

m = (I : xt) : xw = I : xtxw = I : xt+w

holds and therefore m ∈ Ass(R/I).

Conversely, let m ∈ Ass(R/I) with witness xw. Since all generators of I are divisible by xt

and xwxi ∈ I, we have t ≤ w + ei for all i ∈ [r], where ei is the i-th unit vector. Hence,
t ≤ w and xw = xw̃xt for some xw̃. Therefore,

m = I : xw = I : xtxw̃ = (I : xt) : xw̃,

i.e., m ∈ Ass(R/(I : xt).

Corollary 2.1.49. Let I be a monomial ideal and xt be a divisor of all the generators of I.
Then

Ass(R/In) \ {(x1), . . . , (xr)} = Ass(R/(I : xt)n) \ {(x1), . . . , (xr)}.

Proof. Let M ⊆ [r] with |M | > 1. We apply Proposition 2.1.48 to the maximal monomial
ideal mRM

in the localization RM of R. Remark 2.1.30 then yields that p(M) is associated
to In if and only if p(M) ∈ Ass(R/(I : xt)n).

2.2 Monomial ideals and related objects

We introduce some combinatorial objects that often appear in the context of monomial
ideals. Broadly speaking, by associating an ideal to a given object and then analysing
the ideal, we can extract valuable information about the original object. For instance,
the associated primes of certain ideals corresponding to graphs can reveal insights into
the graph’s colouring properties. Conversely, this relationship also allows us to apply
combinatorial methods to derive results about monomial ideals.
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2.2.1 Edge ideals and cover ideals of graphs

We introduce edge ideals and cover ideals of finite simple hypergraphs. These ideals provide
well-studied examples of the interplay between combinatorics and commutative algebra,
wherein graph-theoretic results are employed to derive properties of monomial ideals, and
vice versa. Edge ideals were first introduced for finite simple graphs by Villarreal [66] and
extended to hypergraphs by Hà and Van Tuyl [21].

Edge and cover ideals have attracted a great deal of interest and have been heavily studied
in the last decades. We refer to [44], and [65] for a great overview, while we only scratch
the surface here and focus on the associated primes of these ideals.

Definition 2.2.1. A finite simple hypergraph is a pair H = (VH, EH) where VH =
{x1, . . . , xr}, the set of vertices of H, and EH = {E1, . . . , Es}, where the Ei are subsets
of VH of cardinality at least two, and Ei * Ej for i 6= j, the edges of H.

By the condition that every edge has at least two elements, H has no loops. The condition
that no two edges are contained in each other ensures that there are no multiple edges.
If every edge has exactly two elements, then we call H a finite simple graph which we
usually denote by G.

Definition 2.2.2. Let H = ({x1, . . . , xr}, {E1, . . . , Es}) be a finite simple hypergraph.
The edge ideal of H is the ideal

IH :=
( ∏
xi∈E

xi | E ∈ EH
)
⊆ k[x1, . . . , xr].

Remark 2.2.3. The assignment H 7→ IH gives a natural one-to-one correspondence be-
tween hypergraphs and squarefree monomial ideals (ignoring isolated vertices).

Definition 2.2.4. A vertex cover of a finite simple hypergraphH is a subset of the vertices
W ⊆ VH such that W ∩ E 6= ∅ holds for all E ∈ EH. A vertex cover is called minimal if
no proper subset is also a vertex cover.

Definition 2.2.5. Let H = ({x1, . . . , xr}, {E1, . . . , Es}) be a finite simple hypergraph.
The cover ideal of H is the ideal

JH :=
( ∏
xi∈W

xi |W is a minimal vertex cover of H
)
⊆ k[x1, . . . , xr].

Remark 2.2.6. For a hypergraph H, the two ideals IH and JH are squarefree monomial
ideals in k[x1, . . . , xr]. Thus, by Remark 2.1.15, a decomposition into prime ideals al-
ways exists. Further, they are Alexander duals of each other, that is, if IH has primary
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decomposition
IH = (xi | i ∈M1) ∩ · · · ∩ (xi | i ∈M`),

for some M1, . . . , M` ⊆ {1, . . . , r}, then

JH =
( ∏
i∈Mj

xi | j ∈ {1, . . . , `}
)
.

For the generalized Alexander duality for arbitrary monomial ideals, we refer to Chapter 5
of the textbook by Miller and Sturmfels [43]. In particular, the associated primes of the
edge and cover ideal of a hypergraph are given by

Ass(R/IH) = {(xi1 , . . . , xik) | {xi1 , . . . , xik} is a minimal vertex cover},

Ass(R/JH) = {(xi1 , . . . , xik) | {xi1 , . . . , xik} ∈ EH}.

Example 2.2.7. We consider the finite simple graph

G =
(
{x1, . . . , x4},

{
{x1, x3}, {x1, x4}, {x1, x2}, {x3, x4}

})
.

Then the edge ideal of G is IG = (x1x2, x1x3, x1x4, x3x4) and has primary decomposition

IG = (x1, x3) ∩ (x1, x4) ∩ (x2, x3, x4).

All minimal vertex covers of G are given by {x1, x3}, {x1, x4}, {x2, x3, x4}, see Figure 2.9,
hence the cover ideal of G is JG = (x1x3, x1x4, x2x3x4).

x1 x2

x3 x4

x1 x2

x3 x4

x1 x2

x3 x4

x1 x2

x3 x4

Fig. 2.9: On the left is the graph G from Example 2.2.7. The other three figure illustrate
the three minimal vertex covers of G.

We recall some terminology about colourings of graphs:

Definition 2.2.8. A k-colouring of a hypergraph H is a partition of VH = C1 ] · · · ] Ck
into k disjoint sets such that for every e ∈ EH, we have e * Ci for all 1 ≤ i ≤ k. The
chromatic number χ(H) of H is the minimal k, such that H has a k-colouring. Further,
H is called k-chromatic if χ(H) = k.

Remark 2.2.9. A graph G admits a k-colouring if there exists an assignment of k colours
to its vertices such that no two adjacent vertices share the same colour.
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Definition 2.2.10. A hypergraph H is called critically k-chromatic if H is k-chromatic
but for every v ∈ VH, we have that the hypergraph obtained from H by deleting v from
its vertices and removing all edges containing v, is `-chromatic for some ` < k.

Example 2.2.11. • The complete graph Kn, i.e., the graph with n vertices and an
edge between each two of the vertices, is critically n-chromatic, as removing any
vertex results in a graph with chromatic number equal to n− 1.

• If G is an odd cycle, i.e., VG = {x1, . . . , xn} for some odd n ≥ 3, and

EG =
{
{x1, x2}, {x2, x3}, . . . , {xn, x1}

}
,

then χ(G) = 3. However, by removing any vertex, we obtain a path, which has
chromatic number equal to two.

Fact 2.2.12 ([16, Corollary 4.6]). Let H be a finite simple hypergraph and P ⊆ V such
that the induced hypergraph HP , i.e., the hypergraph with vertex set P and edges {E ∈
EH | E ⊆ P}, is critically k-chromatic. Then

(1) P ∈ Ass(R/JkH), and

(2) P /∈ Ass(R/J `H) for any 1 ≤ ` < k.

2.2.2 The Newton polyhedron, integral closure, and reductions

Definition 2.2.13. An element f ∈ k[x1, . . . , xr] is integral over an ideal I, if there exist
k ∈ N and for 1 ≤ i ≤ k an element ci ∈ Ii such that

fk + c1f
k−1 + · · ·+ ck−1f + ck = 0.

The set of all elements that are integral over I is called the integral closure of I and is
denoted by I. An ideal is called integrally closed if I = I and normal if all powers of I
are integrally closed.

The integral closure of an ideal is again an ideal [32, Corollary 1.3.1] and if I is a monomial
ideal, then it can be described as follows:

Fact 2.2.14 (cf. [25, Theorem 1.4.2]). Let I be a monomial ideal in k[x1, . . . , xr]. Then
its integral closure I is generated by all monomials f such that there exists an n ∈ N
with fn ∈ In.

Definition 2.2.15. Let I be a monomial ideal in k[x1, . . . , xr]. The set conv{a | xa ∈
I} ⊆ Rr is called the Newton polyhedron of I, denoted by C(I).
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x

y

(0, 4)
(2, 3)

(3, 1)
(6, 0)

Fig. 2.10: The ideal (y4, x2y3, x3y, x6) is
not integrally closed as there are two grid
points, corresponding to the monomials
xy3 and x2y2, that are in C(I) but not
in I.

Fact 2.2.16 (cf. [25, Corollary 1.4.3.]). The integral closure I of a monomial ideal I is
generated by the monomials xa with a ∈ C(I).

Remark 2.2.17. By Fact 2.2.16 an ideal I is integrally closed if and only if there are no
integer points in the Newton polyhedron of I that do not correspond to monomials in I.

Definition 2.2.18. Given monomial ideals I, J ⊆ k[x1, . . . , xr], the ideal J is said to be
a (monomial) reduction of I if there exists some integer m ≥ 0 such that JIm = Im+1.
The least integer m for which this equation is fulfilled is called the reduction number of
I with respect to J and the smallest reduction number amongst all reductions J of I is
called the reduction number of I. A reduction J is called minimal monomial reduction
if every monomial ideal L which is properly contained in J is not a reduction of I.

Remark 2.2.19. If J is a reduction of I and m is greater than or equal to the reduction
number of I with respect to J , then

Im+` = ImJ ` holds for all ` ≥ 0.

Singla [58] determined the unique minimal monomial reduction of a monomial ideal I using
its Newton polyhedron:

Fact 2.2.20 ([58, Proposition 2.1]). Let I be a monomial ideal in k[x1, . . . , xr] and let
{a1}, . . . , {a`} be the 0-dimensional faces of C(I). Then J = (xa1 , . . . , xa`) is the unique
minimal monomial reduction of I.

2.3 Powers of monomial ideals

Powers of monomial ideals have been studied in many different contexts. After the pioneer-
ing work of Brodmann, proving that the associated primes of powers of an ideal Ass(R/In)
eventually become independent of n, and that the depth function depth(R/In) is constant
for n large enough [5, 4], a lot of research in that direction followed. For a great overview
of recent developments in the research of powers of monomial ideals and their asymptotic
behaviour, we refer to Carlini, Hà, Harbourne, and Van Tuyl’s lecture notes [6].
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Definition 2.3.1. Let I be an ideal and let p1, . . . , pk be the minimal primes of I. The
n-th symbolic power of I is defined to be the ideal

I(n) = Q1 ∩ · · · ∩Qk,

where Qi is the primary component of In corresponding to pi.

Remark 2.3.2. It follows from the definition that the ordinary power of an ideal is always
contained in its symbolic power, i.e., In ⊆ I(n) holds for all n ∈ N. The question of when
equality holds in known as the Containment Problem.

Fact 2.3.3 ([26, Lemma 3.1]). If I is a monomial and Q1, . . . , Qk are the primary
components corresponding to the minimal primes of I, then for every n ∈ N,

I(n) = Qn1 ∩ · · · ∩Qnk .

Fig. 2.11: The left-most staircase in the first row is of the ideal I = (xy, xz, yz). Then the
ordinary powers I2 and I3 follow. In the second row are from left to right the staircases
of the symbolic powers I(1), I(2) and I(3).

Example 2.3.4. Let I = (xy, xz, yz) ⊆ k[x, y, z]. We compute that Min(R/I) =
Ass(R/I) = {(x, y), (x, z), (y, z)} and I = (x, y) ∩ (x, z) ∩ (y, z). Thus, I is equal
to its first symbolic power I(1). However,

I2 = (x, y)2 ∩ (x, z)2 ∩ (y, z)2 ∩ (x2, y2, z2) = I(2) ∩ (x2, y2, z2),

see Figure 2.11.

Remark 2.3.5. Let G be a graph and IG its edge ideal. Sullivant [61, Corollary 3.12]
established how to obtain the second symbolic power of IG in terms of edges and triangles

23



in G. Further, he gave a characterization of perfect graphs in terms of the symbolic powers
of edge ideals, see [61, Theorem 3.10].

There are several algebraic structures that frequently appear in the study of powers of
monomial ideals. We recall three fundamental ones: the Rees algebra, the associated
graded ring, and the fibre ring of a monomial ideal. These structures are closely related
and provide useful tools for organizing information, carrying out computations, and under-
standing the properties of ideal powers. To study powers of a monomial ideal, it is crucial
to understand the relations among its minimal generators.

Definition 2.3.6. A syzygy or linear relation of g1, . . . , gs ∈ k[x1, . . . , xr] is a tuple
(f1, . . . , fs) ∈ k[x1, . . . , xr]s such that

f1g1 + f2g2 + · · ·+ fsgs = 0.

Definition 2.3.7. The Rees algebra of a monomial ideal I is defined as

R(I) :=
⊕
n≥0

Intn ⊆ R[t],

where t is a new variable.

If the minimal generators of I are {g1 . . . , gs} then R(I) = R[g1t, . . . , gst]. There is a
natural homogeneous epimorphism of R-algebras

Φ: R[w1, . . . , ws]→ R(I),

whereR[w1, . . . , ws] is the polynomial ring overR in variables w1, . . . , ws, defined by

Φ(wi) = git for i = 1, . . . , s.

Thus, R(I) ' R[w1, . . . , ws]/ ker Φ. The kernel of Φ is called the defining ideal of R(I).
Often, the defining ideal is considered to study Rees algebras. It contains the relations
obtained from the syzygies of g1, . . . , gs, however, determining all defining relations is a
difficult task in general.

Example 2.3.8. We consider the ideal I = (x2, xy, y2) in R = k[x, y]. The Rees algebra
of I is R[x2t, xyt, y2t] ⊆ k[x, y][t]. We compute all syzygies of the generators of I:

x(xy)− y(x2) = 0,

y(xy)− x(y2) = 0.

Further, we obtain the relation (xy)2−(x2)(y2) = 0. In this case, these are all the defining
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relations and we get the isomorphism

R(I) ' R[w1, w2, w2]
(xw2 − yw1, yw2 − xw3, w2

2 − w1w3)
.

Definition 2.3.9. The associated graded ring of I is

gr(I) :=
⊕
n≥0

In/In+1 ' R(I)/IR(I),

where the multiplication of two homogeneous elements a+In+1 ∈ In/In+1 and b+Im+1 ∈
Im/Im+1 is

(a+ In+1)(b+ Im+1) = ab+ Im+n+1 ∈ Im+n/Im+n+1.

There is a strong relation between the associated graded ring of an ideal and the associated
primes of the power of that ideal. Let mR(I) be the ideal of R(I) generated by m. The
0-th local cohomology module

H0
mR(I)(gr(I)) =

{
g ∈ gr(I) | (mR(I))ng = 0 for some n ∈ N

}
can be written as a direct sum (cf. [10, Lemma 2.1])

H0
mR(I)(gr(I)) =

⊕
n≥0

H0
m(In/In+1).

For monomial ideals, the equality Ass(In/In+1) = Ass(R/In+1) holds for all n ≥ 0, cf. [6,
Lemma 2.5]. Combined with the above, this yields:

Fact 2.3.10. The maximal ideal m is associated to In+1 if and only if H0
mR(I)

(
gr(I)

)
n
6= 0.

In Chapter 6 we give an upper bound for the degrees of the homogeneous generators of
H0

mR(I)(gr(I)) which we then use to study the stability of the associated primes of the
powers of I.

Fact 2.3.11 ([56, Proposition 2.4]). Let R(I)+ be the positive part of the R(I). Then

Ass(R/In) ⊆ Ass(R/In+1)

holds for all n > sup
{
n | H0

R(I)+

(
gr(I)

)
n
6= 0

}
.

Again, there is a useful description of the homogenous components, this time using the
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Ratliff-Rush closure of an ideal, which is defined as

Ĩ =
⋃
m≥1

Im+1 : Im.

For all n > 0 we then haveH0
R(I)+

(gr(I))n−1 ' (Ĩn∩In−1)/In, cf. [31, Lemma 3.6].

Intuitively, Ĩ consists of all elements that “behave like” elements of I at high powers—after
multiplying by a high enough power of I, you land inside the next power. The Ratliff-Rush
closure was first introduced by Ratliff and Rush [50], where they proved that I is a reduction
of Ĩ and Ĩn = In holds for all n� 0.

The last structure that we want to introduce in this section is the fibre ring (or fibre cone)
of an ideal. It was initially introduced in the context of blowup algebras. Geometrically,
the fibre ring corresponds to the fibre of the blowup at the closed point corresponding
to m.

Definition 2.3.12. The k-algebra F(I) = R(I)/mR(I) is called the fibre ring and its
Krull dimension the analytic spread of I, denoted by `(I).

The fibre ring captures the asymptotic growth of the minimal generators of I and its
Hilbert function H(F(I), k) = dimk I

k/mIk counts the number of minimal generators of
the powers of I. Also its dimension `(I) is a fundamental invariant that provides insight
into the long-term behaviour of the ideal.

Fact 2.3.13 ([32, Corollary 8.2.5]). Let J be a reduction of I. Then the minimum number
of generators of J is at least the analytic spread of I.

Fact 2.3.14 ([28, Corollary 3.5]). If I ⊆ k[x1, . . . , xr] is a so-called polymatroidal ideal
(the exponents of the minimal generators represent the basis of a discrete polymatroid,
cf. [28] for a definition), then `(I) = r − limk→∞ depth(R/Ik).

Remark 2.3.15. Let G(I) = {g1, . . . , gs} and ϕ : k[t1, . . . , ts]→ F(I) be the epimorphism
between the polynomial ring k[t1, . . . , ts] and F(I) defined by ϕ(ti) = gi + mI. The
generators of each homogeneous component Ik/mIk of the fibre ring correspond to the
minimal generators G(Ik). As all elements of G(Ik) are products of elements of G(I),
the fibre ring is generated in degree one over the residue field F(I)0 = R/m. Thus, ϕ is
surjective and

F(I) ' k[t1, . . . , ts]/ kerϕ.

The ideal kerϕ is called the defining ideal of the fibre ring.

In general, finding the defining ideal of F(I) can be challenging. In [27] and [29], the
authors determined the defining ideals of the fibre rings of special classes of bivariate
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monomial ideals.

2.3.1 Minimal generators of powers of monomial ideals

Given the minimal generators of a monomial ideal, the natural question whether we can
determine the minimal generators of its powers, arises. Specifically, let I be a monomial
ideal minimally generated by g1, . . . , gs. Then In is generated by all n-fold products of
these generators, that is, by monomials of the form

{gα1
1 · · · g

αs
s | αi ∈ N0, α1 + · · ·+ αs = n}.

To determine G(In), we must identify those monomials among these elements that are
minimal with respect to divisibility.

As noted in Remark 2.3.15, the fibre ring F(I) of a monomial ideal I—and in partic-
ular its defining ideal—contain key information about the minimal generators of I. Al-
though determining the defining ideal is generally a difficult task, the Hilbert function
H(F(I), n) = dimk I

n/mIn provides a more accessible invariant: it counts the number
of minimal generators of In and eventually agrees with a polynomial in n (cf. [25, Theo-
rem 6.1.3]).

As a result, much of the existing literature concentrates on understanding the behaviour
of µ(In), rather than characterizing the generators themselves. For any monomial ideal I
and any n ∈ N, the inequality

µ(In) ≤ n · µ(I)

always holds. Equality, however, occurs only in exceptional cases—namely, when there are
no relations among the minimal generators of I.

Contrary to what one might expect, Eliahou, Herzog, and Saem [13] provide examples of
bivariate monomial ideals that do not satisfy the inequality µ(I2) ≥ µ(I):

Fact 2.3.16 ([13, Theorem 1.1]). For every integer m ≥ 5, there exists a monomial ideal I
in k[x, y] such that µ(I) = m and µ(I2) = 9.

More examples of monomial ideals whose minimal generators exhibit unexpected behavior
in low powers can be found in [1, 19].

While the unexpected behaviour of small powers is fascinating, our attention in Chapter 3
shifts to the behavior of minimal generators in large powers of bivariate monomial ideals.
The asymptotic properties of the Hilbert function suggest that, beyond a certain point, the
structure of G(In) stabilizes in a predictable way. In particular, we show that cancellations
among the n-fold products of the generators of I eventually follow a regular pattern.
Indeed, we provide an explicit description of the sets G(In) of minimal generators of In

for all n larger than a certain threshold.
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2.3.2 Associated primes of powers of monomial ideals

While the prime factors of an integer n ∈ Z are the same as the prime factors of any
power nk of n, this statement cannot be expanded to associated primes in general. We
begin this section with an example to motivate the following question:

Question 2.3.17. Given an ideal I, how does the set Ass(R/In) change as n increases?

Example 2.3.18. I = (xy, xz, yz) ⊆ k[x, y, z]. Then

Ass(R/I) = Min(R/I) = {(x, y), (x, z), (y, z)}

and computations suggest that for all n ≥ 2

Ass(R/In) = Min(R/I) ∪ {(x, y, z)}.

The following fact gives a partial answer to Question 2.3.17, namely that the minimal
primes remain unchanged when taking powers.

Fact 2.3.19. Let I be a monomial ideal and n ∈ N. Then Min(R/I) = Min(R/In).

Hence, the question reduces to understanding how the embedded primes of an ideal evolve.
The behaviour of the sequence (Ass(R/In))n∈N as n varies has been studied over the past
few decades for various classes of ideals. In what follows, we introduce the necessary
terminology and provide a brief overview of some classes of ideals whose associated primes
have been the subject of such investigations.

