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Problem 1. Let a, b, c, d be real numbers with 0 < a, b, c, d < 1 and a+ b+ c+ d = 2. Show that√
(1− a)(1− b)(1− c)(1− d) ≤ ac+ bd

2
.

Are there infinitely many cases of equality?
(Josef Greilhuber)

Solution. Squaring the given inequality and multiplying by 16, we get

(2− 2a)(2− 2b)(2− 2c)(2− 2d) ≤ 4(ac+ bd)2.

We homogenize by replacing the first 2 in each parenthesis on the left side by a+ b+ c+ d and get
the homogeneous inequality

(b+ d− (a− c))(a+ c− (b− d))(b+ d+ a− c)(a+ c+ b− d) ≤ 4(ac+ bd)2.

We evaluate the left-hand side by repeatedly combining two factors and get

(b+ d− (a− c)) (a+ c− (b− d)) (b+ d+ a− c) (a+ c+ b− d)

=
(
(a+ c)2 − (b− d)2)((b+ d)2 − (a− c)2

)
=

(
2ac+ 2bd+ a2 + c2 − b2 − d2

) (
2ac+ 2bd− a2 − c2 + b2 + d2

)
= 4 (ac+ bd)2 − (a2 + c2 − b2 − d2)2 ≤ 4 (ac+ bd)2 ,

which proves the inequality.
Equality holds for a2 + c2 = b2 + d2, in particular for a = b and c = d = 1 − a with 0 < a < 1.

Therefore, there are infinitely many equality cases.
(Josef Greilhuber)

Problem 2. Let ABC be a triangle. Let P be the point on the extension of BC beyond B such that
BP = BA. Let Q be the point on the extension of BC beyond C such that CQ = CA.

Prove that the circumcenter O of the triangle APQ lies on the angle bisector of the angle ∠BAC.
(Karl Czakler)

Solution. Since ACQ is an isosceles triangle, the perpendicular bisector of AQ is the angle bisector of
∠QCA. But the perpendicular bisector of AQ also passes through the circumcenter O of the triangle
APQ.

Therefore, O lies on the angle bisector of ∠QCA which is the exterior angle bisector of ∠ACB by
definition of Q.

Analogously, the point O lies also on the exterior angle bisector of ∠CBA. Therefore, the point O is
the intersection of the two exterior angle bisectors which makes it the excenter of the excircle of ABC
tangent to BC. This excenter lies on the angle bisector of ∠BAC as desired.

(Theresia Eisenkölbl)
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Figure 1: Problem 2

Problem 3. Let n be a positive integer. What proportion of the non-empty subsets of {1, 2, . . . , 2n} has
a smallest element that is odd?

(Birgit Vera Schmidt)

Solution. The number of subsets of {1, 2, . . . , 2n} that have k as smallest element is 22n−k for 1 ≤ k ≤ 2n
since each element bigger than k is either contained in the subset or not.

The number O of subsets with an odd smallest element is therefore equal to

O = 22n−1 + 22n−3 + · · ·+ 23 + 21 = 2 · (4n−1 + 4n−2 + · · ·+ 41 + 40).

The number E of subsets with an even smallest element is equal to

E = 22n−2 + 22n−4 + · · ·+ 22 + 20 = 4n−1 + 4n−2 + · · ·+ 41 + 40.

This implies O = 2E and consequently the desired proportion is 2/3.
(Birgit Vera Schmidt)

Problem 4. Determine all pairs of positive integers (n, k) for which

n! + n = nk

holds.
(Michael Reitmeir)

Answer. The only solutions are (2, 2), (3, 2) and (5, 3).

Solution. Because of n! + n > n, we immediately get k ≥ 2. We divide both sides of the equation by n
and get

(n− 1)! + 1 = nk−1.

Now, we distinguish two cases:

• n is not a prime.
Since n is clearly not 1, we can write n as n = ab for integers a, b with 1 < a, b < n which implies
1 < a ≤ n − 1 and therefore a | (n − 1)!. We conclude that a > 1 is relatively prime to the
left-hand side (n − 1)! + 1, but a divides the right-hand side nk−1. This is not possible, so there
are no solutions in this case.
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• n is a prime.
We check n = 2, 3, 5 and find the solutions (2, 2), (3, 2) and (5, 3).

From now on, let n ≥ 7. We get

(n− 1)! = nk−1 − 1

=⇒ (n− 1)! = (1 + n+ n2 + · · ·+ nk−2)(n− 1)

=⇒ (n− 2)! = 1 + n+ n2 + · · ·+ nk−2

Since n is prime and bigger than 3, the number n− 1 is even and not a prime. Furthermore, n− 1
is not the square of a prime since 4 is the only even square of a prime and n− 1 ≥ 6. Therefore,
we get n− 1 = ab with 1 < a, b ≤ n− 1 and a ̸= b. We obtain that (n− 2)! contains the separate
factors a and b and is therefore divisible by ab = n − 1 which implies (n − 2)! ≡ 0 mod (n − 1).
Furthermore, n ≡ 1 mod (n− 1), and therefore

0 ≡ 1 + 1 + 12 + · · ·+ 1k−2 ≡ k − 1 mod (n− 1).

We conclude that n− 1 divides k − 1 and we write k − 1 = l(n− 1) for a positive integer l. The
case k = 1 and l = 0 has already been treated. Therefore, we get k − 1 ≥ n− 1.

However,

(n− 1)! = 1 · 2 · 3 · · · (n− 1) < (n− 1) · (n− 1) · · · (n− 1)︸ ︷︷ ︸
n−1 times

= (n− 1)n−1,

and therefore
nk−1 = (n− 1)! + 1 ≤ (n− 1)n−1 < nn−1 ≤ nk−1,

giving a contradiction. So there are no further solutions.

(Michael Reitmeir)
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