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Problem 1. We consider the sequences (an)n≥0 and (bn)n≥0 which are defined by a0 = b0 = 2 and
a1 = b1 = 14 and by

an = 14an−1 + an−2,

bn = 6bn−1 − bn−2

for n ≥ 2.
Decide whether there are infinitely many integers which occur in both sequences.

(Gerhard Woeginger)

Answer. Yes.

Solution. Sequence (an) starts with values 2, 14, 198, 2786, 39202, 551614. Sequence (bn) starts with
values 2, 14, 82, 478, 2786, 16238, 94642, 551614. We therefore conjecture that a2k+1 = b3k+1 holds for
k ≥ 0.

Shifting the recurrence yields

an+2 − 14an+1 − an = 0,

an+1 − 14an − an−1 = 0,

an − 14an−1 − an−2 = 0

for n ≥ 2. Multiplying these recurrences by 1, 14 and −1, respectively, and taking the sum yields
an+2 − 198an + an−2 = 0 and thus

an+2 = 198an − an−2

for n ≥ 2.
Shifting the recurrence of (bn) yields

bn+3 − 6bn+2 + bn+1 = 0,

bn+2 − 6bn+1 + bn = 0,

bn+1 − 6bn + bn−1 = 0,

bn − 6bn−1 + bn−2 = 0,

bn−1 − 6bn−2 + bn−3 = 0

for n ≥ 3. Multiplying these recurrences by 1, 6, 35, 6 and 1, respectively, and taking the sum yields
bn+3 − 198bn + bn−3 = 0 and thus

bn+3 = 198bn − bn−3

for n ≥ 3.
We see that the subsequences (a2k+1) and (b3k+1) have the same initial values a1 = b1 = 14 and

a3 = b4 = 2786 and fulfil the same recurrence. This implies that a2k+1 = b3k+1 for all k ≥ 0.
From the given recurrence, it is obvious that the sequence (an) is strictly increasing. Thus we also

get infinitely many values which occur in both sequences.
(Gerhard J. Woeginger)
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Problem 2. Let ABC be a triangle and I its incenter. The circumcircle of ACI intersects the line BC
a second time in the point X and the circumcircle of BCI intersects the line AC a second time in the
point Y .

Prove that the segments AY and BX are of equal length.
(Theresia Eisenkölbl)

Solution. We shall show that AB = BX holds. Since AB = AY then follows by the same argument,
this completes the proof (see Figure 1).
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Figure 1: Problem 2

In this solution, we use oriented angles between lines (modulo 180°) with the notation ∠PQR. As
usual the angles of the triangle ABC are denoted by α = ∠BAC, β = ∠CBA and γ = ∠ACB.

The inscribed angle theorem gives

∠AXB = ∠AXC = ∠AIC = −∠CIA = 180° − ∠CIA = ∠IAC + ∠ACI =
1

2
(α + γ).

This immediately implies

∠BAX = −∠AXB − ∠XBA = −1

2
(α + γ)− β =

1

2
(α + γ).

Therefore, the triangle ABX is indeed isosceles, and we are done.
(Theresia Eisenkölbl)

Problem 3. Let n ≥ 2 be an integer.
Ariane and Bérénice play a game on the set of residue classes modulo n. In the beginning, the residue

class 1 is written on a piece of paper. In each move, the player whose turn it is replaces the current
residue class x with either x+ 1 or 2x. The two players alternate with Ariane starting.

Ariane has won if the residue class 0 is reached during the game. Bérénice has won if she can
permanently avoid this outcome.

For each value of n, determine which player has a winning strategy.
(Theresia Eisenkölbl)

Answer. Ariane wins for n = 2, 4 and 8, for all other n ≥ 2 Bérénice wins.

Solution. We observe: If Ariane can win for a certain n, she will also win for all divisors of n, and
conversely, if Bérénice can win for a certain n, she will also win for all multiples of n because a residue
0 modulo n is automatically a residue 0 for all divisors of n.

It remains to show that Ariane wins for n = 8 and Bérénice wins for n = 16 and n odd.
All congruences in this solution are modulo n.
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• For n = 8, Ariane has to choose 2 in the first step. If Bérénice takes 4, Ariane can choose 8 ≡ 0
and has won. If Bérénice takes 3, Ariane can choose 6. Now, Bérénice has to decide between 7
and 2 · 6 = 12 ≡ 4. But for both, Ariane can immediately choose 8 ≡ 0.

• For n = 16, Bérénice chooses 2x for all numbers except 4 and 8. This clearly never gives the
residue classes 0, 15 or 8, so that Ariane also cannot choose 0.

• For n = 3, Ariane has to choose 2 in the first step and then Bérénice chooses 1 again, which means
that Bérénice wins.

• For odd n > 3, it is not possible to reach 0 with 2x from another residue class. So the only possible
issue for Bérénice would be the situation that both her options are among n and n− 1 such that
she or Ariane choose 0. But this means that x + 1 takes the residues 0 or −1, so 2x takes the
residues −2 or −4 which are both different from 0 and −1, so this cannot happen and Bérénice
can permanently avoid 0 being chosen.

(Theresia Eisenkölbl)

Problem 4. Find all pairs (a, b) of real numbers such that

a · ⌊b · n⌋ = b · ⌊a · n⌋

for all positive integers n.
(Walther Janous)

Answer. The solutions are all pairs (a, b) with a = 0 or b = 0 or a = b or both a and b integers.

Solution. Let a0 = ⌊a⌋ and ai be the binary digits of the fractional part of a such that a = a0 +
∑∞

i=1
ai
2i

with a0 ∈ Z and ai ∈ {0, 1} for i ≥ 1. Similarly, let b = b0 +
∑∞

i=1
bi
2i

with b0 ∈ Z and bi ∈ {0, 1} for
i ≥ 1. In the case of a non-unique binary expansion, we choose the expansion ending on infinitely many
zeros.

Now choose n = 2k and n = 2k−1 in the given equation. We get the equations

a

(
2kb0 +

k∑
i=1

bi2
k−i

)
= b

(
2ka0 +

k∑
i=1

ai2
k−i

)
,

a

(
2k−1b0 +

k−1∑
i=1

bi2
k−i−1

)
= b

(
2k−1a0 +

k−1∑
i=1

ai2
k−i−1

)
.

The first equation for k = 0 and the difference of the first equation and the doubled second equation
for k ≥ 1 yields

abk = bak (1)

for k ≥ 0.
Now, we consider three cases. If one or both of a and b are zero, then the original equation is

clearly satisfied. If both fractional parts are zero, then both numbers are integers and again, the original
equation is satisfied. So, finally, we consider the case that a, b ̸= 0 and that there is a k ≥ 1 with ak = 1.
The equation (1) shows that bk cannot be zero, so we get bk = 1 and thus from the same equation a = b.
This clearly satisfies the original equation. (Of course, bk = 1 leads to the same conclusion.) Therefore,
the solutions are exactly the pairs listed in the answer.

(Theresia Eisenkölbl)
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