Definition 2.3.20. An ideal I is called normally torsion-free if Ass(R/Ik) ⊆ Ass(R/I)
holds for all k ∈ N.

If I is an ideal such that Ass(R/I) = Min(R/I), i.e., I has no embedded primes, then I
is normally torsion-free if and only if every power of I equals its symbolic power, cf. [67,
Proposition 3.3.26].

Definition 2.3.21. An ideal I is said to have the persistence property if Ass(R/In) ⊆
Ass(R/In+1) holds for all n ∈ N. A prime ideal p is called persistent if p ∈ Ass(R/In)
implies that p ∈ Ass(R/In+1).

Examples of classes of ideals that satisfy the persistence property include edge ideals of
simple undirected graphs [39, Theorem 2.15], cover ideals of perfect graphs [16, Corol-
lary 5.11], and ideals whose powers are all integrally closed [49, Theorem 2.4].

However, the persistence property does not hold in general, not even for squarefree mono-
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mial ideals [33, Theorem 11]. In fact, Weinstein and Swanson [69, Theorem 3.9] con-
structed families of monomial ideals whose sets of associated primes decrease with n.
There are also known examples where (Ass(R/In))n∈N is not even monotonic (cf. [33]).
For general monomial ideals, little is known about how Ass(R/In) changes with n.

Despite that, the asymptotic behaviour of the sequence of associated primes of powers of
an ideal is well understood: In 1979, Brodmann gave an answer for Question 2.3.17 for
n� 0.

Theorem 2.3.22 ([5]). For sufficiently large n, the set Ass(R/In) is independent of n.

Definition 2.3.23. The smallest integer stab(I) such that Ass(R/In) = Ass(R/Istab(I))
for all n ≥ stab(I) is called the stability index of I. The set Ass(R/Istab(I)) is called the
stable set of I, and is sometimes also denoted by Ass(R/I∞) or Ass∞(R/I).

Not only does the set of associated primes of powers of an ideal stabilise, but further,
Brodmann [4] also proved that the depth function of an ideal stabilises, i.e., for n� 0 then
the function depth(R/In) is constant. The smallest such n after which the depth function
of an ideal I is constant is called the index of depth stability of I, denoted by dstab(I).
While neither stab(I) is an upper bound for dstab(I) nor the other way around, those two
invariants are connected in a way by the relation stab(I) ≤ maxM⊆supp(I) dstab(IM ) ([28,
Proposition 2.1(c)]).

We now list a few special classes of ideals for which the stability index, or an explicit bound
on it, is known: If I is a transversal polymatroidal ideal, i.e., a product of monomial prime
ideals, then stab(I) = 1 ([28, Corollary 4.6]). Let G be a connected, non-bipartite graph
with r vertices, σ vertices of degree one, and the smallest odd cycle of G has length 2k+1,
then stab(I) ≤ r − k − σ ([8, Corollary 4.3]). Let J be the cover ideal of a finite simple
hypergraph H. Then the stability index of I is at least the chromatic number of H ([16,
Corollary 4.9]).

Despite numerous results concerning specific classes of monomial ideals, relatively little is
known about the stability index of general monomial ideals. In 2006, Hoa [31] provided a
bound on the stability index applicable to arbitrary monomial ideals:

Fact 2.3.24 ([31, Theorem 3.1]). Let I be a monomial ideal in k[x1, . . . , xr] with µ(I) = s

and let d be the maximal total degree appearing in the minimal generators of I. Then

stab(I) ≤ max
{
d(rs+ s+ d)(

√
r)r+1(

√
2d)(r+1)(s−1), s(s+ r)4sr+2d2(2d2)s2−s+1

}
.

In Chapter 6, we discuss this bound in more detail and present refinements. In Chapter 5,
we bound the stability index of monomial ideals in three variables.
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3. Minimal generating sets of large
powers of bivariate monomial

ideals1

When studying powers of a monomial ideal, its minimal generators play a crucial role.
However, it is far from trivial to determine which of the n-fold products of (minimal)
generators of I are minimal generators of In and very little is known—even for monomial
ideals and even in the bivariate case.

The existing research mostly focuses on the number µ(In) of minimal generators of In

rather than the actual set of minimal generators. Indeed, the emphasis lies on small powers,
as µ(In) is eventually described by a polynomial—the Hilbert polynomial of the fibre ring
of I. Eliahou, Herzog, and Saem [13] studied the question how small µ(I2) can be in terms
of µ(I) for a bivariate monomial ideal I. They construct examples where µ(I) > µ(I2),
contrary to what one might have expected. For any given n ∈ N, Abdolmaleki and
Kumashiro [1] construct a bivariate monomial ideal I such that µ(I) > µ(I2) > · · · >
µ(In). Gasanova [19] shows that for every d there exists a monomial ideal I in any number
of variables such that the inequality µ(I) > µ(In) holds for any n ≤ d.

While the unexpected behaviour of small powers is fascinating, our focus is set on large n.
The asymptotic behaviour of the Hilbert function gives reason to suspect that eventually
the actual set of minimal generators of In behaves well, in the sense that cancellations
among the n-fold products of generators of I can be predicted.

For bivariate monomial ideals we describe the sets G(In) of minimal generators of In

explicitly for all n larger than a certain threshold. Specifically, we show that there exists s0

such that for all n ≥ s ≥ s0 every segment of the staircase diagram—and consequently,
the set of minimal generators— of In is already determined by the staircase diagram of Is.
In other words, the staircase diagram of In can be build by aligning the staircase diagrams
of certain subideals of Is. We prove that

s0 ≤ µ(I)(d2 − 1) + 1,

where d is a constant depending on the degrees of the minimal generators of I which is at
most the maximal x- or y-degree appearing in G(I).

This chapter is structured as follows: Section 3.1 summarizes the necessary background
about the integral closure of bivariate monomial ideals. In Section 3.2, we establish that the

1This chapter is based on the submitted preprint [48] and is joint work with Roswitha Rissner.
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corners of the Newton polyhedron of I play a special role among the minimal generators of
powers of I. We call them persistent generators (Definition 3.2.1), as their powers remain
minimal generators of all powers of I. The main result of this section is Theorem 3.2.14
which allows us to decompose powers of I into a sum of ideals:

ID+` =
k∑
i=1

(gi, gi+1)`ID,

where g1, . . . , gk+1 are the persistent generators of I, ordered in descending y-degree.
We skip the details on how to calculate D here but note that D ≤ µ(I) · d, where d is
a constant depending on the degrees of the minimal generators of I and is at most the
maximal x- or y-degree appearing in G(I). We recover the fact [58, Proposition 2.1] that
the ideal generated by the persistent generators is a reduction of I as a direct consequence
of this theorem. In addition, it yields a bound for its reduction number, see Remark 3.2.12.
Sums of that form for increasing ` are further studied in Section 3.3. We first describe the
minimal generators of each summand (gi, gi+1)`ID separately (Theorem 3.3.4) and then
add them up again (Theorem 3.3.16). Section 3.4 combines the results of Section 3.2 and
Section 3.3 to the main results of this chapter (Theorem 3.4.6 and Corollary 3.4.11). We
provide an implementation to compute Is+` in SageMath2. We conclude the chapter with
examples and runtime measurements in practice.

3.1 Integral closures of bivariate monomial ideals

For the basic definitions and facts about integral closures of monomial ideals, we refer to
Section 2.2.2 in the preliminaries.

Throughout, we assume that I is not a principal ideal. Moreover, as developed in Sec-
tion 2.1.5, when convenient for notation, we factor out the greatest common divisor of
all monomials in I, and carry out computations with the shifted ideal I = I : gcd(I),
see Definition 2.1.46.

a

b

g

Fig. 3.1: On the left, we illustrate the integral closure of the ideal (xa, yb). The integral
closure includes all lattice points lying on or above the line segment connecting (a, 0) and
(0, b), in addition to those already contained in the ideal. On the right, we present a
visualisation of Fact 3.1.1(2).

2The program code associated with this chapter is available as ancillary file from the arXiv page of [48].
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Fact 3.1.1 (cf. [32, Proposition 1.4.6]). For a, b ∈ N0 and a monomial g ∈ k[x, y] the
following are equivalent:

(1) xuyv ∈ (xa, yb),

(2) g · xuyv ∈ (g · xa, g · yb),

(3) u
a + v

b ≥ 1.

Moreover, ua + v
b = 1 implies xuyv ∈ G

(
(xa, yb)

)
.

Definition 3.1.2. Let f , g, h ∈ k[x, y] be monomials such that f /∈ (g, h). We say that f
lies between g and h if

min{degx g,degx h} < degx f and

min{degy g,degy h} < degy f.

Remark 3.1.3. Let f be a monomial that lies between two other monomials, g and h in
k[x, y]. Geometrically, Fact 3.1.1 says that f is in the integral closure of (g, h) if and only
if it lies above the line passing through g and h, see Figure 3.1. If f lies precisely on said
line, then f is a minimal generator of the integral closure of (g, h).

Definition 3.1.4. Let I ⊆ k[x, y] be a monomial ideal. We define

distx I := max{degx g | g ∈ G(I )} and

disty I := max{degy g | g ∈ G(I )}.

We use dist• as a placeholder for either distx or disty, with the choice remaining fixed
within a given context. For a set of monomials G ⊆ k[x, y], we define dist•G as dist• of
the ideal generated by G.

Remark 3.1.5. We observe how dist behaves well additively and how dist• I can be com-
puted from the minimal generators of the ideal I.

(1) Let f , g, and h be monomials such that f lies between g and h. Then dist•(h, g)
can be written as

dist•(h, g) = dist•(h, f) + dist•(f, g).

(2) For a monomial ideal I, the following identity holds:

dist• I = max{deg• g | g ∈ G(I)} −min{deg• g | g ∈ G(I)}.

Note that if I is an anchored ideal, then the minimal x-degree and the minimal
y-degree among the elements of G(I) are both zero. Consequently min{deg• g | g ∈
G(I)} = 0.
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Definition 3.1.6. Let g and h be two monomials. We define the non-standard grading
degg,h additively by setting

degg,h(x) := disty(g, h) and

degg,h(y) := distx(g, h).

Further, we set dg,h := degg,h(g) = degg,h(h).

Remark 3.1.7. (1) For a, b ∈ N, the identity dxa,yb = ab holds.

(2) Let g and h be two monomials, and let xαyβ := gcd(g, h). Then

degg,h(xuyv) ≥ dg,h ⇐⇒ u− α
distx(g, h) + v − β

disty(g, h) ≥ 1,

where equality holds on both sides simultaneously. Note that here xuyv need not lie
between g and h.

(3) Geometrically, the equivalence in (2) states degg,h(xuyv) ≥ dg,h if and only if xuyv

lies on or above the line passing through g and h. Equality holds precisely when
xuyv lies on the line.

Lemma 3.1.8. Let f , g, h ∈ k[x, y] be monomials such that f lies between g and h. Then
the following assertions are equivalent:

(1) f ∈ (g, h),

(2) degg,h(f) ≥ dg,h,

(3) degf,h(g) ≤ df,h,

(4) degg,f (h) ≤ dg,f .

Moreover, degg,h(f) = dg,h implies f ∈ G
(
(g, h)

)
.

Proof. (1) ⇔ (2) follows from Remark 3.1.7(1) and Fact 3.1.1. (2) ⇔ (3) and (2) ⇔ (4)
follow from Remark 3.1.7(3).

3.2 The role of persistent generators

Definition 3.2.1. Let I be a monomial ideal in k[x, y]. We say f ∈ G(I) is a persistent
generator of I if f /∈ (g, h) for all monomials g, h ∈ I \ {f}. We denote the set of all
persistent generators of I by P (I), and define N(I) := G(I) \ P (I).

Remark 3.2.2. (1) The minimal generators of I with maximal x-degree and y-degree,
respectively, are persistent.

(2) The persistent generators of I are the corners of the Newton polyhedron of I.
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(3) If f ∈ P (I), then fn ∈ G(In) for any n ∈ N.

By Fact 2.2.14, a monomial f is an element of (g, h) if and only if fn ∈ (g, h)n for some
n. In the next proposition, we explicitly determine such an n. In addition, we show that if
f /∈ (g, h), an analogous relation holds among the three polynomials.

Proposition 3.2.3. Let g, h, f ∈ k[x, y] with f lying between g and h, and define

α := dist•(f, h) and n := dist•(g, h).

Then the following assertions hold:

(1) If f ∈ (g, h) then gαhn−α | fn and hence fn ∈ (g, h)n.

(2) If f /∈ (g, h) then fn | gαhn−α and hence gαhn−α ∈ (f)n.

Moreover, degg,h(f) = dg,h if and only if there exist n ∈ N and 0 ≤ k ≤ n such that
gkhn−k = fn.

Proof. Recall from Remark 3.1.5(1) that n− α = dist•(g, f). Since f lies between g and
h it follows that all three monomials are divisible by gcd(g, h). Therefore, we can assume
that g = yb, h = xa and f = xuyv with 0 < u < a and 0 < v < b. Note that

degx
(
xauyb(a−u)) = au = degx(fa).

By Fact 3.1.1, f ∈ I if and only if ua + v
b ≥ 1 which, in turn, is equivalent to

degy
(
xauyb(a−u)) = b(a− u) ≤ av = degy(fa).

This implies (1) and (2) in the case that dist• = distx. The respective assertions with
dist• = disty are proven analogously.

For the last assertion note that the right-hand side holds if and only if

ak = un and b(n− k) = vn,

which is equivalent to u
a + v

b = 1. The latter is equivalent to the left-hand side, cf. Re-
mark 3.1.7(2).

Remark 3.2.4. Note that in the second assertion of Proposition 3.2.3, the assumption
that f /∈ (g, h) implies that the equality degg,h(f) = dg,h cannot hold. In particular, we
have that fn 6= gαhn−α.

Remark 3.2.5. The bound min{distx(g, h),disty(g, h)} for n in Proposition 3.2.3 is sharp,
see Example 3.2.6 below.
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Example 3.2.6. Let g = y5 and h = x6. Then

min{distx(g, h),disty(g, h)} = 5.

(1) The monomial f = x5y is an element of (g, h) and one can easily verify that fn /∈
(x6, y5)n holds for n ≤ 4.

(2) The monomial f = xy4 lies between g and h and f /∈ (g, h). A straight-forward
computation shows that for all n ∈ {1, 2, 3, 4} there exist no α, β ∈ N such that
α+ β = n, and gαhβ ∈ (f)n.

Definition 3.2.7. Let I be a monomial ideal in k[x, y]. We say that f ∈ G(I) is weakly
persistent, if fn ∈ G(In) holds for all n ∈ N. We denote by P ∗(I) the set of all weakly
persistent generators of I.

Remark 3.2.8. Clearly, the inclusion P (I) ⊆ P ∗(I) holds. Let g1, . . . , gk+1 be the
persistent generators of I, ordered in descending y-degree. Then Proposition 3.2.3 implies
that

P ∗(I) = P (I) ]
{
f ∈ N(I) | deggi,gi+1(f) = dgi,gi+1 for some i ∈ [k]

}
.

Notation 3.2.9. Let F = {g1, . . . , gk+1} be a set of monomials such that g1, . . . , gk+1

are ordered in descending y-degree. We set

δF := max
1≤i≤k

{
min{distx(gi, gi+1), disty(gi, gi+1)}

}
− 1.

Corollary 3.2.10. Let I be a monomial ideal in k[x, y] and let P (I) ⊆ P ⊆ P ∗(I) such
that P = {g1, . . . , gk+1} and g1, . . . , gk+1 are ordered in descending y-degree. For every
n ≥ δP and f ∈ G(I) \ P there exist 1 ≤ i ≤ k and a ≤ δP such that

fn ∈ (gi, gi+1)n−a · fa.

Proof. Note that G(I) \ P ⊆ N(I). By definition, there exist g, h ∈ I \ {f} with
f ∈ (g, h). We can choose g and h to be in P such that no other element of P lies
between them, meaning g = gi and h = gi+1 for some 1 ≤ i ≤ k. We write d :=
min{distx(gi, gi+1),disty(gi, gi+1)}. Then n ≥ δP ≥ d − 1, so we can write n = qd + a

with q ∈ N0 and a ≤ d− 1. It follows from Proposition 3.2.3(1) that

fn = f qd+a ∈ (gi, gi+1)qd · fa.

Corollary 3.2.10 immediately yields:
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Corollary 3.2.11. Let I ⊆ k[x, y] be a monomial ideal, n ∈ N, and let P (I) ⊆ P ⊆ P ∗(I).
Then every minimal generator of In is of the form

∏
g∈P

g`g ·
∏

f∈G(I)\P
fkf ,

where 0 ≤ kf ≤ δP for all f ∈ G(I) \ P and ∑g `g +
∑
f kf = n.

Remark 3.2.12. Singla [58, Proposition 2.1] established that the ideal a, generated by the
persistent generators P (I), is a reduction of I. That is, there exists δ ∈ N such that for
all n ∈ N0,

Iδ+n = anIδ.

Singla’s result applies to monomial ideals in any number of variables. Through Corol-
lary 3.2.11 we recover Singlas’s result for the bivariate case and further show that the
reduction number of I with respect to a is at most |G(I) \ P (I)| · δP (I).

With Proposition 3.2.3(2), we further refine the statement of Corollary 3.2.11 in Theo-
rem 3.2.14 below.

Notation 3.2.13. For a monomial ideal I and P (I) ⊆ P ⊆ P ∗(I). We set

dP :=

min{distx I, disty I} − 2, if |P | > 2,

0, if |P | = 2.

Note that |P | > 2 implies that min{distx I, disty I} ≥ 2.

Theorem 3.2.14. Let I be a monomial ideal in k[x, y] and let P (I) ⊆ P ⊆ P ∗(I) such
that P = {g1, . . . , gk+1} and g1, . . . , gk+1 are ordered in descending y-degree. Further,
let D ≥ (µ(I)− |P |) · δP + |P | · dP .

Then for all ` ≥ 0,

ID+` =
k∑
i=1

(gi, gi+1)`ID.

Proof. The inclusion “⊇” is trivial. We prove “⊆”. Write N := G(I) \ P . By Corol-
lary 3.2.11 we can write ID+` = Iδ+n = anIδ where δ := |N | · δP , and n := (k+ 1)dP + `,
and a is the ideal generated by P . Thus, every minimal generator F of Iδ+n is of the form
F = g · f , where g is a product of n elements in P and f ∈ Iδ.

Claim. There exists 1 ≤ i ≤ k such that

g ∈ (gi, gi+1)`a(k+1)dP .

We write g = gn1
1 · · · g

nk
k+1, where ni ∈ N0 with

∑
i ni = n. The assertion of the claim

holds trivially in the following cases:
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(1) at most one ni > dP ,

(2) nj , nj+1 > dP for some 1 ≤ j ≤ k and ni ≤ dP for all i /∈ {j, j + 1}.

Otherwise, we take a := min{i | ni > dP } and b := max{i | ni > dP }. Note that
a + 1 < b. The following argument may be repeated as needed; in every step either a
increases strictly or b decreases strictly. For readability, we may therefore assume without
loss of generality that a = 1 and b = k + 1 at the outset. By Proposition 3.2.3(2), we
then have

g
dist•(g1,gk+1)
2 | gdist•(g2,gk+1)

1 g
dist•(g1,g2)
k+1 .

Since g is a minimal generator, equality must hold, so

g = g
n1−dist•(g2,gk+1)
1 g

n2+dist•(g1,gk+1)
2 gn3

3 · · · g
nk
k g

nk+1−dist•(g1,g2)
k+1 .

We iteratively apply Proposition 3.2.3(2) until at least one of the exponents of g1 and
g2 is less than or equal to dP . At this stage, we redefine a′ := min{i | ni > dP } and
b′ := max{i | ni > dP }. Now a′ > a or b′ < b must hold. Hence, by repeating this
argument from the top we eventually must reach one of the trivial cases (1) or (2), where
the claim follows immediately.

Remark 3.2.15. The set P may be chosen closer to either P (I) or P ∗(I), depending on
the specific context in which Theorem 3.2.14 is applied. For instance, if the objective is to
minimize (µ(I) − |P |) · δP + |P | · dP , then P can be selected based on the values of dP
and δP .

3.3 Ideals with regular staircase factors

Fig. 3.2

In this section, we study the minimal generators of sums of
ideals of the form (g, h)nJ , where g and h are monomials,
and J is a (fixed) anchored monomial ideal in k[x, y]. The
main result of this section is Theorem 3.3.16.

We begin with the special case (xu, yv)nJ for u, v ∈ N. By
drawing its exponents in the xy-plane, the ideal (xu, yv)n

looks like a “regular staircase” in the sense that all n steps
in its staircase are of the same size. The minimal generators
of the product (xu, yu)nJ are of the form xu(n−i)yvif with f ∈ G(J). In general, not all
elements of this form are minimal generators as divisibility relations may occur among them.
In Figure 3.2 we visualize the potential cancellations among the minimal generators in the
product (xu, yv)nJ . Even though Figure 3.2 does not depict the actual generators of the
ideal J , the figure suggests that the “overlaps” of the shifted copies of J result in a repeating
pattern with increasing n. We formalize this “pattern repetition” in Theorem 3.3.4 below.
Before that, we establish in Lemma 3.3.2 that partitioning the elements of (xu, yv)nJ
based on their y-degrees reveals divisibilities by certain powers of xu or yv. Figure 3.3
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visualizes this partition.

Remark 3.3.1. The choice of partitioning by y-degree is arbitrary; all results of this section
remain valid if we instead partition by x-degree, simply by interchanging roles of x and y.

Lemma 3.3.2. Let u, v ∈ N and J ⊆ k[x, y] be an anchored monomial ideal. Moreover,
let r ≥

⌈
disty J
v

⌉
and n ≥ r. For r ≤ j ≤ n, we set

Uj =
{
F ∈ (xu, yv)nJ

∣∣∣ degy F ≥ jv
}
and

Lj =
{
F ∈ (xu, yv)nJ

∣∣∣ degy F < jv
}
.

Then, for r ≤ j ≤ n,

Uj ⊆ yv(j−r) · (xu, yv)n−(j−r)J, and Lj ⊆ xu(n−j) · (xu, yv)jJ.

In particular, for r ≤ j ≤ n− 1,

Uj ∩ Lj+1 = xu(n−(j+1))yv(j−r) ·
{
f ∈ (xu, yv)r+1J

∣∣∣ rv ≤ degy f < (r + 1)v
}
.

j = 3

j = 4

j = 5

Fig. 3.3: We partition the ideal (xu, yv)nJ into sections based on the y-degree, as indi-
cated by the dashed horizontal lines. Observe that the upper left corner of each rectangle
corresponds to a monomial in (xu, yv)nJ (we assumed J to be anchored). This bounds
the x-degree in each y-section; see Remark 3.3.3.

Proof. For the first two inclusions, we write F = xu(n−i)yvif̃ with 0 ≤ i ≤ n and f̃ ∈ J
and separate into two cases.

Uj : Note that degy f̃ ≤ disty J . Hence, degy F ≥ jv implies i ≥ j − disty J
v ≥ j − r ≥ 0,

that is, F = yv(j−r) · f with f = xu(n−i)yv(i−(j−r))f̃ ∈ (xu, yv)n−(j−r)J .

Lj : The condition degy F < jv implies i ≤ j and n − i ≥ n − j ≥ 0. Therefore,
F = xu(n−j) · f with f = xu(j−i)yvif̃ ∈ (xu, yv)jJ .

Finally, for the last equality, “⊆” follows from the above while “⊇” is obvious.
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Remark 3.3.3. As preparation for later arguments, we provide a bound on the x-degrees
of elements in Uj : Let J be an anchored monomial ideal with b := disty J . With the
notation of Lemma 3.3.2, if n > j − r and j ≥ r, then H := xu(n−j+r)yv(j−r)yb is an
element of (xu, yv)nJ satisfying

degyH = v(j − r) + b ≤ jv and degxH = (n− j + r)u,

cf. Figure 3.3. Consequently, for n > j − r,

f ∈ Uj ∩ G((xu, yv)nJ) =⇒ degx f ≤ (n+ r − j)u,

and equality can only hold if H = f . In particular, if there exists f ∈ Uj ∩ G((xu, yv)nJ)
with degx f = (n + r − j)u, then H = f ∈ Uj which, considering the y-degree of H,
further implies r = b

v and degy(f) = disty(J).

Theorem 3.3.4. Let u, v ∈ N and J ⊆ k[x, y] be an anchored monomial ideal.

Then, for all r ≥
⌈

disty J
v

⌉
and ` ∈ N0,

G
(
(xu, yv)r+1+`J

)
= yv`L ]

⊎̀
j=1

xujyv(`−j)M ] xu`R,

where

L =
{
f ∈ G

(
(xu, yv)r+1J

) ∣∣∣ degy f ≥ rv
}
,

M =
{
f ∈ G

(
(xu, yv)r+1J

) ∣∣∣ rv ≤ degy f < (r + 1)v
}
, and

R =
{
f ∈ G

(
(xu, yv)r+1J

) ∣∣∣ degy f < rv
}
.

In particular,
µ
(
(xu, yv)r+1+`J

)
= µ

(
(xu, yv)r+1J

)
+ ` · |M |.

Proof. Note that the count is an immediate consequence of the first assertion.

With the notation of Lemma 3.3.2, we have

(xu, yv)r+1+`J = Lr ]
r+`−1⊎
j=r

(Uj ∩ Lj+1) ] Ur+`. (3.3.1)

We claim that the following three statements hold:

(1) Ur+` ∩ G
(
(xu, yv)r+1+`J

)
= yv` · L,

(2) Lr ∩ G
(
(xu, yv)r+1+`J

)
= xu` ·R, and
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(3) for all r ≤ j ≤ r + `− 1,

(Uj ∩ Lj+1) ∩ G
(
(xu, yv)r+1+`J

)
= xu(r+`−j)yv(j−r) ·M.

If the claim holds, then the assertion follows from (3.3.1) since, arranging the sets in reverse
order,

G
(
(xu, yv)r+1+`J

)
∩
r+`−1⊎
j=r

(Uj ∩ Lj+1) =
⊎̀
j=1

xujyv(`−j) ·M.

In all three cases, the inequalities that the y-degrees must satisfy, are the same on both
sides of the equality. Moreover, the inclusions “⊆” all hold due to Lemma 3.3.2 and the
fact that a generator g · f of (xu, yv)r+1+`J with g ∈ (xu, yv)r+1+` and f ∈ J can only
be minimal, provided that f is a minimal generator of J (the same holds for g but is not
relevant here).

For the reverse inclusions, it is in all three cases left to show that every element of the set
on the right is a minimal generator of (xu, yv)r+1+`J . To do so, take

H = xu(r+1+`−i)yvih ∈ (xu, yv)r+1+`J

with h ∈ J and 0 ≤ i ≤ `+ r + 1.

(1) Let F = yv`f with f ∈ G
(
(xu, yv)r+1J

)
and degy f ≥ rv. Then degx F = degx f ≤

(r+1)u, cf. Remark 3.3.3. If H divides F , then degxH ≤ degx F implies (r+1+`−i)u ≤
(r + 1)u, that is, i ≥ `. We cancel out yv` to conclude that

xu(r+1+`−i)yv(i−`)h | f,

which, since f ∈ G
(
(xu, yv)r+1J

)
, implies that H = F .

(2) Let F = xu`f with f ∈ G
(
(xu, yv)r+1J

)
and degy f < rv. Again, assume that

H divides F . Then degyH = iv + degy h < rv and hence i < r. This implies that
r+ `+ 1− i > `+ 1, thus we can cancel out xu` on both sides and end up with the same
conclusion as in (1).

(3) Let r ≤ j ≤ r + ` − 1 and F = xu(r+`−j)yv(j−r)f with f ∈ M . Then f ∈ L, thus
by (1), yv(j−r)f is a minimal generator of (xu, yv)j+1J . As above, if H | F , then the
y-degree of H must be less or equal than the y-degree of F , and therefore i ≤ j+ 1. This
implies r + `+ 1− i ≥ r + `− j, so we can cancel out xu(r+`−j) which leaves us with

xu(j−i+1)yvih | yv(j−r)f.

As yv(j−r)f is minimal in (xu, yv)j+1J , we get equality.

Let us unravel Theorem 3.3.4 in an example.
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Example 3.3.5. Let u = 3, v = 4, and

J = (y10, x2y7, x3y5, x5y4, x7y2, x9)

as depicted in the (grey) rectangle in Figure 3.4. We choose r = 3, which is the minimal
possible choice of r in Theorem 3.3.4. The lower two dashed lines in the figure mark the
areas where the y-degree is in between rv and (r + 1)v.

The left part of Figure 3.4 shows (x3, y4)r+1J . The set L consists of generators above the
line j = r, marked with (blue) circles. The set R consists of the (orange) squares below
j = r. The middle set M contains the two encircled (in red) generators between the two
lines j = r and j = r + 1.

On the right side of Figure 3.4, we see (x3, y4)r+3J . The minimal generators are a disjoint
union of the sets

y4·2L, x3y4M, x3·2M, and x3·2R.

J

j = r + 1

j = r

(xu, yv)r+1J (xu, yv)r+3J

Fig. 3.4: Visualisation of the sets L, M , and R in Example 3.3.5.

Corollary 3.3.6. Let u, v ∈ N, J be an anchored monomial ideal, r ≥
⌈

disty J
v

⌉
, and

M :=
{
f ∈ G

(
(xu, yv)r+1J

) ∣∣∣ rv ≤ degy f < (r + 1)v
}
.

Then M 6= ∅.

Proof. Let b := disty J and choose any natural number ` > b
v . Assume that M = ∅.

Then, by (3) in the proof of Theorem 3.3.4, we have

(Uj ∩ Lj+1) ∩ G
(
(xu, yv)r+`+1J

)
= ∅
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for all r ≤ j ≤ r+ `+ 1. Consequently, there are no minimal generators of (xu, yv)r+`+1J

satisfying
rv ≤ degy f < (r + `)v. (3.3.2)

However, by the choice of `, the element f := yrvx(`+1)uyb ∈ (xu, yv)r+`+1J fulfills these
inequalities. Therefore, there must exist a minimal generator g ∈ G

(
(xu, yv)r+`+1J

)
dividing f . Then degx g ≤ (` + 1)u and by (3.3.2), degy g < rv must hold, and hence
g /∈ (xu, yv)r+`+1J , a contradiction.

Theorem 3.3.4 describes how the minimal generators of (xu, yv)r+1+`J change in a pre-
dictable pattern as ` increases. In other words, the staircase of the ideal (xu, yv)r+1+`J

is formed by aligning the staircases of certain repeatedly occurring subideals: from left
to right, we begin with the staircase of (L), then we repeat the staircase of (M) for `
consecutive steps, and finally add the staircase of (R).

We want to formalize this idea of “connecting” staircases.

Definition 3.3.7. For I, J ⊆ k[x, y] monomial ideals, we define the link I y J (with respect
to y) as

I y J := I · ydisty J + J · xdistx I ,

and we write I y ` := I y I y · · · y I︸ ︷︷ ︸
`

. We call the monomial xdistx Iydisty J the link point

of I y J .

I = (x4, xy, y3)

J = (x2, y2)

I y J = y2I + x4J

Fig. 3.5: Visualisation of the link of ideals.

Remark 3.3.8. As mentioned above in Remark 3.3.1, we want to be able to reverse the
roles of x and y throughout. However, this affects the order of the arguments of the link.
Note that I x J = J y I, which is why we have to include the variable used for the partition
in the notation of the link.

Remark 3.3.9. If I and J are monomial ideals with distx I = a and disty J = b, then the
minimal generators of I · yb and J · xa only intersect in one element, namely the link
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point xayb, cf. Figure 3.5 (indicated by an arrow). Therefore,

G(I y J) = G(I ) · yb ∪ G(J ) · xa

= G(I ) · yb ]
(
G(J ) \ {yb}

)
· xa.

This implies µ(I y J) = µ(I) + µ(J)− 1.

Remark 3.3.10. Let I be an anchored monomial ideal that can be written as the link of
ideals, i.e.,

I = J0 y · · · y Jk

for some anchored monomial ideals J0, . . . , Jk. For 1 ≤ i ≤ k we denote the link point
between (J0 y · · · y Ji−1) and (Ji y · · · y Jk) with hi, and we set h0 := ydisty I and
hk+1 := xdistx I . Then it follows that

I =
k∑
j=0

gcd(hi, hi+1)Ji

and, in particular, I : gcd(hi, hi+1) = Ji for all 0 ≤ i ≤ k.

With the necessary tools in place, we now return to the goal of expressing (xu, yv)r+1+`J

as the link of the ideals generated by L, M , and R. However, there are “gaps” between
the staircases of these ideals, so we must first expand them by suitable link points.

Definition 3.3.11. Let u, v ∈ N, J ⊆ k[x, y] be an anchored monomial ideal, and r ≥⌈
disty J
v

⌉
. Further, we set g := xαyβ to be the minimal generator of (xu, yv)r+1J with

β = min
{

degy f
∣∣∣ f ∈ G

(
(xu, yv)r+1J

)
, degy f ≥ rv

}
.

With L, M , and R as in Theorem 3.3.4 we define the r-segments of (xu, yv)J as

A := (L) : yβ,

H :=
(
M ∪ {xα−uyβ+v}

)
: xα−uyβ, and

B := (R ∪ {g}) : xα,

For monomials g, h ∈ k[x, y] we define the r-segments of (g, h)J as the r-segments
of (g, h) J .
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J

g
j = r

yβ

xα

xα−uyβ

Fig. 3.6: Left: Visualisation of the point g from Definition 3.3.11, with r = 3. Right:
Above yβ is the staircase of yβA (in blue), and to the right of xα is the staircase of xαB (in
green). The striped area in the bottom-right corner of yβB is the staircase of xα−uyβH.

Remark 3.3.12. With the notation of Definition 3.3.11, we have

A =
(
(xu, yv)r+1J

)
: yβ,

H =
(
(xu, yv)r+1J

)
: xα−uyβ, and

B =
(
(xu, yv)r+1J

)
: xα.

In particular, g = xαyβ is the link point of A y B = (xu, yv)r+1J , see Figure 3.6. Moreover,

L = G(A)yβ, R = G(B)xα \ {g}, and M = G(H)xα−uyβ \ {xα−uyβ+v}.

Corollary 3.3.13. Let u, v ∈ N and J ⊆ k[x, y] be an anchored monomial ideal, r ≥⌈
disty J
v

⌉
, and A, H, B the r-segments of (xu, yv)J .

Then, for all ` ∈ N0,
(xu, yv)r+1+`J = A y H y ` y B.

Proof. It follows from Theorem 3.3.4 in combination with the last equalities in Remark 3.3.12
that

G
(
(xu, yv)r+1+`J

)
= yv`L ]

⊎̀
j=1

xjuy(`−j)vM ] xu`R

= yv`+βG(A) ]
`−1⊎
j=0

(
xα+juyβ+(`−j−1)vG(H) \ {xα+juyβ+(`−j)v}

)
= yv`+βG(A) ] xα+u`G(B) \ {xα+u`yβ}.

This is exactly the minimal generating set of

A y H y ` y B = Ayv`+β +
`−1∑
j=0

Hxα+juyβ+(`−1−j)v + Bxα+`u,
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cf. Remark 3.3.9. Note that the generators xα+juyβ+(`−j)v for 0 ≤ j ≤ ` are the link
points in A y H y ` y B.

Remark 3.3.14. Corollary 3.3.13 confirms that r-segments behave as intended and rephrases
Theorem 3.3.4 in the language of ideal links. Continuing Figures 3.4 and 3.6, we provide
a visualisation in Figure 3.7.

Fig. 3.7: In (xu, yv)r+3J , the staircase of H
(striped black) is repeated ` = 2 times in the
middle. On the top left (in blue) is the staircase
of A and on the bottom right (in green) is the
staircase of B. Note that there is one H included
in A.

Remark 3.3.15. With the notation of Definition 3.3.11,

β < (r + 1)v and α ≤ (r + 1)u

holds. The first inequality follows from Corollary 3.3.6, while the second follows from
Remark 3.3.3, since by definition, g = xαyβ is a minimal generator of (xu, yv)r+1J that
is in Ur. As noted in Remark 3.3.3, if we have equality α = (r + 1)u, then this implies
rv = disty J , g = x(r+1)uydisty(J), and β = disty(J).

We are now set to prove the main result of this section.

Theorem 3.3.16. Let I ⊆ k[x, y] be an anchored monomial ideal such that G(I) =
P ∗(I) = {g1, . . . , gk+1} and the gi are ordered in descending y-degree. Further, let J ⊆
k[x, y] be an anchored monomial ideal, and for 1 ≤ i ≤ k, let vi := disty(gi, gi+1),
ui := distx(gi, gi+1), and

r ≥
⌈

max
1≤i≤k

{disty J
vi

}⌉
.

Then, for all ` ≥ 0,

k∑
i=1

(gi, gi+1)r+1+`J = C0 y

k

y

i=1

(
H y `
i

y Ci
)
,

where, for 1 ≤ i < k, Ai, Hi, Bi are the r-segments of (gi, gi+1)J ,

Ci := Bi · y(r+1)vi+1−disty(Bi+1) + Ai+1 · x(r+1)ui−distx(Ai),

C0 := A1, and Ck := Bk.
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(r + 1)vi+1 − disty(Bi+1)

(r + 1)ui − distx(Ai)
gr+1+`
i

Fig. 3.8: Left: The lower section of (gi−1, gi)r+1+`J and the upper section of
(gi, gi+1)r+1+`J , where gr+1+`

i appears as the lowest and uppermost (red) dot, respec-
tively. Right: Bi−1 (dotted green) and Ai (shaded blue) overlap at gr+1+`

i resulting in a
new staircase, namely that of Ci. Note the required shifts in the x- and y-directions to
align Bi−1 and Ai before summing them up.

Proof. Throughout, we use the notation αi := distx(Ai) and βi := disty(Bi). By Re-
mark 3.3.15,

(r + 1)ui − αi ≥ 0 and (r + 1)vi+1 − βi+1 > 0. (3.3.3)

We argue that for 1 ≤ i ≤ k − 1

distx(Ci) = αi+1 + ui(r + 1)− αi (3.3.4)

and
disty(Ci) = βi + vi+1(r + 1)− βi+1. (3.3.5)

(3.3.4): Both ideals Ai+1 and Bi are anchored. Hence, the maximal x-degree appearing in
the minimal generators of Ai+1 · x(r+1)ui−αi comes from a monomial with y-degree equal
to zero and is given by

distx Ai+1 + (r + 1)ui − αi = αi+1 + (r + 1)ui − αi.

Further, the minimal x-degree in the minimal generators of Bi · y(r+1)vi+1 is equal to zero.
All elements in the summand Bi · y(r+1)vi+1 have positive y-degree which implies that
distx(Ci) is determined by the maximal x-degree in Ai+1 · x(r+1)ui−αi .

(3.3.5): If (r+1)ui−αi > 0, then we can argue analogously as above. If (r+1)ui−αi = 0,
then Remark 3.3.15 implies that rvi = disty J and βi = disty(Bi) = disty J . Since disty Ci
is given by the maximum of the y-degrees of the two summands of Ci, i.e.,

disty Ci = max{disty Bi + (r + 1)vi+1 − disty(Bi+1),disty Ai+1},

and, by Remark 3.3.12, disty Ai+1 = (r + 1)vi+1 + disty J − βi+1, the assertion follows.
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We turn our attention to the assertion of the theorem and proceed by induction on k. The
basis k = 1 is Corollary 3.3.13.

Now let k > 1. By the assumption that (g1, . . . , gk+1) is anchored, it follows that
gcd(g1, . . . , gk) = degy gk = vk.

We can apply the induction hypothesis to the anchored ideal (g1/y
vk , . . . , gk/y

vk) to con-
clude that

k−1∑
i=1

(
(gi, gi+1)r+1+`J

)
= (L y Bk−1) y(r+1+`)vk

where

L := C0 y

k−2
y

i=1

(
H y `
i

y Ci
)

y H y `
k−1.

Similarly, setting u = degx gk, we know that

(gk, gk+1)r+1+`J = (Ak y R) · xu(r+1+`) with R := H y `
k

y Ck.

Therefore,

k∑
i=1

(
(gi, gi+1)r+1+`J

)
= (L y Bk−1)yvk(r+1+`) + (Ak y R) · xu(r+1+`),

which is equal to(
Lyβk−1 + Bk−1x

distx L
)
· yvk(r+1+`) +

(
Akydisty R +Rxαk

)
· xu(r+1+`). (3.3.6)

Before we continue manipulating (3.3.6), we verify a few handy equations. Note that
distx(Hi) = ui and disty(Hi) = vi for 1 ≤ i ≤ k, and recall that u = degx gk =

∑k−1
i=1 ui.

Thus, using (3.3.4),

distx L = α1 + `
k−1∑
i=1

ui +
k−2∑
i=1

distx(Ci) = αk−1 + `u+ (r + 1)
k−2∑
i=1

ui

= αk−1 + (r + 1 + `)u− (r + 1)uk−1.

It follows that

distx(L y Ck−1) = distx L+ distx(Ck−1) = αk + (`+ r + 1)u (3.3.7)

and
u(r + 1 + `)− distx L = (r + 1)uk−1 − αk−1 ≥ 0, (3.3.8)

where the last inequality comes from (3.3.3). Moreover, since disty R = βk + `vk we have
(using (3.3.3) again)

vk(r + 1 + `)− disty R = (r + 1)vk − βk > 0 (3.3.9)
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and, using (3.3.5),

disty(Ck−1 y R) = disty(Ck−1) + disty R = βk−1 + (`+ r + 1)vk. (3.3.10)

Using (3.3.8) and (3.3.9), the middle two summands of (3.3.6) can be rearranged to(
Bk−1y

(r+1)vk−βk + Akx(r+1)uk−1−αk−1
)
xdistx Lydisty R.

Thus, using (3.3.7) and (3.3.10), we conclude that (3.3.6) equals

Lydisty(Ck−1 y R) + Ck−1x
distx Lydisty R +Rxdistx(L y Ck−1) = L y Ck−1 y R

which completes the proof.

Remark 3.3.17. Let h1, . . . , hk be the link points of

S :=
k∑
i=1

(gi, gi+1)r+1J =
k

y

i=0
Ci.

Using the observation of Remark 3.3.10, Ci = S : gcd(hi, hi+1), where h0 := gr+1
1 and

hk+1 := gr+1
k+1. The link points can be determined by their y-degree, that is,

degy hi = min
{

degy f
∣∣∣ f ∈ G(S) ,degy f ≥ (r + 1)vi + r degy gi+1

}
.

In particular, this means that we can determine the minimal generators of Ci directly from
the minimal generators of S, that is,

Ci =
(
g ∈ G(S) | degy hi+1 ≤ degy g ≤ degy hi

)
.

Moreover, also Hi can be determined from S by choosing its elements according to their
y-degree. By Remark 3.3.12 and Theorem 3.3.4,

G(Hi) =
{
g ∈ G

(
(gi, gi+1)r+1J

)
| rvi ≤ degy g < (r + 1)vi

}
] {xα̃i−uiyβ̃i+vi},

where xα̃iyβ̃i = hi
gcd(gi,gi+1)r+1 . The elements in {g ∈ G((gi, gi+1)r+1ID) | rvi ≤ degy g <

(r + 1)vi} “survive the concatenation” of Ai and Bi−1 to Ci−1 as minimal generators
(shifted by x(r+1)ui−1−distx(Ai−1)). It follows that

Hi =
((
g ∈ G(S) | degy hi ≤ degy g < degy gsi−1

)
+
(
hi
xui

yvi

))
=
(
g ∈ G(S) | degy hi ≤ degy g < degy gsi−1

)
+ (yvi).
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Corollary 3.3.18. With the assumptions and notation from Theorem 3.3.16, we have

µ

(
k∑
i=1

(gi, gi+1)r+`+1J

)
= 1 +

k∑
i=0

(µ(Ci)− 1) + `
k∑
i=1

(µ(Hi)− 1).

Proof. This is an immediate consequence of Theorem 3.3.16 in combination with Re-
mark 3.3.9.

3.4 Minimal generating sets of powers

We now apply the preceding results to describe the minimal generators of large powers
of an ideal I. At the beginning of Section 3.3 we chose to partition the elements of
ideals with regular staircase factors based on their y-degrees (Lemma 3.3.2, Remark 3.3.1).
Consequently, most definitions and results are phrased with assertions about the y-degree
of elements. However, by interchanging the roles of the variable names, the analogous
results hold for the x-degrees, too. In this section we take this into account.

Remark 3.4.1. Switching the roles of variables affects the link, cf. Remark 3.3.8, and
reverses the order of g1, . . . , gk+1.

Notation 3.4.2. Let I be a monomial ideal and P = {g1, . . . , gk+1} such that P (I) ⊆ P ⊆
P ∗(I) and the gi are ordered in descending y-degree. Further, with δP as in Notation 3.2.9,
and dP as in Notation 3.2.13, let D ≥ DP := (µ(I)− |P |) · δP + |P | · dP . For • ∈ {x, y},
we denote

r•(P,D) :=
⌈
D · max

1≤i≤k

dist• I
dist•(gi, gi+1)

⌉
.

Remark 3.4.3. Ordering the elements of P in ascending y-degree instead of ascending
x-degree does not affect the values of r•(P,D).

Definition 3.4.4. Let I be a monomial ideal, fix • ∈ {x, y}, and let P = {g1, . . . , gk+1}
such that P (I) ⊆ P ⊆ P ∗(I) and the gi are ordered in descending •-degree. Further, let
D ≥ DP and s ≥ D + r•(P,D) + 1.

We write r := s−D − 1 and for 1 ≤ i ≤ k, we set h•i to be the minimal generator of Is

such that

deg• h•i = min{deg• f | f ∈ G(Is) , deg• f ≥ r dist•(gi, gi+1) + (r + 1) deg• gi+1},

and we set h•0 := gs1 and h•k+1 := gsk+1. We define the (s, •)-stable components of I (with
respect to P and D) to be

Ci := Is : gcd(h•i , h•i+1) for 0 ≤ i ≤ k
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Fig. 3.9: A simplified visualisation of the (s, •)-stable components (Ci)ki=0 and (Hi)ki=1
(• = x on the left and • = y on the right) of an ideal with k = |P | = 3.

and for 1 ≤ i ≤ k,

Hi :=
(
g ∈ G(Is) | deg• h•i ≤ deg• g ≤ deg• gsi−1

)
+ (•dist•(gi,gi+1)).

If I is not anchored, then we define its (s, •)-stable components to be the (s, •)-stable
components of I .

Remark 3.4.5. The monomials h•1, . . . , h•k in Definition 3.4.4 are by the definition of
(Ci)ki=0 the link points of C0 • · · · • Ck. Note that h•1, . . . , h•k are ordered in descending
•-degree, see Figure 3.9. Further, for 1 ≤ i ≤ k,

deg• gsi+1 ≤ deg• h•i ≤ (r + 1)
(

dist•(gi, gi+1) + deg• gi+1
)

= deg• gr+1
i .

The lower bound is due to r ≥ r•(P,D) ≥ D dist• I
dist•(gi,gi+1) and the upper bound follows from

Corollary 3.3.6.

We are now set to prove the main theorem of this section, bringing Theorems 3.2.14
and 3.3.16 together.

Theorem 3.4.6. Let I ⊆ k[x, y] be a monomial ideal, • ∈ {x, y}, P (I) ⊆ P ⊆ P ∗(I),
D ≥ DP , and s ≥ D+ r•(P,D) + 1. Further, let (Ci)ki=0 and (Hi)ki=1 be the (s, •)-stable
components of I with respect to P and D.

Then for all ` ≥ 0,

Is+` = gcd(I)s+` ·
(
C0 •

k

•

i=1

(
H • `
i

• Ci
) )
.

Proof. Without restriction, we assume that • = y. As P and D are fixed, we write
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ry := ry(P,D). Since I = gcd(I) · I , we can carry out the proof under the assumption
that I is anchored and multiply by gcd(I)s+` in the end. Let g1, . . . , gk+1 be the elements
of P ordered in descending y-degree. We apply Theorem 3.2.14 and obtain that for all
t ≥ 0

ID+t =
k∑
i=1

(gi, gi+1)tID.

Note that the weakly persistent generators of the ideal generated by P are precisely the
elements of P . Further, we observe that disty(ID) = D disty I and hence

r := s−D − 1 ≥ ry =
⌈

max
1≤i≤k

disty(ID)
disty(gi, gi+1)

⌉
.

Therefore, the conditions for Theorem 3.3.16 are satisfied and by applying it, we obtain
that for all ` ≥ 0

Is+` =
k∑
i=1

(gi, gi+1)r+1+`ID = C′0 y

k

y

i=1

(
H′i

y ` y C′i
)
,

where H′i and C′i are as in Theorem 3.3.16. Observe that the link points of

Is = C′0 y · · · y C′k

are precisely hy1, . . . , h
y
k as in Definition 3.4.4 (cf. Remark 3.3.17). With Remarks 3.3.10

and 3.3.12 this implies that C′i = Ci and H′i = Hi are the (s, y)-stable components of I.

Notation 3.4.7. With the notation of Theorem 3.4.6, let

r(P,D) := min{rx(P,D), ry(P,D)}.

Remark 3.4.8. Theorem 3.4.6 states that all information about large powers of I is en-
coded in Is for any s ≥ D + r(P,D) + 1.

Corollary 3.4.9. For s ≥ DP + r(P,DP ) + 1 and ` ≥ 0, the computation of G(Is+`) from
G(Is) takes O(`) additions of (monomial) exponents.

Remark 3.4.10. Theorem 3.4.6 leads to significantly faster computations of large powers
of I. For a runtime comparison we refer to Section 3.4.1.

Recall that the Hilbert function of the fibre ring of a monomial ideal—which counts the
number of generators of its powers—eventually becomes a polynomial function (cf. [25,
Theorem 6.1.3]). Theorem 3.4.6 provides an explicit description of this polynomial.

Corollary 3.4.11. Let I ⊆ k[x, y] be a monomial ideal, P (I) ⊆ P ⊆ P ∗(I), D ≥ DP ,
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and s ≥ D + r•(P,D) + 1. Then for all ` ≥ 0

µ(Is+`) = 1 +
k∑
i=0

(µ(Ci)− 1) + `
k∑
i=1

(µ(Hi)− 1),

where (Ci)ki=0, (Hi)ki=1 are the (s, •)-stable components of I with respect to P . In partic-
ular,

µ(Is+`) = µ(Is) + `
(
µ(Is+1)− µ(Is)

)
.

Remark 3.4.12. For • ∈ {x, y} and |P | > 2, we have r•(P,DP ) ≤ DP dist•(I) and
DP ≤ µ(I)(dist• I − 1). Thus

DP + r•(P,DP ) + 1 ≤ µ(I)
(

dist•(I)2 − 1
)

+ 1.

If |P | = 2, then r(P,DP ) = DP and hence

DP + r(P,DP ) + 1 = 2(µ(I)− 2)
(

min{distx I, disty I} − 1
)

+ 1.

Corollary 3.4.13. Let I ⊆ k[x, y] be a monomial ideal with P (I) = {xa, yb}, d :=
min{a, b}, and s ≥ 2(µ(I)− 2)(d− 1) + 1.

Then for all ` ≥ 0
Is+` = C0 • H • `

1 • C1,

where C0, C1, H1 are the (s, •)-stable components of I with respect to P = P (I) and
D = DP .

Proof. This is the special case of Theorem 3.4.6 with k = 1.

Remark 3.4.14. Note that in the case P = {xa, yb}, the s-segments of (xa, yb)IDP

(Definition 3.3.11) coincide the (s, y)-stable components of I with respect to P , i.e.,

A = C0, H = H1, and B = C1.

We now summarize how the minimal generators of Is and Is+1 can be explicitly described
from the (s, •)-stable components.

Corollary 3.4.15. Let I ⊆ k[x, y] be an anchored monomial ideal, • ∈ {x, y}, P (I) ⊆
P ⊆ P ∗(I), where g1, . . . , gk+1 are the elements of P , ordered in descending •-degree.
Let h•0, . . . , h•k+1 and (Ci)ki=0, (Hi)ki=1 be as in Definition 3.4.4, using D ≥ DP , and
s ≥ D + r•(P,D) + 1. We set qi := gcd(h•i , h•i+1) for 0 ≤ i ≤ k and q̂i := hi

fi
, where for

1 ≤ i ≤ k

fi =

x
distx(gi,gi+1) if • = y and
ydisty(gi,gi+1) if • = x.
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Then

G(Is) = G(q0C0) ]
k⊎
i=1

G∗(qiCi),

G
(
Is+1

)
= g1 · G(q0C0) ]

k⊎
i=1

gi+1
(
G∗(qiCi) ] G∗(q̂iHi)

)
,

and

G
(
Is+2

)
= g2

1G(q0C0) ]
k⊎
i=1

g2
i+1

(
G∗(qiCi) ] G∗(q̂iHi)

)
]

k⊎
i=1

gigi+1G∗(q̂iHi),

where G∗(J) denotes the minimal generating set of a monomial ideal J excluding the
minimal generator of maximal •-degree.

Proof. Without restriction, we assume that • = y and write hi := h•i . The first assertion
follows from Theorem 3.4.6 in combination with Remarks 3.3.10 and 3.4.5. Note that

distx(C0 y . . . y Ci−1) = degx hi and disty(Ci y . . . y Ck) = degy hi.

Moreover, again by Theorem 3.4.6, we have

Is+1 = C0 y H1 y · · · y Hk y Ck. (3.4.1)

Let αi := distx Hi = distx(gi, gi+1) and βi := disty Hi = disty(gi, gi+1) for 1 ≤ i ≤ k.
With this notation, degx gi =

∑i−1
j=1 αj and degy gi =

∑k
j=i βj .

For 1 ≤ i ≤ k, let wi be the link point of (C0 y H1 y · · · y Hi−1 y Ci−1) and (Hi y Ci y

· · · y Hk y Ck). Then

degxwi = degx hi +
i−1∑
j=1

αj and degy wi = degy hi +
k∑
j=i

βj ,

which implies wi = higi.

Similarly, for the link point mi of (C0 y H1 y · · · y Ci−1 y Hi) and (Ci y · · · y Hk y Ck) we
conclude that mi = higi+1.

The monomials w1, m1, w2, . . . , wk, mk are the link points of the link (3.4.1) from left
to right. With m0 := h0g1, wk+1 := hk+1gk+1 and Remark 3.3.10, we have

Is+1 =
k∑
i=0

gcd(mi, wi+1)Ci +
k∑
i=1

gcd(wi,mi)Hi.

A straight-forward verification shows that for 1 ≤ i ≤ k

gcd(mi, wi+1) = gi+1qi and gcd(mi, wi) = gcd(gi, gi+1)hi = gi+1q̂i.
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Finally, it follows from the definition of the link that the individual summands intersect
exactly at the linking points which are excluded in G∗(Hi) and G∗(Ci), making them
pairwise disjoint. This proves the second assertion.

For the third assertion, we proceed analogously. We determine the link points of

(C0 y H y 2
1 y · · · y H y 2

i−1 y Ci−1) and (H y 2
i

y Ci y · · · y H y 2
k

y Ck)

(C0 y H y 2
1 y · · · y H y 2

i−1 y Ci−1 y Hi) and (Hi y Ci y · · · y H y 2
k

y Ck)

(C0 y H y 2
1 y · · · y H y 2

i−1 y Ci−1 y H y 2
i ) and (Ci y · · · y H y 2

k
y Ck)

which are wi := hig
2
i , ui := higigi+1, and mi := hig

2
i+1. With m0 = h0g

2
1 and wk+1 =

hk+1g
2
k+1, we have

Is+2 =
k∑
i=0

gcd(mi, wi+1)Ci +
k∑
i=1

gcd(wi, ui)Hi +
k∑
i=1

gcd(ui,mi)Hi.

Since gcd(mi, wi+1) = g2
i+1qi, gcd(ui,mi) = g2

i+1q̂i, and gcd(ui, wi) = gigi+1q̂i, the third
assertion follows.

Remark 3.4.16. It follows from the corollary and its proof that Hi = Is+1 : gi+1q̂i.

Remark 3.4.17. Corollary 3.4.15 shows how the minimal generators of Is+1 and Is+2 are
computed from G(Is). For Is+` one multiplies the qiCi with g`i+1, and Ĥi with g`1i g

`2
i+1 for

all `1, `2 with `1 + `2 = `.

Corollary 3.4.18. With the assumptions and notation of Corollary 3.4.15,

G(Is+1) =
⊎

f∈G(Is)
f ·Gf ,

where, with the notation wi := dist•(gi, gi+1),

Gf =


{gi} if 1 ≤ i ≤ k, and deg• h•i + wi < deg• f < deg• h•i−1,

{gi, gi+1} if 1 ≤ i ≤ k, and deg• h•i ≤ deg• f ≤ deg• h•i + wi,

{gk+1} if deg• f < deg• h•k.

Proof. Observe that for 1 ≤ i ≤ k + 1,

Si :=
{
f ∈ G(Is)

∣∣ deg• h•i + wi < deg• f < deg• h•i−1
}

⊆
{
f ∈ G(Is)

∣∣ deg• h•i ≤ deg• f ≤ deg• h•i−1
}

= G(qi−1Ci−1).
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Moreover, for 1 ≤ i ≤ k,

Ti := {f ∈ G(Is) | deg• h•i ≤ deg• f ≤ deg• h•i + wi}

⊆ G(qi−1Ci−1) ∪ {f ∈ G(Is) | deg• h•i ≤ deg• f ≤ deg• h•i + wi}

= G(qi−1Ci−1) ∪ G(q̂iHi).

The assertion now follows from Corollary 3.4.15.

Corollary 3.4.19. With the assumptions and notation of Corollary 3.4.15, let ` ∈ {1, 2},
g ∈ G(Is+`) and i such that deg• gs+`i+1 ≤ deg• g ≤ deg• gs+`i .

If ` = 1, then

g ∈

giG(Is) if deg• g ≥ deg• h•i gi
gi+1G(Is) if deg• g ≤ deg• h•i gi.

If ` = 2, then

g ∈

giG(Is+1) if deg• g ≥ deg• h•i gigi+1

gi+1G(Is+1) if deg• g ≤ deg• h•i gigi+1.

Proof. In the proof of Corollary 3.4.15, we have seen that h•i gi is the link point be-
tween gi+1

(
qiCi + q̂iHi

)
and giqiCi. Moreover, deg• h•i gigi+1 is the link point between

gi+1
(
qiCi + q̂iHi

)
and gigi+1q̂iHi + giqiCi. The assertion follows from a comparison of

degrees.

We now present examples to conclude this section.

Example 3.4.20. Let I = (y2, x2y, x3). We apply Corollary 3.4.13 with

P = P (I) = {y2, x3}

to give a complete description of the generators of large powers of I.

(1) We start by computing DP = 1, r = rx(P,DP ) = ry(P,DP ) = 1, and s = 3.

(2) Next, we compute that hy1 = x6y2 is the minimal generator of I3 with y-degree at
least r · 2 + 0 = 2. Recall hy0 = y6 and hy2 = x9.

(3) We compute the (3, y)-stable components with respect to P

C0 = I3 : y2 = (y4, x2y3, x3y2, x5y, x6),

H1 = I3 : x3y2 = (y2, x2y, x3), and

C1 = I3 : x6 = (y2, x2y, x3).
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From this we obtain that for all ` ≥ 0,

I3+` = (y4, x2y3, x3y2, x5y, x6) y (y2, x2y, x3) y ` y (y2, x2y, x3),

and hence

G(I3+`) = y2+2`G(C0) ]
⊎̀
j=1

x3+3jy2+2(`−j)G∗(H1) ] x6+3`G∗(C1),

where G∗(J) denotes the set of minimal generators of an ideal J , without the minimal
generator of largest y-degree. In particular, we have µ(I3+`) = 7 + 2`.

Example 3.4.21. Let I =
(
y10, xy9, x2y5, x4y4, x5y3, x6y2, x12y, x15). The computations

for this example are done in SageMath3. We compute the persistent generators of I

P (I) = {y10, x2y5, x6y2, x15},

and with P = P (I) we obtain DP = 40, r(P,DP ) = ry(D,P ) = 200, and s = 241.

With Theorem 3.2.14, we compute

I241 =
(
(y10, x2y5)201 + (x2y5, x6y2)201 + (x6y2, x15)201

)
I40.

Now, with the notation of Definition 3.4.4,

hy0 = y2410, hy1 = x162y2005, hy2 = x753y1002, hy3 = x1815y400, hy4 = x3615,

and hence the (241, y)-stable components of I with respect to P are

C0 = I241 : y2005,

C1 = I241 : x162y1002,

C2 = I241 : x753y400,

C3 = I241 : x1815.

H1 = I241 : x160y2005,

H2 = I241 : x749y1002,

H3 = I241 : x1806y400,

Analogously to the example above, these ideals can be used to write down the minimal
generators of I241+` explicitly. Further, it follows that for all ` ≥ 0, µ(I241+`) = 1688+7`.

3.4.1 Runtime in practice

We compare the runtime of our method, implemented in SageMath (Version 9.5), against
computations performed in Macaulay2 (Version 1.21; ideals are of type MonomialIdeal)
All computations were done on a machine equipped with an AMD EPYC 9474F 48-Core
Processor @ 4.10GHz (192 cores) and 1536GB RAM.

3section_5_1.ipynb as ancillary file on the arXiv page of the paper [48].
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We tested the method on four different ideals, which are provided in an additional file3

and choose P = P (I) in all four cases. In the following, we write D := DP and s :=
D + r(P,D) + 1. We use (s, y)-stable components whenever r(P,D) = ry(P,D) and
(s, x)-stable components otherwise.

The results of the computational comparison are summarized in Table 3.2. The ideal from
Example 3.4.21 is I2 in the table.

µ(I) |P (I)| dist I

I1 5 3 7
I2 8 4 15
I3 10 7 12
I4 15 4 24

Table 3.1: An overview of the parameters µ(I), |P (I)|, and dist I = max{distx I, disty I}
of the four test ideals.

Our SageMath implementation begins by computing ID, after which it applies Theo-
rem 3.2.14 to efficiently compute Is. Even the initial computation of ID takes advantage
of the fact that all ideals involved are bivariate. For higher powers, we employ Theo-
rem 3.4.6, which offers a substantial speed advantage over the built-in exponentiation of I
in Macaulay2. For additional comparison, we have included runtimes for Macaulay2 when
using Theorem 3.2.14 to compute ID+` from ID, which already demonstrates significant
runtime improvements.

preprocessing s + 102 s + 103 s + 104 s + 105 s + 106

ID Is Is+`

I1

D = 13 s = 45
this method 0.005 0.01 0.04 0.35 4.30 51.35 584.89
M2 with 3.2.14 0.0006 ∗ 0.05 1.69 1503.34 – –
M2 (built-in) ∗ ∗ 0.08 22.25 34898.4 – –

I2

D = 40 s = 241
this method 0.12 0.30 0.13 0.69 7.44 87.12 980.50
M2 with 3.2.14 0.02 ∗ 0.36 8.53 3152.86 – –
M2 (built-in) ∗ ∗ 8.02 411.03 – – –

I3

D = 76 s = 989
this method 0.73 6.29 0.52 1.49 12.12 139.68 1551.92
M2 with 3.2.14 0.18 ∗ 15.39 69.82 18724.5 – –
M2 (built-in) ∗ ∗ 607.32 5050.71 – – –

I4

D = 238 s = 2064
this method 28.45 47.13 2.28 4.15 20.53 209.50 2305.38
M2 with 3.2.14 84.81 ∗ 71.77 176.13 13546.8 – –
M2 (built-in) ∗ ∗ > 12h – – – –

Table 3.2: The two columns under “preprocessing” show the times required to compute ID and Is, where
“∗” indicates that the corresponding method does not use that preprocessing step. The remaining columns
present the additional times needed to compute Is+10i

after preprocessing. Cells containing “–” indicate
that the estimated computation time would be prohibitively large and is therefore omitted.
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4. Buchberger graphs and the
lcm-complex1

In this chapter, we examine two combinatorial structures and the insights they provide into
the associated primes of a monomial ideal. We begin with the Buchberger graph, exploring
how its subgraphs relate to the associated primes of the underlying monomial ideal. We
then introduce the lcm-complex of an ideal and use it to characterize when the maximal
ideal is associated to a monomial ideal.

4.1 The Buchberger graph of a monomial ideal

4.1.1 Definition and some properties of the Buchberger graph

In Buchberger’s algorithm for computing Gröbner bases, the S-pairs formed from the cur-
rent set of polynomials are examined, and redundant ones are discarded. An S-pair is a
specific combination of two polynomials designed to eliminate their leading terms, which
helps detect whether the current set of generators is a Gröbner basis. The minimal set of
S-pairs defines a graph on the minimal generators of a monomial ideal. This graph was
introduced by Miller and Sturmfels [42] and first appeared under the name “Buchberger
graph” in [43].

Definition 4.1.1 (cf. [43, Definition 3.4]). The Buchberger graph Buch(I) of a monomial
ideal I with minimal generators G(I) = {g1, . . . , gs} has vertices g1, . . . , gs and an edge
(gi, gj) whenever lcm(gi, gj) is not properly divisible (Definition 2.1.7) by any minimal
generator, that is, if lcm(gi, gj) is a surface monomial of I.

Example 4.1.2. Let I = (x2z, x3y, x2y2, xy3, yz). The only pair of generators whose least
common multiple is properly divisible by a generator is (x3y, xy3): lcm(x3y, xy3) = x3y3

is properly divisible by x2y2, c.f. Figure 4.1.

Remark 4.1.3. Let I ⊆ k[x, y] be a monomial ideal in two variables. Then Buch(I) is a
path. To see that, we write G(I) = {g1, . . . , gs} and gi = xaiybi for i ∈ [s]. Since g1, . . . ,
gs are minimal generators of I, we can assume that their degrees in x and y are ordered

1The content of this chapter is the subject of a paper in preparation.

59



x

y

z

x2z

x3y x2y2
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yz

xy3

Fig. 4.1: On the left: the 3-dimensional staircase surface of the monomial ideal I =
(x2z, x2y, x2y2, xy3, yz); on the right: the Buchberger graph of I.

as follows:

a1 < a2 < · · · < as,

b1 > b2 > · · · > bs.

By this ordering it is clear that gj |p lcm(gi, gk) if and only if i < j < k. Therefore,
Buch(I) is a path with edges {gi, gi+1} for all i ∈ {1, . . . , s− 1}.

Definition 4.1.4 (cf. [43, Definition 3.8]). A monomial ideal I ⊆ k[x1, . . . , xr] is called
strongly generic if every pair of minimal generators g and h satisfies degi(g) 6= degi(h)
or degi(g) = degi(h) = 0 for every i ∈ [r].

Remark 4.1.5. If I ⊆ k[x, y, z] is a strongly generic monomial ideal, then Buch(I) is
planar and connected, see [43, Proposition 3.9].

4.1.2 Complete subgraphs of Buch(I) and m

In the following, we study the connection of properties of the Buchberger graph of a
monomial ideal and its associated primes.

Proposition 4.1.6. Let I ⊆ k[x1, . . . , xr] be a monomial ideal. If m ∈ Ass(R/I), then
Buch(I) has the complete graph Kr as a subgraph.

Proof. Let w ∈ Nr0 such that m = I : xw and m1, . . . , mr be minimal generators of I
with mi | xw · xi for 1 ≤ i ≤ r. We show that {mi,mj} is an edge in Buch(I) for all
i 6= j ∈ [r]. For each 1 ≤ i ≤ r we have mi - xw and mi | xw · xi. So, degi(mi) = wi + 1
and deg`(mi) ≤ w` for ` 6= i. This implies that the cardinality of the set {m1, . . . ,mr} is
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equal to r, and

deg`(lcm(mi,mj)) =

w` + 1, ` ∈ {i, j},

≤ w`, ` ∈ [r] \ {i, j}.

Assume that there exists a minimal generator m of I such that m |p lcm(mi,mj). If
deg`(lcm(mi,mj)) = 0, then

deg`(mk) = deg`(lcm(mi,mj)) = 0 ≤ w`.

On the other hand, if deg`(lcm(mi,mj)) > 0, then

deg`(mk) ≤ deg`(lcm(mi,mj))− 1 ≤ w`,

hence mk | xw which is a contradiction. Therefore, the subgraph of Buch(I) induced by
m1, . . . , mr is the complete graph Kr.

Remark 4.1.7. The reverse implication is not true. For example, the Buchberger graph of
I = (xz, xy, yz) is a triangle but m /∈ Ass(R/I) = {(x, y), (x, z), (y, z)}, see Figure 4.2.

xz yz

xy

xz

xy

yz

Fig. 4.2: The 3-dimensional staircase surface of the monomial ideal I = (xy, xz, yz) from
Remark 4.1.7 is depicted on the left. On the right is the Buchberger graph of I.

Remark 4.1.8. Note that for any monomial ideal I, the sets of associated primes of height
≥ 2 of the two ideals I and I : gcd(I) coincide. The Buchberger graphs of I and I : gcd(I)
can differ. For example, the Buchberger graph of I = (x3z, xyz, y3z) is a triangle but the
Buchberger graph of I : gcd(x3z, xyz, y3z) = I : z = (x3, xy, y3) is a path, see Figure 4.3.

Lemma 4.1.9. Let I ⊆ k[x1, . . . , xr] be a strongly generic monomial ideal. Then m ∈
Ass(R/I) if and only if Buch(I) has the complete graph Kr as a subgraph.

Proof. If m ∈ Ass(R/I), then Buch(I) has the complete graph Kr as a subgraph by
Proposition 4.1.6. Note that for strongly generic ideals, if we take any r minimal generators
m1, . . . , mr such that lcm(m1, . . . ,mr) is a surface monomial of I, then for all i ∈ [r] with
degi(lcm(m1, . . . ,mr)) > 0 we have |{mj : degi(mj) = degi(lcm(m1, . . . ,mr))}| = 1.
That implies that deg lcm(m1, . . . ,mr) > 0 in every component, and furthermore m1, . . . ,
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Fig. 4.3: The staircase on the left is of the ideal I = (x3z, xyz, y3z). There is an edge
between the generators x3z and y3z in its Buchberger graph since xyz does not properly
divide lcm(x3z, y3z). In the ideal I : z, the minimal generator xy divides lcm(x3, y3)
properly. Therefore, its Buchberger graph is a path. The staircase of I : z is depicted on
the right.

mr induce a complete graph Kr in Buch(I). Also note that in this case,

lcm(m1, . . . ,mr)
x1 · · ·xr

is a witness of m in I.

Now let m1, . . . , mr be generators of I inducing Kr in Buch(I). If lcm(m1, . . . ,mr) is
a surface monomial, then we are done. If there exists a generator m of I that properly
divides lcm(m1, . . . ,mr), then we replace m1 by m. If lcm(m,m2, . . . ,mr) is a surface
monomial, then, again, the observation in the beginning completes the proof. Otherwise
we repeat this process which has to end after a finite number of steps, since the degree of
the least common multiple decreases each time.

4.2 The lcm-complex of an ideal

As pointed out in Remark 4.1.7, the equivalence

m ∈ Ass(R/I) ⇐⇒ Kr is a subgraph of Buch(I)

does not hold for general monomial ideals. With the motivation to find a similar charac-
terization, we introduce the lcm-complex of an ideal.

4.2.1 Definition and properties of the lcm-complex

Notation 4.2.1. For a set F of monomials, we write mF := lcm(F ).

Definition 4.2.2. Let I be a monomial ideal. The lcm-complex L(I) of I is the collection
of all subsets F ⊆ G(I) such that

(1) no minimal generator of I properly divides mF and

(2) mF 6= mG for all G ( F .
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Remark 4.2.3. If we consider the graph that has all 0-dimensional faces of L(I) as vertices
and all one-dimensional faces as edges, then, by definition, we obtain the Buchberger graph
of I.

Example 4.2.4. From left to right, we denote the generators of I = (x2z, x3y, x2y2, xy3, yz)
from Example 4.1.2 by g1, . . . , g5 . Then L(I) consists of

• subsets with one element: {g1}, {g2}, {g3}, {g4}, {g5};

• subsets with two elements: {g1, g2}, {g1, g3}, {g1, g4}, {g1, g5}, {g2, g3}, {g2, g5},
{g3, g4}, {g3, g5}, {g4, g5};

• subsets with three elements: {g1, g2, g3}, {g2, g3, g5}, {g3, g4, g5}.

Remark 4.2.5. Let F ∈ L(I). Then by condition (2) in the definition, for each f ∈ F
there exists an i ∈ {1, . . . , r} such that degi f > max {degi g | g ∈ F \ {f}}.

We recall some notions about simplicial complexes:

Definition 4.2.6. A simplicial complex ∆ on a set {1, . . . , n} is a collection of subsets
of {1, . . . , n} such that if σ ∈ ∆ and τ ⊆ σ, then τ ∈ ∆. An element σ ∈ ∆ with |σ| = i

is called an (i − 1)-dimensional face of ∆. The dimension dim(∆) of ∆ is defined as
the maximum of the dimensions of its faces. If σ is a maximal face, that is, σ 6⊆ τ for all
τ ∈ ∆, then σ is called a facet of ∆.

Proposition 4.2.7. Let I be a monomial ideal in k[x1, . . . , xr]. Then its lcm-complex is a
simplicial complex and its dimension is at most r − 1.

Proof. Let F ∈ L(I) and G ⊆ F . We claim that G ∈ L(I). If some m ∈ G(I) properly
divides mG, then m |p mF , a contradiction. For the second condition, assume that
H ( G ⊂ F . If mH = mG, then

mF = lcm((F \G) ∪G) = lcm(mF\G,mG) = lcm(mF\G,mH) = lcm((F \G) ∪H).

This is a contradiction since (F \G) ∪H ( F .

For the dimension count, it follows from Remark 4.2.5 that there can be at most r elements
in each face.

Example 4.2.8. The lcm-complex from Example 4.2.4 has dimension 2 and its facets are

{g1, g2, g3}, {g2, g3, g5}, {g3, g4, g5}, {g1, g5}, {g1, g4}.
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g1

g2 g3

g5

g4

Fig. 4.4: The simplicial complex L(x2z, x3y, x2y2, xy3, yz) with g1 := x2z, g2 := x3y,
g3 := x2y2, g4 := xy3, g5 := yz.

Notation 4.2.9. Let f , g ∈ k[x1, . . . , xr] be monomials. Then we denote by f : g the
monomial with exponent vector (max{0,degi f − degi g} : i ∈ {1, . . . , r}).

Lemma 4.2.10. Let I be a monomial ideal and f ∈ R. Then L(I : f) is isomorphic to a
simplicial subcomplex of L(I).

Proof. Let σ = {u1, . . . , uq} ∈ L(I : f). Then there exist m1, . . . , mq ∈ G(I) such that
ui = mi : f . We show that σ′ := {m1, . . . ,mq} ∈ L(I). First, we observe that for all
i ∈ [r],

degimσ = max
j∈[q]
{degi uj} = max

j∈[q]
{max{0,degimj − degi f}}

= max{0,max
j∈[q]
{degimj} − degi f}

= max{0,degimσ′ − degi f}

= degi(mσ′ : f),

so mσ = mσ′ : f . This observation implies that if there exists a generator m ∈ G(I) that
properly divides mσ′ , then (m : f) |p (mσ′ : f) = mσ. And furthermore, if τ ′ ( σ′ with
mτ ′ = mσ′ , then τ := {m : f | m ∈ τ ′} is a proper subset of σ. By the same argument as
above, mτ = mτ ′ : f = mσ′ : f = mσ, a contradiction.

4.2.2 Connections between L(I) and Ass(R/I)

Proposition 4.2.11. Let I be a monomial ideal in k[x1, . . . , xr]. If I has an associated
prime of height n then L(I) has a face of dimension n− 1.

Proof. Let P = (xi | i ∈ S) for some set S ⊆ [r] with |S| = n. We assume that P is
associated to I, i.e., P = I : w for some monomial w /∈ I. Then {xi | i ∈ S} ∈ L(P ) and
since L(P ) = L(I : w), Lemma 4.2.10 completes the proof.

Remark 4.2.12. The reverse implication of Proposition 4.2.11 is in general not true. All
primary ideals are counterexamples, for example, if I = (x, y, z), then {x, y} ∈ L(I) is a
face of dimension one, but Ass(R/I) = {(x, y, z)}.
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Proposition 4.2.13. If L(I) has a facet of dimension n−1 then I has an associated prime
of height n.

Proof. Let F = {m1, . . . ,mn} be a facet of L(I). Then for every i ∈ [n] there exists an
ij ∈ [r] such that degij (mi) = degij (mF ) and degij (mk) < degij (mi) for all k ∈ [n]\{i}.
Otherwise we could remove mi from F without changing the least common multiple.
Without loss of generality, we can assume that ij = i for all i ∈ [n]. We show that
w := mF /x1 · · ·xn is a witness of P = (x1, . . . , xn) in I. By the degree conditions, none
of the mi’s divides w. Also no other generator m ∈ G(I) \ F divides w, since if m | w
then m |p mF , which contradicts F ∈ L(I). Therefore, we obtain that w /∈ I. Clearly,
w · xi ∈ I for all i ∈ [n], so P ⊆ I : w. Assume that xk ∈ I : w for some k > n, then
there exists a generator g ∈ G(I) such that

g | xkmF

x1 · · ·xn
, and g - mF

x1 · · ·xn
.

Then the degrees of g must fulfill

degk(g) = degk(mF ) + 1,

degi(g) ≤ degi(mF )− 1 for i ∈ [n], and

degi(g) ≤ degi(mF ) for i /∈ [n] ∪ {k}.

We show that F ∪ {g} ∈ L(I). If some generator m divides mF∪{g}, then either m | mF

but m -p mF , or degk(m) = degk(mF∪{g}). In both cases m does not properly divide
mF∪{g}. By the conditions on the degrees of the mi’s and g, we cannot remove any
element from F ∪ {g} and obtain the same least common multiple. So F ∪ {g} is a face,
which is a contradiction to the maximality of F .

Example 4.2.14. Proposition 4.2.13 implies that the ideal I from Example 4.2.4 has at
least one associated prime of height two, and (x, y, z) ∈ Ass(R/I).

The reverse implication of Proposition 4.2.13 is not true: The ideal (x2y, xy2, z) has
associated primes {(x, y, z), (x, z), (y, z)}. In particular, there are associated primes of
height two. However, its lcm-complex consists of {x2y, xy2, z} and its subsets, so it has
no facet of dimension one. Despite that, we can characterize when the maximal ideal is
associated in terms of the facets of I:

Corollary 4.2.15. Let I be a monomial ideal in k[x1, . . . , xr]. Then m ∈ Ass(R/I) if and
only if dimL(I) = r − 1.

Proof. This immediately follows from Propositions 4.2.11 and 4.2.13.

Corollary 4.2.16. Let I be a monomial ideal in k[x1, . . . , xr] and f a monomial. If m ∈
Ass(R/I : f) then also m ∈ Ass(R/I).
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Proof. If m ∈ Ass(R/I : f), Proposition 4.2.11 implies that L(I : f) has a face of
dimension r − 1. By Lemma 4.2.10 also L(I) has a face of dimension r − 1, which must
be a facet. Consequently m ∈ Ass(R/I).
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5. Associated primes of powers of
monomial ideals in three variables1

Let I be a monomial ideal in k[x, y, z]. To study the associated primes of powers of I, we
draw on the results from Chapter 3 about the structure of monomial ideals in two variables.
For a monomial ideal in any number of variables, we define the pattern-stability number
of I as

µ(I)
(
(dist I)2 − 1

)
+ 1,

where dist I denotes the maximum exponent of any variable appearing in the minimal gener-
ators of I . If I is a monomial ideal in k[x, y, z], then dist I = max{distx I, disty I, distz I},
cf. Definition 3.1.4.

From Chapter 3, we recall that after this number, the staircases of powers of a bivariate
monomial ideal follow a regular, predictable pattern, described explicitly in Theorem 3.4.6.
This structural behavior of bivariate monomial ideals will be a key ingredient for arguments
of this chapter, where we relate the pattern-stability number to the stability index of
monomial ideals in three variables.

Recall from Fact 2.3.19 that the set of minimal primes of a monomial ideal remains invariant
under taking powers; that is, for any monomial ideal I, we have Min(R/In) = Min(R/I)
for all n ≥ 0. By Corollary 2.1.49 and Remark 2.1.33, it suffices to consider ideals whose
minimal primes all have height at least two. If (x, y, z) is a minimal prime of I, then it is
the unique associated prime of I, and consequently, I and all of its powers are (x, y, z)-
primary.

Therefore, it remains to consider the case in which all minimal primes of I have height
exactly two. In this setting, the only possible embedded associated prime is the maximal
monomial ideal (x, y, z). It follows that the stability index stab(I) ≤ s if either

(x, y, z) ∈ Ass(R/In) for all n ≥ s,

or
(x, y, z) /∈ Ass(R/In) for all n ≥ s.

We give a bound for stab(I) in terms of the pattern-stability numbers of certain related
bivariate monomial ideals in the two cases Min(R/I) = {(x, y)} (Theorem 5.2.11) and
Min(R/I) = {(x, y), (x, z)} (Theorem 5.2.20). We suspect that similar techniques can be
applied to the case Min(R/I) = {(x, y), (x, z), (y, z)}.

1The content of this chapter is the subject of a paper in preparation jointly with Roswitha Rissner.
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5.1 Preliminaries

We begin by establishing preliminary properties that will be used throughout the remainder
of this chapter. The following lemma is stated in the general setting of monomial ideals
in r variables, although our primary applications will concern the case r = 3.

Notation 5.1.1. For a monomial f = xa1
1 · · ·xar

r in k[x1, . . . , xr] and i ∈ [r], we denote
by fxi the monomial that is obtained by setting the exponent of xi to zero, that is,

fxi
:= xa1

1 · · ·x
ai−1
i−1 x

ai+1
i+1 · · ·x

ar
r .

Definition 5.1.2. For a monomial ideal I ⊆ k[x1, . . . , xr] and 1 ≤ i ≤ r, we denote by Ixi

the saturation of I with respect to xi, that is, Ixi = I : x∞i .

Lemma 5.1.3. Let I be a monomial ideal in k[x1, . . . , xr], and let 1 ≤ i ≤ r. Then for
every n ∈ N, we have

(In)xi = (Ixi)n.

Proof. For an easier notation, we write x instead of xi. In order to prove that the ideal on
the right is included in the ideal on the left, take f1, . . . , fn ∈ I : x∞, that is, there exists
an N ∈ N large enough such that for all i ∈ [n] we have fixN ∈ I. This implies that∏n
i=1 fix

N = f1 · · · fnxnN ∈ In, and hence f1 · · · fn ∈ In : x∞. For the reverse inclusion,
take f ∈ In : x∞, that is, there exists an N ∈ N such that fxN ∈ In. Then we can write
fxN =

∏n
i=1 gi, where gi ∈ I. We have

(fxN )x =
( n∏
i=1

gi
)
x

=
n∏
i=1

(gi)x ∈ (I : x∞)n.

Since (fxN )x = fx | f , this finishes the proof.

5.2 Upper bounds for the stability index

Recall from Chapter 3, that we denote the set of persistent generators of a monomial
ideal I in k[x, y] by P (I) (Definition 3.2.1), and the set of weakly persistent generators
by P ∗(I) (Definition 3.2.7). By Remark 3.4.12, for any set of monomials P satisfying
P (I) ⊆ P ⊆ P ∗(I), the pattern-stability number of I can be bounded from below by

µ(I)
(
(dist I)2 − 1

)
+ 1 ≥ DP + min{rx(P,DP ), ry(P,DP )}+ 1, (5.2.1)

where rx(P,DP ), ry(P,DP ), and DP are as in Notation 3.4.2. In particular, this bound
guarantees that Theorem 3.4.6 applies to all powers greater than or equal to the pattern-
stability number.
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Remark 5.2.1. Let I be a monomial ideal in k[x, y, z]. Then

dist(I•) ≤ dist I, and µ(I•) ≤ µ(I)

holds for • ∈ {x, y, z}. Thus, the pattern-stability number of I is an upper bound for the
pattern-stability numbers of Ix, Iy, and Iz.

We extend the notion of weakly persistent generators of bivariate monomial ideals to
monomial ideals in any number of variables, that is, if I ⊆ k[x1, . . . , xr], then

P ∗(I) := {f ∈ G(I) | fn ∈ G(In) for all n ∈ N}.

The weakly persistent generators of an ideal can be characterized geometrically using its
Newton polyhedron C(I) (Definition 2.2.15):

Lemma 5.2.2. Let I be a monomial ideal in k[x1, . . . , xr], and let xa ∈ I for some a ∈ Nr0.
Then xa ∈ P ∗(I) if and only if a is in the topological boundary of the Newton polyhedron
of I, i.e., xa ∈ ∂C(I).

Proof. Let G(I) = {xa1 , . . . , xas} for a1, . . . , as ∈ Nr0. If a ∈ Nr0 such that xa ∈ I and
a /∈ ∂C(I), then there exists c ∈ ∂C(I) ∩Qr such that c ≤ a and c 6= a. We can write

c = α1a1 + · · ·+ αsas

for α1, . . . , αs ∈ Q∩ [0, 1] with α1 + · · ·+αs = 1. Let d ∈ N be the common denominator
of α1, . . . , αs. Then xdc ∈ Id, and further xdc | xda and xdc 6= xda. Thus, this implies
that xa /∈ P ∗(I).

On the other hand, if xa ∈ G(I)\P ∗(I), then there exists an n ∈ N such that xna /∈ G(In).
That is, there exist β1, . . . , βs ∈ N0 such that β1 + · · ·+ βs = n,

s∑
i=1

βiai ≤ na, and
s∑
i=1

βiai 6= na.

Dividing by n yields
s∑
i=1

βi
n

ai ≤ a, and
s∑
i=1

βi
n

ai 6= a.

Since
∑s
i=1

βi
n ai ∈ C(I), this implies that a /∈ ∂C(I).

Remark 5.2.3. By Lemma 5.2.2, every weakly persistent generator of an ideal I is an
element of a face of C(I). Since the preimage of a face of a polytope under any projection
is again a face, cf. [70, Lemma 7.10], it follows that if f ∈ G(I) satisfies f• ∈ P ∗(I•),
then f must belong to P ∗(I).
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From now on, if not explicitly stated otherwise, all ideals are in three variables x, y
and z.

5.2.1 One minimal prime: Min(R/I) = {(x, y)}

We begin by examining ideals whose minimal prime ideals consist of a single prime of
height two. We assume that Min(R/I) = {(x, y)}. The choice of (x, y) as the only
minimal prime of height two is arbitrary; analogous results hold for any other such prime
by permuting the variables.

Remark 5.2.4. Let I be a monomial ideal in k[x, y, z] with Min(R/I) = {(x, y)}.

(1) By Remark 2.1.35(2) no power of z appears as a minimal generator of I.

(2) Again by Remark 2.1.35(2), since (x), (z) and (x, z) are not associated primes of I,
the staircase of I must be bounded in y-direction. Analogously, it is also bounded
in x-direction. Thus, there exist generators xa and yb for some a, b ∈ N.

(3) By the minimality of (x, y) it follows with Fact 2.1.31 and Remark 2.1.32 that Iz
is the uniquely determined (x, y)-primary component of I. Specifically, this implies
that m ∈ Ass(R/I) if and only if I 6= Iz.

Notation 5.2.5. For a monomial ideal I ⊆ k[x, y, z], we denote

I0 := (f ∈ G(I) : z - f) ⊆ k[x, y].

Remark 5.2.6. Observe that dist I0 ≤ dist I, and µ(I0) ≤ µ(I). Thus, the pattern-
stability number of I0 is at most the pattern-stability number of I.

Lemma 5.2.7. Let I be a monomial ideal in k[x, y, z] with Min(R/I) = {(x, y)}. Then
(x, y, z) ∈ Ass(R/In) if and only if In0 6= Inz .

Proof. Note that In0 = (In)0 and, by Lemma 5.1.3, we have Inz = In : z∞. Therefore, it
suffices to prove the claim for the case n = 1. The inclusions I ⊆ Iz and I0 ⊆ I always
hold. Therefore, Iz = I0 implies I = I0 = Iz. By Remark 5.2.4(3), we conclude that
(x, y, z) /∈ Ass(R/I).

Conversely, suppose (x, y, z) /∈ Ass(R/I). Then, by Remark 5.2.4(3), it follows that
I = Iz, which implies supp(I) = {x, y}, and therefore I = I0.

Lemma 5.2.8. If In0 = In for some n ∈ N, then also In+1
0 = In+1.

Proof. Let f1 · · · fn+1 ∈ G(In+1). Then for every i ∈ {1, . . . , n+ 1} the product

gi :=
∏
j 6=i

fi
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is a minimal generator of In. Since no minimal generator of In is divisible by z, it follows
that z - gi for all i ∈ {1, . . . , n + 1}. Since z - g1 it follows that z - fj for all j > 1, and
since z - g2 it also follows that z - f1. Hence z - f1 · · · fn+1.

Lemma 5.2.9. If Min(R/I) = {(x, y)} and (x, y, z) /∈ Ass(R/In) for some n ∈ N, then
(x, y, z) /∈ Ass(R/IN ) for all N ≥ n.

Proof. By Lemma 5.2.7 we know that (x, y, z) /∈ Ass(R/In) if and only if In has no z in
any of its minimal generators and by Lemma 5.2.8 the assertion follows.

Proposition 5.2.10. If Min(R/I) = {(x, y)} and P ∗(I0) 6= P ∗(Iz), then m ∈ Ass(R/In)
for all n ∈ N and hence, stab(I) = 1.

Proof. Note that I0 ⊆ Iz and also P ∗(Iz) ∩ I0 ⊆ P ∗(I0). By the assumption that
P ∗(I0) 6= P ∗(Iz), there exists a g ∈ P ∗(Iz) \ I0 and hence gn ∈ G(Inz ) \ In0 for all n ∈ N.
The assertion follows from Lemma 5.2.7.

We are now set to prove the main result of this section.

Theorem 5.2.11. Let I be a monomial ideal in k[x, y, z] such that Min(R/I) = {(x, y)}.
Then the pattern-stability number of I is an upper bound for the stability index of I, i.e.,

stab(I) ≤ µ(I)
(
(dist I)2 − 1

)
+ 1.

Proof. In Proposition 5.2.10 we established that stab(I) = 1 in the case that P ∗(I0) 6=
P ∗(Iz). We now consider the case that P ∗(I0) = P ∗(Iz). By Lemma 5.2.9 it is left to
show that if (x, y, z) is associated to a power s ≥ µ(I)

(
(dist I)2 − 1

)
+ 1, then (x, y, z)

is also associated to all higher powers. So we assume that (x, y, z) ∈ Ass(R/Is), which is
by Lemma 5.2.7 equivalent to Is0 6= Isz , and show that

Is+1
0 6= Is+1

z

holds, which then proves the claim.

By Remarks 5.2.1 and 5.2.6 the pattern-stability numbers of both Iz and I0 are bounded
above by s. Therefore, due to the inequality (5.2.1), we can apply Theorem 3.4.6 to I0

and Iz, using • = y, P = P ∗(Iz) = P ∗(I0), and D = (µ(I) − |P |) · δP + |P | · dP for
both I0 and Iz. With the notation from this theorem there exist Ci and C′i such that

Is0 = gcd(I0)s ·
(
C0 y · · · y Ck

)
(5.2.2)

and
Isz = gcd(Iz)s ·

(
C′0 y · · · y C′k

)
, (5.2.3)
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where k + 1 = |P |. Note that under the assumption Min(R/I) = {(x, y)}, we have
gcd(I0) = gcd(Iz) = 1 (see Remark 5.2.4(2)). Let h1, . . . , hk denote the link points
in (5.2.2) and let h′1, . . . , h′k denote the link points in (5.2.3).

Case 1: If hi = h′i holds for all i ∈ [k], then by the assumption that Is0 6= Isz , there
must exist an i ∈ {1, . . . , k} such that Ci 6= C′i. In this case, Theorem 3.4.6 implies that
Is+`0 6= Is+`z for all ` ≥ 0.

Case 2: We now consider the case that there exists an i ∈ [k] such that hi 6= h′i.
Let g1, . . . , gk+1 be the elements of P ordered in descending y-degree. We recall from
Definition 3.4.4 that with • = y, D = DP , and r := s−D−1 and d := r disty(gi, gi+1) +
(r + 1) degy gi+1, the monomial hi is defined to be the minimal generator of Is0 such that

degy hi = min{degy f | f ∈ G(Is0),degy f ≥ d},

and h′i is defined to be the minimal generator of Isz such that

degy h′i = min{degy f | f ∈ G(Isz ),degy f ≥ d}.

Thus, under the assumption that hi and h′i are not equal, it must hold that either hi /∈
G(Isz ) or h′i /∈ G(Is0). If hi /∈ G(Isz ), then necessarily gi+1hi /∈ G(Is+1

z ). However, by
Corollary 3.4.18, we have gi+1 · hi ∈ G(Is+1

0 ), and therefore Is+1
0 6= Is+1

z . The analogous
argument holds if h′i /∈ G(Is0).

5.2.2 Two minimal primes: Min(R/I) = {(x, y), (x, z)}

We now turn to the case where the set of minimal primes of I consists of two primes of
height two. Without loss of generality, we assume that

Min(R/I) = {(x, y), (x, z)}.

Equivalent results hold for all other configurations involving two minimal primes of height
two and are covered by permuting the variables.

Remark 5.2.12. Let I be a monomial ideal with Min(R/I) = {(x, y), (x, z)}. Then we
recall from Remark 2.1.35(2) that the following hold:

• There exists m ∈ N such that xm ∈ G(I).

• No power of y or z lies in I, that is, neither yk ∈ I nor z` ∈ I for any k, ` ∈ N.

Furthermore, by Fact 2.1.31 and Remark 2.1.32, Iz is the unique (x, y)-primary component
of I and Iy is the unique (x, z)-primary component of I. In particular,

m ∈ Ass(R/I) ⇐⇒ I 6= Iz ∩ Iy.

We present a generalized version of Lemma 5.2.7:
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Lemma 5.2.13. Let I be a monomial ideal in k[x, y, z], and j ∈ N. Write d≤j := gcd{g ∈
G(I) : degz g ≤ j}. If there exists a minimal generator g ∈ G(I) such that degz g > j and
d≤j | g, then m ∈ Ass(R/I).

Proof. We write d := lcm(d≤j , zj) and g : d as in Notation 4.2.9. Then from d≤j | g, it
follows that g : d is a minimal generator of I : d, and since degz g > j, the z-degree of
g : d is positive. Further, we have Min(I : d) = {(x, y)}, so we can apply Lemma 5.2.7 to
obtain that m ∈ Ass(R/I : d) and by Corollary 4.2.16 also m ∈ Ass(R/I).

Proposition 5.2.14. Let I be a monomial ideal with Min(R/I) = {(x, y), (x, z)}. If

{f ∈ G(I) | fz ∈ P ∗(Iz)} 6= {f ∈ G(I) | fy ∈ P ∗(Iy)},

then m ∈ Ass(R/In) for all n ≥ distx I and hence stab(I) ≤ distx I.

Proof. Without loss of generality we can assume that there exists an f ∈ G(I) such
that fz ∈ P ∗(Iz) and fy /∈ P ∗(Iy). Recall that fz ∈ P ∗(Iz) implies that f ∈ P ∗(I)
(Remark 5.2.3). Since fy /∈ P ∗(I), there exist an n ∈ N and H ∈ In such that Hy | fny
and Hy 6= fny . Thus,

(1) degzH ≤ degz fn,

(2) degxH ≤ degx fn,

and, since fn ∈ G(In) and at least one of the inequalities (1) and (2) must be strict, also

(3) degyH > degy fn.

We show that we can choose H such that degzH < degz fn:

Since fy /∈ P ∗(Iy), it follows that also fy /∈ P (Iy) and hence there exist g, h ∈ G(I) \ {f}
such that fy is in the integral closure (gy, hy). Therefore, fy lies between gy and hy, and we
can assume that degx g < degx f < degx h, and consequently degz g > degz f > degz h.
Furthermore, by Proposition 3.2.3, we obtain the divisibility relation gαy hn−αy | fny , where
n = distx(g, h) and α = distx(f, h). As outlined in the proof of Proposition 3.2.3, the
degrees fulfill

• degz gαhn−α < degz fn and

• degx gαhn−α = degx fn.

We choose H = gαhn−α ∈ In.

Since Min(R/I) = {(x, y), (x, z)}, we recall from Remark 5.2.12 that there exists an
m ∈ N such that xm is a minimal generator of I. Then m > degx f must hold. Write
j := degzH. Then degz fn > j and

gcd{g ∈ G(In) : degz g ≤ j} | gcd(H,xmn) = xdegx H | fn.

73



It therefore follows that m ∈ Ass(R/In) by Lemma 5.2.13. We can lift the same argument
to higher powers of I, since

gcd(Hf `, x(m+`)n) = xdegx H+`degx f | fn+`

and degz(fn+`) > j + `degz f = degz(Hf `), so we can again apply Lemma 5.2.13.

It remains to consider the case {f ∈ G(I) | fz ∈ P ∗(Iz)} = {f ∈ G(I) | fy ∈ P ∗(Iy)}.
We develop a number of preliminary results.

Proposition 5.2.15. Let I be a monomial ideal in k[x, y, z].

• For every g ∈ Iz denote hg the minimal generator of Iy with x-degree equal to
max{degx h | h ∈ G(Iy), degx h ≤ degx g}.

• For every h ∈ Iy denote gh the minimal generator of Iz with x-degree equal to
max{degx g | g ∈ G(Iz),degx g ≤ degx h}.

Then G(Iz ∩ Iy) =
{

lcm(g, hg) | g ∈ G(Iz)
}
∪
{

lcm(gh, h) | h ∈ G(Iy)
}
.

Proof. Let g ∈ G(Iz). Then

lcm(g, hg) = xdegx gydegy gzdegz hg .

For every h ∈ G(Iy) with degx h < degx hg it follows that degz h > degz hg and therefore

lcm(g, hg) | lcm(g, h) = xdegx gydegy gzdegz h.

To show that lcm(g, hg) ∈ G(Iz ∩ Iy), we assume that

lcm(g′, h′) | lcm(g, hg) (5.2.4)

for some g′ ∈ G(Iz) and h′ ∈ G(Iy). If the x-degree of g′ is less than the x-degree of g,
then degy g′ > degy g must follow and hence the divisibility relation (5.2.4) is not fulfilled.
Since we also cannot choose g′ with a larger x-degree than g, it must follow that g′ = g.

We already excluded the case where degx h′ < degx hg. However, if degx h′ > degx hg,
then by the choice of hg, it follows that degx h′ > degx g and therefore

degx(lcm(g, hg)) < degx(lcm(g, h′)).

Again, the divisibility relation (5.2.4) is not fulfilled. The assertions for lcm(gh, h) are
proven analogously.
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z5 xz4 x3z2 x5z x7

y7 xy6 x2y5 x3y4 x4y2 x6y x7

x7x6yzx5y2zx4y2z2x3y4z2x2y5z4xy6z4y7z5

Fig. 5.1: An illustration of an example of how to apply Proposition 5.2.15: We consider
an ideal with Iz = (y7, xy6, x2y5, x3y4, x4y2, x6y, x7), whose generators are ordered in
increasing x-degree at the bottom, and Iy = (z5, xz4, x3z2, x5z, x7) with generators listed
at the top of the figure. The intersection Iz ∩ Iy is minimally generated by the labels of
the edges connecting the top row with the bottom row. The edges of this bipartite graph
are precisely {g, hg} for g ∈ G(Iz) and {gh, h} for h ∈ G(Iz), with hg and gh as defined in
Proposition 5.2.15.

Corollary 5.2.16. If Min(I) = {(x, y), (x, z)} and there exist f1, . . . , fs ∈ G(I) such that

G(Iz) = {(f1)z, . . . , (fs)z} and
G(Iy) = {(f1)y, . . . , (fs)y},

then I = Iz ∩ Iy. In particular, m /∈ Ass(R/I).

Proof. Note that I ⊆ Iz ∩ Iy always holds. Due to Proposition 5.2.15, we have

Iz ∩ Iy =
(

lcm((fi)z, (fi)y) | 1 ≤ i ≤ s
)
.

Therefore, Iz ∩ Iy = (f1, . . . , fs) which is a subset of I. As mentioned in Remark 5.2.12,
it now follows that m /∈ Ass(R/I).

Fig. 5.2: From left to right are the staircases of I = (x4, x2yz, y4z4, xykz3), where k =
5, 4, 3. In all three cases, the sets {f ∈ G(I) | fz ∈ P ∗(Iz)} and {f ∈ G(I) | fy ∈ P ∗(Iy)}
coincide and are equal to {x4, x2yz, y4z4}. In the ideals on the left and in the middle,
the corresponding projection of the generator xykz3 is in G(Iy) but not in G(Iz). The ideal
on the right fulfills the requirements of Corollary 5.2.16.

Remark 5.2.17. Let f = lcm(f1, f2) for f1 = xayb ∈ Iz and f2 = xa
′
zc ∈ Iy. Then

f = xmax{a,a′}ybzc, and therefore, if a ≥ a′, then fz = f1 and if a ≤ a′, then fy = f2.

Lemma 5.2.18. Let I be a monomial ideal in k[x, y, z]. Then G(Iz ∩ Iy) ∩ I ⊆ G(I).
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Proof. Let f ∈ G(Iz∩Iy)∩I and g ∈ G(I) such that g | f . We can write g = lcm(gz, gy) ∈
Iz ∩ Iy, and therefore, since f is a minimal generator of Iz ∩ Iy it follows that f = g.

Next, we describe how the minimal generators of the intersection Inz ∩ Iny behave for n
larger than the pattern-stability numbers of both Iz and Iy, under the assumption that the
sets of weakly persistent generators coincide.

Lemma 5.2.19. Let I be a monomial ideal in k[x, y, z] with Min(R/I) = {(x, y), (x, z)}
such that

P := {g ∈ G(I) | gz ∈ P ∗(Iz)} = {g ∈ G(I) | gy ∈ P ∗(Iy)}.

Let n ∈ N be greater than or equal to the pattern-stability number of I. Then the following
two assertions hold:

(1) For every f ∈ G(Inz ∩ Iny ), there exists a g ∈ P such that fg ∈ G(In+1
z ∩ In+1

y ).

(2) For every u ∈ G(In+2
z ∩ In+2

y ), there exist f ∈ G(In+1
z ∩ In+1

y ) and g ∈ P such
that u = fg.

Proof. We apply the results from Section 3.4 to Iz and Iy such that in both cases the x-
degrees of the gi will determine the link points (that is, we choose • = x in Definition 3.4.4).
For this, we first set up the notation for Definition 3.4.4. Let g1, . . . , gk+1 ∈ G(I) be
ordered in descending x-degree such that

Pz := P ∗(Iz) = {(g1)z, . . . , (gk+1)z} and

Py := P ∗(Iy) = {(g1)y, . . . , (gk+1)y}.

We set

D := max
{(
µ(Iz)− |Pz|)

)
· δPz + |Pz| · dPz ,

(
µ(Iy)− |Py|

)
· δPy + |Py| · dPy

}
.

Note that δP• and dP• depend on the (x, y)-degrees of the gi if • = z and on the (x,
z)-degrees of the gi if • = y (cf. Notations 3.2.9 and 3.2.13). Since n is greater than or
equal to the pattern-stability number of I, it follows from Remark 5.2.1 and (5.2.1) that
r := n−D − 1 ≥ r•(P•, D).

For 0 ≤ i ≤ k + 1 let `•i := hxi be as in the Definition 3.4.4 of the (n, x)-stable com-
ponents of I• (with respect to P• and D). While the dependence of x was essential in
Definition 3.4.4, we now apply that definition uniformly with respect to x in both cases.
However, to distinguish between the settings Iy and Iz, we use the notational convention
`yi and `zi accordingly.

For 1 ≤ i ≤ k and • ∈ {z, y}, the monomial `•i is defined to be the minimal generator of
In• with

degx `•i = min{degx f | f ∈ G(In• ), degx f ≥ di},
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where di := r distx(gi, gi+1) + (r + 1) degx gi+1, see Definition 3.4.4.

For (1), let f := lcm(f1, f2) ∈ G(Inz ∩ Iny ) with f1 ∈ G(Inz ) and f2 ∈ G(Iny ).

Without restriction, we assume that degx f2 ≤ degx f1, that is, f2 = hf1 with the notation
of Proposition 5.2.15. We split into two cases:

Case 1. There exists i such that di ≤ degx f2 ≤ degx f1 ≤ di−1. In this case

degx `zi ≤ degx f1 ≤ degx `zi−1 and degx `
y
i ≤ degx f2 ≤ degx `

y
i−1,

which, according to Corollary 3.4.18, implies that

f1 · (gi)z ∈ G(In+1
z ) and f2 · (gi)y ∈ G(In+1

y ).

It now follows from Proposition 5.2.15 that

f · gi = lcm(f1 · (gi)z, f2 · (gi)y) ∈ G(In+1
z ∩ In+1

y ).

Case 2. There exists i such that degx f2 < di < degx f1. Since distx(f2, f1) ≤
distx(`yi , f1) by Proposition 5.2.15 and f2 = `yi is excluded by the degree condition,
it follows that degx f1 < degx `

y
i . With similar reasoning, we deduce that i = k or

di+1 ≤ degx f2. Hence, i = k or

di+1 ≤ degx `
y
i+1 ≤ degx f2 < degx `

y
i .

In addition, according to Remark 3.4.5 it follows that degx `
y
i ≤ di+ distx(gi, gi+1), which

further implies

di ≤ degx `zi ≤ degx f1 < degx `
y
i ≤ di + distx(gi, gi+1) ≤ degx `zi + distx(gi, gi+1).

It follows by Corollary 3.4.18 that f1 · (gi+1)z ∈ G(In+1
z ) and f2 · (gi+1)y ∈ G(In+1

y ). This
completes the proof of (1).

For (2), let u := lcm(uz, uy) ∈ G(In+2
z ∩ In+2

y ) with uz ∈ G(In+2
z ) and uy ∈ G(In+2

y ).
Then there exists an i ∈ [k + 1] such that

degx gn+2
i+1 ≤ degx u ≤ degx gn+2

i .

As in the proof of (1), we denote by (`•i )ki=1 the link points of the (n, x)-stable components
of I•.
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By Corollary 3.4.19 it holds that u• ∈ q• · G(In• ), where

q• =


(gi+1)2

• if degx u• ≤ degx `•i gigi+1

(gigi+1)• if degx `•i gigi+1 ≤ degx u• ≤ degx `•i g2
i

(gi)2
• if degx u• ≥ degx `•i g2

i .

Therefore if degx `•i gigi+1 ≤ degx u• holds for both • = y and • = z, then u ∈ gi(In+1
z ∩

In+1
y ). Similarly, if the reverse inequality degx `•i gigi+1 ≥ degx u• holds for both • = y

and • = z, then u ∈ gi+1(In+1
z ∩ In+1

y ). Thus, the only case left to consider is, without
loss of generality, if

degx uy < degx `
y
i (gigi+1)y and degx uz > degx `zi (gigi+1)z.

If degx uz ≤ degx `zi g2
i , then as above it follows that u ∈ gi+1(In+1

z ∩ In+1
y ), hence we

consider the case that degx uz > degx `zi g2
i . With di as defined in the proof of (1), note

that
degx `

y
i ≤ di + distx(g1, gi+1) ≤ degx `zi + distx(g1, gi+1)

and thus, degx `
y
i gigi+1 ≤ degx `zi g2

i . This further implies that

degx uy < degx `
y
i gigi+1 ≤ degx `zi g2

i ≤ degx uz

and hence lcm(u1, u2) /∈ G(In+1
z ∩ In+1

y ) by Proposition 5.2.15, a contradiction

We are now ready to prove the main result of this section, which provides a bound on the
stability index for ideals with two minimal primes of height two.

Theorem 5.2.20. Let I be a monomial ideal in k[x, y, z] with Min(R/I) = {(x, y), (x, z)}.
Then the stability index of I is at most the pattern-stability number of I plus one, i.e.,

stab(I) ≤ µ(I)
(
(dist I)2 − 1

)
+ 2.

Proof. Write n := µ(I)
(
(dist I)2 − 1

)
+1. By Remark 5.2.1, the pattern-stability numbers

of Iz and Iy are both at most n.

If {g ∈ G(I) | gz ∈ P ∗(Iz)} 6= {g ∈ G(I) | gy ∈ P ∗(Iy)}, then by Proposition 5.2.14 it
follows that stab(I) ≤ distx I ≤ n. It remains to consider the case

{g ∈ G(I) | gz ∈ P ∗(Iz)} = {g ∈ G(I) | gy ∈ P ∗(Iy)}.
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Let g1, . . . , gk+1 ∈ G(I) be ordered in descending x-degree such that

P ∗(Iz) = {(g1)z, . . . , (gk+1)z} and

P ∗(Iy) = {(g1)y, . . . , (gk+1)y}.

Claim 1: If m /∈ Ass(R/In+1), then m /∈ Ass(R/In+1+`) for all ` ≥ 0.

We assume that m /∈ Ass(R/In+1), and hence In+1 = In+1
z ∩ In+1

y , see Remark 5.2.12.
By the inequality (5.2.1), we can apply Lemma 5.2.19(2). Therefore, every minimal gener-
ator u of In+2

z ∩In+2
y can be written as u = f ·gi for some f ∈ G(In+1

z ∩In+1
y ) = G(In+1)

and i ∈ {1, . . . , k+1}. It follows that fgi ∈ In+2. Since the inclusion In+2 ⊆ In+2
z ∩In+2

y

is always fulfilled, we can conclude that In+2 = In+2
z ∩In+2

y and hence m /∈ Ass(R/In+2).
Inductively, we obtain that m /∈ Ass(R/In+1+`) for all ` ≥ 0.

Claim 2: If m ∈ Ass(R/In), then m ∈ Ass(R/In+`) for all ` ≥ 0.

To prove Claim 2, we assume that m ∈ Ass(R/In). Again by Remark 5.2.12, this is the
case if and only if In ( Inz ∩ Iny . Hence there exists a monomial f ∈ G(Inz ∩ Iny ) such that
f /∈ In. Write f = lcm(f1, f2) for f1 ∈ G(Inz ) and f2 ∈ G(Iny ). Then, by Remark 5.2.17,
fz = f1 or fy = f2. In both cases we proceed analogously. If fz = f1, we apply the
theory of Section 3.4 to Iz, if fy = f2, we do the same with Iy. In both cases, xy = x

and hence the monomials gi are already ordered correspondingly. Throughout, we choose
P = P ∗(Iz) and P = P ∗(Iy), respectively. Thus, the two cases differ only by a renaming
of variables. Without restriction we assume fz = f1.

For 0 ≤ i ≤ k+ 1 let hi := hxi as in Definition 3.4.4 with the ideal Iz, • = x, P = P ∗(Iz),
D = DP and s = n (by (5.2.1), n is large enough such the requirements in Definition 3.4.4
are fulfilled). Recall from Remark 3.4.5 that the monomials hi are ordered in descending
x-degree. Thus, there exists an i ∈ {1, . . . , k} such that

degx hi ≤ degx f ≤ degx hi−1. (5.2.5)

By Lemma 5.2.19(1), fgj ∈ G(In+1
z ∩ In+1

y ) for some j ∈ {1, . . . , k + 1}, and by Corol-
lary 3.4.18 and the Conditions (5.2.5) on the x-degree of f , it follows that i = j. To
simplify notation, we write g := gi.

We claim that fg /∈ In+1. If this claim holds true, then fg ∈ G(In+1
z ∩ In+1

y ) \ In+1, and
thus m ∈ Ass(R/In+1). We assume otherwise that fg ∈ In+1, then by Lemma 5.2.18 it
follows that fg ∈ G(In+1), so we can write

fg = f1 · · · fn+1, (5.2.6)

where fi ∈ G(I). We will show that there exists an i ∈ {1, . . . , n + 1} such that fi = g,
which then leads to the contradiction f ∈ In. From (5.2.6) it follows that

(fg)z = fzgz = (f1)z · · · (fn+1)z.
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Among these factors, we group the generators in P together and obtain the representation
of fzgz as a product

fzgz =
∏
p∈P

pjp ·
∏
q∈N

qjq ,

where N := G(Iz) \ P and ∑
p∈P

jp +
∑
q∈N

jq = n+ 1. (5.2.7)

By (5.2.1), we can write
n = D + r + 1, (5.2.8)

where D := DP = |N |δP + |P |dP and r ≥ min{rx(P,D), ry(P,D)}, see Notation 3.4.2.

Note that by Proposition 3.2.3, an element in In+1
z which is divisible by power qk with

q ∈ N and k > δP cannot be a minimal generator of In+1
z . Therefore, since fzgz ∈

G
(
In+1
z

)
, it follows that jq ≤ δP for all q ∈ N . Hence

∑
q∈N jq ≤ |N |δP . This inequality,

in combination with (5.2.7) and (5.2.8) gives

r + 2 + |P | · dP ≤
∑
p∈P

jp.

Thus, there must exist at least one p ∈ P such that jp > dP . We write

B := {p ∈ P | jp > dP }.

Then B 6= ∅, and we claim that neither degx p < degx g nor degx p > degx g can hold for
all p ∈ B. We denote

ν :=
∏
q∈N

qjq and σ :=
∏

p∈P\B
pjp .

With this notation, (fg)z = ν · σ ·
∏
p∈B p

jp . Let nν :=
∑
q∈N jq, and nσ :=

∑
p∈P\B jp.

Then nν + nσ = D − ` for some ` ≥ 0. Furthermore,

∑
p∈B

jp = D + r + 2− (D − `) = r + 2 + `. (5.2.9)

Case 1: Assume that for all p ∈ B, the x-degree of p is less than or equal to the x-degree
of gi+1. Then the x-degree of fg fulfills

degx(fg) ≤ degx(νσ) + degx gi+1
∑
p∈B

jp ≤ (D − `) distx I + degx gi+1(r + 2 + `)

≤ D distx I + (r + 2) degx gi+1,

On the other hand, in (5.2.5), we assumed that degx f ≥ degx hi. Further, by the choice
of r, we have that

r ≥ D · distx I
distx(g, gi+1) ,
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and hence r distx(g, gi+1) ≥ D distx I. By definition, hi is the minimal generator of Inz
with x-degree equal to

degx hi = min{degx h | h ∈ G(Inz ),degx h ≥ r distx(g, gi+1) + (r + 1) degx gi+1}.

Thus

degx(fg) ≥ degx hi + degx g ≥ r distx(g, gi+1) + (r + 1) degx gi+1 + degx g

≥ D distx I + (r + 1) degx gi+1 + degx g > D distx I + (r + 2) degx gi+1,

a contradiction.

Case 2: Assume that for all p ∈ B, the x-degree of p is greater than or equal to the
x-degree of gi−1. In this case, we use (5.2.9) to bound the x-degree of fg from below as
follows:

degx(fg) ≥ degx(νσ) + degx gi−1
∑
p∈B

jp ≥ (r + 2 + `) degx gi−1 ≥ (r + 2) degx gi−1.

By definition, hi−1 is the minimal generator of Inz with x-degree equal to

degx hi−1 = min{degx h | h ∈ G(Inz ),degx h ≥ r distx(gi−1, g) + (r + 1) degx g},

and by Remark 3.4.5, degx hi−1 < (r+1)(degx g+distx(gi−1, g)). The assumption (5.2.5)
that degx f ≤ degx hi now implies that

degx(fg) < (r + 2) degx g + (r + 1) distx(gi−1, g) < (r + 2) degx gi−1,

a contradiction.

Since both Case 1 and Case 2 lead to a contradiction, it follows that either gz ∈ B or
there exist p1, p2 ∈ B such that gz lies between p1 and p2.

Note that every p ∈ P ∗(Iz) can be written as p = (g`)z for some ` ∈ {1 . . . , k + 1}. If
jp > 0, then there exists a j ∈ {1, . . . , n+ 1} such that (fj)z = (g`)z. Since both fj and
g` are minimal generators of I, it follows that fj = g`.

(1) If gz ∈ B, then in particular jgz > 0 and hence there exists an ` ∈ {1, . . . , n + 1}
such that (f`)z = gz and f` = g, yielding

f = f1 · · · fn+1
g

∈ In.

This contradicts the assumption that f /∈ In.

(2) Hence, there exist p1, p2 ∈ B such that gz lies between p1 and p2. By Proposi-
tion 3.2.3, there exist m ≤ jp and α ∈ N such that gmz | pα1 pm−α2 . Since (fg)z
is a minimal generator, gmz = pα1 p

m−α
2 must hold. We write p1 = (gj)z and
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p2 = (g`)z. Then gαj and gm−α` appear as factors in the product f1 · · · fn+1. If
degz gm < degz gαj gm−α` then the monomial obtained by replacing gαj g

m−α
` with

gm in the product f1 · · · fn+1 is in In+1 and strictly divides f1 · · · fn+1. Hence
degz gm = degz gαj gm−α` and thus gm = gαj g

m−α
` . We replace gαj gm−α` in the prod-

uct with gm and end up with the same contradiction as in (1).

We summarize that fg ∈ (In+1
z ∩ In+1

y ) \ In+1 and therefore m ∈ Ass(R/In+1). This
concludes the proof.
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6. Bounds on the copersistent index
of general monomial ideals1

As outlined in the introduction, the sequence of associated primes of powers of any ideal
eventually stabilises. A natural question that arises is whether there exists a universal
bound for the stability index at which this stabilisation occurs. Hoa [31] provides an upper
bound for the stability index of monomial ideals in terms of the number of variables, the
number of generators, and the maximal total degree of the generators (see Fact 2.3.24). In
the same work, Hoa illustrates through examples that any such bound necessarily depends
on both the number of variables and the degrees of the generators.

However, this bound is in general very large. For instance, for the ideal I = (xy, yz) in
k[x, y, z], the bound is greater than 8·107, even though the actual stability index is 1; see [6,
Example 2.17]. For certain classes of monomial ideals, sharper bounds have been found.
Herzog, for example, conjectured that for square-free monomial ideals in r variables, the
stability index can be bounded above by r−1, cf. [6, Section 2.3]. A lot of research in that
area focuses on edge and cover ideals of graphs; see for example [8, 16, 37, 39, 57, 63]. Also
other classes of ideals have been studied over the last decades, cf. [23, 28, 34, 64].

Hoa’s strategy for deriving the mentioned upper bound involves bounding separately the in-
dices after which the sequence (Ass(R/In))n∈N becomes non-decreasing and non-increasing,
respectively. Based on this, we define the persistence index BI⊆ as the smallest integer
such that

Ass(R/In) ⊆ Ass(R/In+1) for all n ≥ BI⊆.

If BI⊆ = 1, then I fulfills the persistence property, see Definition 2.3.21. Analogously, we
define the copersistence index BI⊇ as the smallest integer such that

Ass(R/In) ⊇ Ass(R/In+1) for all n ≥ BI⊇.

With these definitions, the stability index is the maximum of the persistence and the
copersistence index, i.e.,

stab(I) = max{BI⊇,BI⊆}.

Hoa [31] proved that for a monomial ideal I, we have

BI⊇ ≤ d(rs+ s+ d)(
√
r)r+1(

√
2d)(r+1)(s−1),

1This chapter is based on joint work with Clemens Heuberger and Roswitha Rissner [30], published in
the Journal of Linear Algebra and its Applications.
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where r is the number of variables, s is the number of generators of I and d is the maximal
total degree of a minimal generator of I (see Subsection 6.2.3). Beyond this bound,
however, little is known about BI⊇ in general.

In this chapter, we develop a general framework to derive upper bounds for the coper-
sistence index BI⊇ of a monomial ideal I ⊆ k[x1, . . . , xr]. This framework is based on
characterising membership in monomial ideals through appropriately chosen systems of
linear inequalities.

From a methodological perspective, the central results are Theorem 6.2.7 and Proposi-
tion 6.2.8, which together offer a flexible approach to bounding BI⊇. Unlike Hoa’s original
argument, which intertwines the proof with a particular system of inequalities, our approach
decouples the method from any specific system. The advantage of this abstraction is that
it allows the derivation of multiple bounds by selecting different inequality systems that
satisfy prescribed properties.

We briefly recall some relevant results from Chapter 2. In Section 2.1.3, we showed that
via localisation, it suffices to determine whether the maximal ideal m = (x1, . . . , xr) is
associated to I. Remark 2.1.43 gives the following characterisation: Let Un be one of the
sets

In : m, sat(In), or sat(In) ∩ In−1.

Then m ∈ Ass(R/In) if and only if In 6= Un, noting that In ⊆ Un always holds. In other
words, the maximal ideal is associated to In if and only od the component of degree n of
the graded module ⊕

i≥0

(
Ui/I

i
)
ti

is nonzero, where t denotes the grading variable.

In Section 6.2, we model this module using systems of linear inequalities of the form
Ax ≤ b. Prior to this, Section 6.1 develops necessary theory regarding the sizes of integer
solutions to such systems and interprets these results in the context of graded modules.
This approach provides insights into the behaviour of Un/In as n increases and ultimately
yields a new upper bound for BI⊇, formalised in Theorem 6.2.11. Finally, Section 6.3
compares this newly derived bound with existing bounds in the literature.

6.1 Graded factor modules related to systems of linear in-
equalities

With the overall goal in view, we begin by considering a more general framework, estab-
lishing the connection to the specific class of ideals at a later stage (see Example 6.1.6
and Section 6.2). The methods developed here build upon techniques discussed by Fields
in [15, Section 7].

Convention 6.1.1. Throughout this section, Ax ≤ b denotes a system of (componentwise)
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inequalities, where A ∈ Zm×ν and b ∈ Nm0 .

Remark 6.1.2. Our focus lies on the non-negative integer solutions of such systems, which
can always be enforced by appending the constraints −Iνx ≤ 0, where Iν denotes the ν×ν
identity matrix. For the sake of readability, however, we omit these additional rows and
instead consider the intersection of the solution space with Nν0 .

Definition 6.1.3. Let A ∈ Zm×ν . For any b ∈ Nm0 , we denote the set of all integer
solutions of the system by

Sb := {x ∈ Nν0 | Ax ≤ b}.

Furthermore, we define the following subset of the polynomial ring k[W1, . . . ,Wν ]:

Sb := spank{Wx | x ∈ Sb} .

Remark 6.1.4. Note that all the sets introduced in Definition 6.1.3 depend on the ma-
trix A. However, for the sake of readability, we omit this dependence from the notation.

Remark 6.1.5. We observe that the set S0 = {x ∈ Nν0 | Ax ≤ 0} is a submonoid of Nν0 ,
because 0 ∈ S0 and for x1, x2 ∈ S0 we have A(x1 + x2) = Ax1 +Ax2 ≤ 0, hence

x1 + x2 ∈ S0. (6.1.1)

This implies that S0 is a ring.

Note that S0 ⊆ Sb since b ≥ 0. Furthermore, if x ∈ S0 and y ∈ Sb, then it follows that
A(x + y) = Ax +Ay ≤ 0 + b = b. Hence,

x + y ∈ Sb (6.1.2)

holds which in turn implies that Sb is an S0-module.

Example 6.1.6. Let I = (xa1 , . . . , xas) be a monomial ideal. Then

In =
(
(xa1)k1 · · · (xas)ks | k1, . . . , ks ∈ N0, n = k1 + · · ·+ ks

)
.

We want to set up a system of linear inequalities that describes when a monomial xh is
an element of In. We have xh ∈ In if and only if there are k1, . . . , ks ∈ N0 such that
n = k1 + · · · + ks and xh is divisible by (xa1)k1 · · · (xas)ks . It suffices to demand that
n ≤ k1 + · · · + ks, since Im ⊆ In for all m ≥ n. So we are looking for a non-negative
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integer solution of

a1,jk1 + · · ·+ as,jks − hj ≤ 0,

−(k1 + · · ·+ ks) + n ≤ 0

for all j ∈ [r]. In other words, xh ∈ In if and only if there exists k ∈ Ns0 such that

0

a1 a2 as −Ir
0

−1 −1 −1 0 0 1




k

h

n



 ≤ 0.

Given a solution to this system of linear inequalities, the key information we need—the
exponents h and the power n—is stored in the last r+ 1 components of the solution. For
the first s components, only their existence matters, not their exact values.

Definition 6.1.7. Let r ∈ N0 with r < ν and πr : Nν0 → Nr+1
0 be the projection of a

ν-tuple onto its last r + 1 entries, i.e., πr((x1, . . . , xν)) = (xν−r, . . . , xν).

Definition 6.1.8. Let A ∈ Zm×ν . For any b ∈ Nm0 , we define

Hb := spank
{
xπr(z) | z ∈ Sb

}
⊆ k[x1, . . . , xr+1].

In particular, H0 = spank
{
xπr(z) | z ∈ S0

}
. By setting deg xπr(z) = π0(z) we impose a

grading on Hb. This gives

Hb =
⊕
n≥0

Hb,n,

that is,

Hb,n = spank
{
xπr(z) | z ∈ Sb, π0(z) = n

}
.

We call Hb,n and H0,n the n-th solution spaces corresponding to Ax ≤ b.

Remark 6.1.9. For every n ∈ N0 the sets H0,n and Hb,n are additive subgroups of
k[x1, . . . , xr+1] and the following properties hold:

(1) H0,n ⊆ Hb,n since S0 ⊆ Sb (Remark 6.1.5).

(2) For all n, m ∈ N0 we have that

H0,mH0,n ⊆ H0,m+n.

holds by Equation (6.1.1) in Remark 6.1.5. Therefore, H0 is a graded subring of the
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graded ring k[x1, . . . , xr+1] (graded in xr+1).

(3) By Equation (6.1.2) in Remark 6.1.5

H0,nHb,m ⊆ Hb,n+m

holds for all n, m ∈ N0, hence Hb is a graded H0-module.

Example 6.1.10. In Example 6.1.6 we have b = 0 and H0,n = Inxnr+1 for all n ∈ N0.
Therefore, H0 is equal to the Rees algebra of I, cf. 2.3.7, that is,

H0 =
⊕
n≥0

Inxnr+1.

6.1.1 Estimates on the generators of the solution spaces

We now aim to analyse the sizes of the generators of Sb as an S0-module. We use the
fundamental fact from linear programming that any polyhedron can be decomposed into a
sum of a finitely generated convex hull and a finitely generated cone, denoted by conv and
cone, respectively. More precisely, we use known bounds on the entries of the generators
of these components. The following fact summarises this result; for a detailed proof, we
refer to [55, Theorem 17.1].

Fact 6.1.11 ([55, Proof of Theorem 17.1]). Let A ∈ Zm×ν , b ∈ Zm≥0 and P = {x ∈
Qν
≥0 | Ax ≤ b}. Let ∆ denote the maximum absolute value of the subdeterminants of the

matrix (A | b).

Then there exist z1, . . . , z` ∈ P and y1, . . . , ys ∈ S0 with all components at most ∆ in
absolute value such that

P = conv{z1, . . . ,z`}+ cone{y1, . . . ,ys}

holds.

Moreover, every x ∈ Sb can be written as x = x̃ + y with y ∈ S0 and x̃ ∈M ∩Sb, where

M = conv{z1, . . . ,z`}+
{

s∑
i=1

αiyi | 0 ≤ αi < 1, at most ν of the αi are nonzero
}
.

(6.1.3)

For our purposes, (6.1.3) is crucial: the set M is bounded because the maximum norm of
each of z1, . . . , z` as well as y1, . . . , ys is bounded by ∆; therefore the maximum norm
of all vectors in M is bounded by ∆(ν + 1). Note that while z1, . . . , z` might be rational
vectors, the set M ∩ Sb consists of integer vectors by definition. Rewriting x = x̃ + y in
terms of S0 and Sb immediately leads to the following corollary.
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Corollary 6.1.12 (cf. [31, Lemma 2.2]). Let Ax ≤ b be a system as in Convention 6.1.1.

Then the S0-module Sb is generated by finitely many monomials all of whose exponents
are at most σ := ∆(A | b)(ν + 1), where ∆(A | b) is the maximum absolute value of the
subdeterminants of (A | b) and ν is the number of columns of A.

We use Corollary 6.1.12 to get a bound for the degree of the generators of Hb as an
H0-module.

Proposition 6.1.13. Let Ax ≤ b be as in Convention 6.1.1. Then Hb is generated as an
H0-module by homogeneous elements whose degree is less than or equal to

σ := ∆(A | b)(ν + 1),

where ∆(A | b) is the maximal absolute value of the subdeterminants of the matrix (A | b).

Proof. To simplify notation, we write π instead of πr within this proof. We restrict the
ring epimorphism

ϕ : k[W1, . . . ,Wν ]→ k[x1, . . . , xr+1]

W z 7→ xπ(z)

to Sb resulting in an epimorphism of additive groups

ϕ′ : Sb → Hb

W z 7→ xπ(z).

A further restriction to the ring S0 results in the ring epimorphism

ϕ′′ : S0 → H0.

Let L be the kernel of ϕ′′. Then ϕ(LSb) = ϕ(L)ϕ(Sb) = {0}. Therefore, LSb is a
subgroup of the kernel of ϕ′. In fact, LSb is an S0-submodule of the kernel of ϕ′ and
Sb/LSb is an S0/L-module.

By Corollary 6.1.12, there exist elements z1, . . . , z` with π0(zi) ≤ σ for 1 ≤ i ≤ ` such
that Sb is generated as an S0-module by W z1 , . . . , W z` . Hence Sb/LSb is generated
as an S0/L-module by W z1 +LSb, . . . , W z` +LSb. By the isomorphism induced by ϕ′′

we have

S0/L ' H0

and furthermore, since ϕ′ is surjective, we get that xπ(z1), . . . , xπ(z`) are generators of
Hb as an H0-module. The isomorphism and the correlation between the generators is
visualised in the commutative diagrams in Figure 6.1.
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S0 H0

S0/L

'

ϕ′′

Sb Hb

Sb/LSb

ϕ′

(W zi)`i=1 (xπ(zi))`i=1(W zi + LSb)`i=1

Fig. 6.1: Depiction of the argument in the proof of Proposition 6.1.13 how S0-generators
of Sb are mapped to H0-generators of Hb via S0/L-generators of Sb/LSb .

This completes the proof since deg(xπ(zi)) = π0(zi) ≤ σ holds for all i ∈ {1, . . . , `}.

Remark 6.1.14. The special case of Proposition 6.1.13 applied to H0,n = In and Hb,n =
sat(In)∩In−1 is already proven by Hoa [31, Lemma 3.3, Lemma 3.4, and Proposition 3.1].

6.1.2 Homogeneous elements of the factor module Hb/H0

The ring H0 is an H0-submodule of Hb. A straight-forward verification yields

Hb/H0 '
⊕
n≥0

(Hb,n/H0,n).

This is a graded H0-module with scalar multiplication

hn · (um +H0,m) := hnum +H0,m+n

for hn ∈ H0,n and um ∈ Hb,m. Again, the maximal degree of the generators of Hb/H0

is bounded by the value σ given in Proposition 6.1.13 because the generators of Hb as an
H0-module map to generators of Hb/H0 under the projection modulo H0.

Proposition 6.1.15. Let Ax ≤ b be as in Convention 6.1.1 such that the corresponding
solution spaces fulfill H0,mH0,n = H0,m+n for all n, m ∈ N0.

Then the following property holds: If Hb,n/H0,n = 0 for some n ≥ σ = ∆(A | b)(ν + 1),
then Hb,N/H0,N = 0 for all N ≥ n.

Proof. It suffices to prove that Hb,n+1/H0,n+1 = 0. Recall that the H0-module Hb is
generated by elements with degree at most σ according to Proposition 6.1.13. Thus, the
homogeneous elements inHb,n+1/H0,n+1 are of the form hm(uk+H0,k) = hmuk+H0,m+k,
where k+m = n+1, k ≤ σ, hm ∈ H0,m, and uk ∈ Hb,k. Since hm ∈ H0,m = H0,1H0,m−1
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we can write hm = ab, where a ∈ H0,1 and b ∈ H0,m−1. Then

hmuk +H0,m+k = a · buk +H0,n+1 = 0,

since buk ∈ Hb,n = H0,n and aH0,n ⊆ H0,n+1.

6.2 Upper bounds for the copersistence index BI
⊇

We now apply the results from the previous section to derive upper bounds for the coper-
sistence index BI⊇. Before doing so, we establish several properties of the parameters d, s
and r, on which the resulting bound will depend.

6.2.1 Notes on the bound-parameters d, s, and r

Definition 6.2.1. Let d denote the maximum total degree of the minimal generators of
the monomial ideal I and let gcd(I) = xt be the greatest common divisor of I. We define
the reduced maximal degree of I as

dred := d−
r∑
i=1

ti.

Remark 6.2.2. We recall Corollary 2.1.49 which states that if a monomial xt divides all
minimal generators of a monomial ideal I, then

Ass(R/In) \ {(x1), . . . , (xr)} = Ass(R/(I : xt)n) \ {(x1), . . . , (xr)}

holds for all n ∈ N. In particular, this implies that stab(I) = stab(I : xt). Since the
bounds we develop in this section depend on the maximal total degree d of I, and the
inequality dred ≤ d always holds, these bounds can be improved by replacing d with dred.

Fact 6.2.3 ([45, Lemma 2.1]). If the number of generators of a monomial ideal I is smaller
than the number of variables, i.e., s < r, then m /∈ Ass(R/In) for all n ∈ N.

Remark 6.2.4. The stability index of a monomial ideal in a polynomial ring with two
variables (r = 2) is equal to 1. This follows from [45, Theorem 2.7], which implies
that the maximal ideal m is either associated to no powers or to all powers of said ideal,
depending on whether it is a principal ideal or not.

6.2.2 Copersistence of prime ideals p(M)

Recall that for a subset M ⊆ [r], we write p(M) = (xi | i ∈M).

Definition 6.2.5. Let I ⊆ k[x1, . . . , xr] be a monomial ideal and M ⊆ [r]. Then we
denote by BI⊇(M) ∈ N the smallest number such that the following statement holds: If
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for some N ≥ BI⊇(M) the prime ideal p(M) is not associated to IN , then it follows that
for all n ≥ N

p(M) /∈ Ass(R/In).

Remark 6.2.6. It follows from the definition that BI⊇ = max
{

BI⊇(M) |M ⊆ [r]
}
. We

argue that in fact

BI⊇ = max
{

BI⊇(M)
∣∣∣ M ⊆ [r] and |M | ≤ s

}
where s is the number of generators of I.

Indeed, if s < |M | ≤ r then mRM
/∈ Ass(RM/InM ) for all n by Fact 6.2.3 since RM is a

polynomial ring in |M | variables (Remark 2.1.28) and the ideal IM has at most s generators.
By Remark 2.1.30 it follows that p(M) /∈ Ass(R/In) for all n, i.e., BI⊇(M) = 1. This
proves the claim.

Theorem 6.2.7. Let I be a monomial ideal in k[x1, . . . , xr] and M ⊆ [r]. Further, let
A ∈ Zm×ν and b ∈ Zm≥0 such that for every n ∈ N the associated n-th solution spaces
H0,n and Hb,n (Definition 6.1.8) fulfill

(1) p(M) ∈ Ass(R/In) if and only if Hb,n/H0,n 6= 0, and

(2) for all n1, n2 ∈ N we have H0,n1H0,n2 = H0,n1+n2 .

Then BI⊇(M) ≤ ∆(A | b)(ν + 1).

Proof. This theorem is a special case of Proposition 6.1.15, where the system matrix A
and the right-hand side b are chosen such that the conditions (1) and (2) are satisfied.

The bound obtained in Theorem 6.2.7 depends on the specific choice of the system Ax ≤ b.
As a next step, we narrow our focus to the maximal ideal m, rather than considering all
prime ideals p(M), having Remark 2.1.30 in mind. For certain systems, it is then possible to
further estimate BI⊇([r]) by a new bound σ(d, s, r) which eliminates the explicit dependence
on the system matrix. Instead, this bound depends only on the number of variables r, the
number s of generators of I and their maximal total degree d. As the following lemma
shows, whenever such a function σ exists and is non-decreasing in each variable, it provides
an upper bound for the copersistence index.

Proposition 6.2.8. Let σ : N3 → N be a map that is non-decreasing in all three variables
such that for all d, s, r ∈ N the inequality BI⊇([r]) ≤ σ(d, s, r) holds, whenever I is
a monomial ideal in r variables, s generators, and whose minimal generators have total
degree at most d. Then σ(d, s, r) is an upper bound for the copersistence index BI⊇ of
every such ideal I.

Proof. LetM ⊆ [r] and IM the ideal generated by I in the localization RM of R at p(M).
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Further, let s̃ the number of minimal generators of IM and d̃ be their maximal total degree.
Then d̃ ≤ d and s̃ ≤ s. Moreover, IM is an ideal in RM which is a polynomial ring in
|M | ≤ r variables. We can conclude that

BI⊇(M) = BIM
⊇ (M) ≤ σ(d̃, s̃, |M |) ≤ σ(d, s, r),

where the leftmost equality is due to Remark 2.1.30 and the middle and rightmost inequality
follow from the hypotheses of the proposition. Since BI⊇ = max

{
BI⊇(M) |M ⊆ [r]

}
, this

finishes the proof.

In order to find a suitable function σ to bound BI⊇([r]), we set up suitable systems Ax ≤ b

for Theorem 6.2.7 to be applicable with M = [r]. In Remark 2.1.43 we gave three
statements that characterize m ∈ Ass(R/In). They are of the form

m ∈ Ass(R/In) ⇐⇒ Un/I
n 6= 0

where Un ∈
{
sat(In) ∩ In−1, In : m, sat(In)

}
. The resulting bounds are discussed below

in Subsections 6.2.3, 6.2.4, and 6.2.5. We point out that even for a fixed choice of Un
there are in general multiple options to set up a suitable system Ax ≤ b. We restrict our
investigation to specific choices.

Notation 6.2.9. In contrast to Section 6.1, we write x = (x1, . . . , xr) and t instead of
xr+1 to distinguish notationally between the variables of the ambient ring k[x1, . . . , xr] of
the ideal I and the variable t we use for the grading of Hb.

6.2.3 Approach 1: m ∈ Ass(R/In) if and only if (sat(In) ∩ In−1) 6= In

This is the approach followed by Hoa [31], yielding the upper bound for the copersistence
index BI⊇

σ1(d, s, r) := d(rs+ s+ d)(
√
r)r+1(

√
2d)(r+1)(s−1),

where r is the number of variables, s is the number of generators of I and d is their
maximal total degree. For more details, we refer to the original proofs. Proposition 2.1.48
and Remark 6.2.6 further imply

BI⊇ ≤ σ1(dred, s,min{r, s}).

6.2.4 Approach 2: m ∈ Ass(R/In) if and only if (In : m) 6= In

We set up a system of linear constraints Ax ≤ b such that Hb,n = (In : m)tn and later
show that H0,n = Intn (in the notation of Section 6.1 with Notation 6.2.9). A first idea
how to set up such a system was introduced in Example 6.1.6.

If I = (xa1 , . . . , xas), then In = (xk1a1+···+ksas | ki ∈ N0, k1 + · · · + ks = n). A
monomial xh is an element of In : m if and only if xhxi ∈ In for all i ∈ [r], i.e., there
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exists a generator of In that divides xhxi. That is, for every i ∈ [r] there exist ki,1, . . . ,
ki,s ∈ N0 such that ki,1 + · · ·+ ki,s = n and

xki1a1+···+kisas | xh+ei ,

where ei ∈ Zr is the i-th unit vector. This is equivalent to the componentwise inequal-
ity

ki,1a1 + · · ·+ ki,sas ≤ h + ei.

It suffices to demand that ki,1 + · · ·+ ki,s ≥ n, since Im ⊆ In holds for all m ≥ n.

In conclusion: A monomial xh is an element of In : m if and only if for every i ∈ [r] there
exist ki,1, . . . , ki,s ∈ N0 such that

ki,1a1 + · · ·+ ki,sas ≤ h + ei,

n− (ki,1 + · · ·+ ki,s) ≤ 0.

So for every i ∈ [r] we get a block of inequalities:

0

a1 a2 as −Ir
0

−1 −1 −1 0 0 1





ki,1

...
ki,s

h1
...
hr
n




≤ ei

0

( )

We now combine these blocks to obtain a matrix representation of the system of inequal-
ities.

Notation 6.2.10. Let m = (r + 1)r and ν = rs + r + 1. We define the matrix AIn:m ∈
Zm+ν×ν and the vector bIn:m ∈ Zm+ν in the following way:
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a1 as −Ir
−1 −1 0 0 1

a1 as −Ir
−1 −1 0 0 1

a1 as −Ir
−1 −1 0 0 1





AIn:m :=

r + 1

r + 1

r + 1

s s s r + 1

where Ir denotes the r × r identity matrix. Further, we set

bIn:m := (eT
1 , 0, . . . , eT

r , 0)T ∈ Z(r+1)r.

Theorem 6.2.11. Let I be a monomial ideal in the ring k[x1, . . . , xr] with s generators,
reduced maximal degree dred (Definition 6.2.1), and

σ2(d, s, r) := (
√
d2 + 1)rs

(√
r
)r+2 (rs+ r + 2).

Then BI⊇ ≤ σ2(dred, s,min{r, s}) holds.

Proof. Let AIn:m and bIn:m be as introduced in Notation 6.2.10. To simplify notation, we
write A = AIn:m and b = bIn:m in this proof. As explained above, Hb,n = (In : m)tn

holds.

Considering the homogeneous system Ax ≤ 0, the conditions ki,1a1+· · ·+ki,sas ≤ h+ei

change to ki,1a1 + · · ·+ki,sas ≤ h, that is, xki,1a1+···+ki,sas | xh. Hence the homogeneous
system describes the set of monomials in In, that is, H0,n = Intn.

This system satisfies the hypotheses of Theorem 6.2.7. Note that H0,nH0,m = H0,n+m

holds trivially for all non-negative integers n and m. Therefore,

BI⊇([r]) ≤ ∆(A | b)(rs+ r + 2)

holds.

We use Hadamard’s inequality to give an upper bound for ∆(A | b). The norms of the
first rs columns of A are at most

max
i∈[s]

√
a2
i,1 + · · ·+ a2

i,r + 1 ≤
√
d2 + 1.
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The remaining r + 1 columns of A and b have norm
√
r. Therefore,

BI⊇([r]) ≤ ∆(A | b)(rs+ r + 2) ≤ (
√
d2 + 1)rs(

√
r)r+2(rs+ r + 2) = σ2(d, s, r).

A straight forward verification shows that σ2 is non-decreasing in all three parameters.
Hence we can apply Proposition 6.2.8 and obtain BI⊇ ≤ σ2(d, s, r). The assertion follows
from Proposition 2.1.48 and Remark 6.2.6.

6.2.5 Approach 3: m ∈ Ass(R/In) if and only if sat(In) 6= In

Not too surprisingly, this approach turns out to be very similar to the one we presented in
Section 6.2.4. Indeed, the augmented system matrices are almost identical. The resulting
bound for BI⊇ is greater than σ2(dred, s,min{r, s}) of the previous subsection. However,
we briefly describe this approach here to demonstrate that there are several options to
construct a system of linear inequalities that is suitable for Theorem 6.2.7.

By definition, sat(In) =
⋃
k∈N0 I

n : mk. As an increasing sequence of ideals in the
Noetherian ring R, the sequence In : m0 ⊆ In : m1 ⊆ In : m2 ⊆ · · · becomes stationary
at some power N ∈ N of m. Hence, sat(In) =

⋃N
k=0 I

n : mk. We will see in Remark 6.2.13
below that the precise value of N is not relevant in what follows. By Remark 2.1.40 we
have sat(In) =

⋂r
i=1(In : x∞i ) which implies

sat(In) =
⋃

(k1,...,kr)∈Nr
0

In : (xk1
1 , . . . , x

kr
r ) ⊇

⋃
(k1,...,kr)∈Nr

0, ki≤N
In : (xk1

1 , . . . , x
kr
r ).

The reverse inclusion also holds, since if w ∈ sat(In), then there exists a k ≤ N such that
w ∈ In : mk. As (xk1, xk2, . . . , xkr ) ⊆ mk, this implies that w ∈ In : (xk1, xk2, . . . , xkr ). We
conclude

xh ∈ sat(In)⇐⇒ there exist k1, . . . , kr ≤ N such that for all i ∈ [r], we have xhxki
i ∈ I

n

⇐⇒ xhxNi ∈ In for all i ∈ [r].

This is equivalent to the existence of ki,1, . . . , ki,s ≥ 0 for all i ∈ [r] with

−(ki,1 + · · ·+ ki,s) + n ≤ 0,

ki,1a1 + · · ·+ ki,sas ≤ h +Nei.

Notation 6.2.12. Let AIn:m and bIn:m be as in Notation 6.2.10. Then we set

Asat(In) := AIn:m and bsat(In) := N · bIn:m.

Remark 6.2.13. By construction, Hb,n = sat(In)tn holds for the system Asat(In) x ≤
bsat(In). The same argument as in Subsection 6.2.4 yields H0,n = Intn.
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Remark 6.2.14. Since ∆(Asat(In) | bsat(In)) = ∆(AIn:m | N · bIn:m) ≥ ∆(AIn:m | bIn:m)
holds, using the system Asat(In) x ≤ bsat(In) in Theorem 6.2.7 and the same technique as
in Theorem 6.2.11 does not improve the upper bound for BI⊇ obtained in Theorem 6.2.11.

Remark 6.2.15. As pointed out earlier, there may be more than one choice to set up a
system matrix. Another idea was to use that sat(In) = (In : x∞1 ) ∩ · · · ∩ (In : x∞r ).
However, the corresponding system is already homogeneous and hence Theorem 6.2.7 is
not applicable.

6.3 Comparison of the different approaches

We already established that our approach in Subsection 6.2.5 does not result in a bet-
ter bound than σ2(dred, s,min{r, s}). It remains to compare the bounds from Subsec-
tions 6.2.3 and 6.2.4.

Proposition 6.3.1. Let 2 ≤ r ≤ s and d ≥ 2. Then

σ2(d, s, r) < q(d)rs√
2r
· σ2(d, s, r) ≤ σ1(d, s, r)

holds, where q(d) := d
√

2√
d2+1 > 1.

Proof. Due to the hypothesis, we can estimate

σ1(d, s, r)
σ2(d, s, r) =

d(rs+ s+ d) (
√
r)r+1

(√
2d
)(r+1)(s−1)

(
√
d2 + 1)rs (

√
r)r+2 (rs+ r︸︷︷︸

≤s

+ 2︸︷︷︸
≤d

)
≥ drs+s−r

√
2rs+s−r−1

(
√
d2 + 1)rs

√
r

= q(d)rs · d
s−r√2s−r√

2r
≥ q(d)rs√

2r
.

This proves the second inequality in the statement of the proposition. For the first in-
equality, we show that q(d)rs

√
2r > 1 holds. Since q(d) is increasing in d and s ≥ r, it follows

that

q(d)rs√
2r
≥ q(2)r2

√
2r

=: ϕ(r).

The latter expression ϕ(r) is increasing in r, because

q(2)r2

√
2r

<
q(2)r2+2r+1√

2(r + 1)
⇐⇒ r + 1 < q(2)2(2r+1) · r,

where the inequality on the right-hand side holds since q(2)2(2r+1) ≥ q(2)10 = (8/5)5 > 10.
Evaluating ϕ(2) gives 64/50 > 1.
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