

**Problem 1.** Determine all polynomials  $P(x) \in \mathbb{R}[x]$  satisfying the following two conditions:

- (a) P(2017) = 2016 and
- (b)  $(P(x) + 1)^2 = P(x^2 + 1)$  for all real numbers x.

(Walther Janous)

Solution. Letting Q(x) := P(x) + 1 we get the two new conditions Q(2017) = 2017 and  $Q(x^2 + 1) = Q(x)^2 + 1$ ,  $x \in \mathbb{R}$ .

We now define the sequence  $\langle x_n \rangle_{n \ge 0}$  recursively by  $x_0 = 2017$  and  $x_{n+1} = x_n^2 + 1$ ,  $n \ge 0$ . A straightforward induction yields  $Q(x_n) = x_n$ ,  $n \ge 0$ , because  $Q(x_{n+1}) = Q(x_n^2 + 1) = Q(x_n)^2 + 1 = x_n^2 + 1 = x_{n+1}$ .

Because of  $x_0 < x_1 < x_2 < \cdots$  the two polynomials Q(x) and id(x) = x coincide at infinitely many arguments x. Therefore, Q(x) = x and thus the unique polynomial satisfying the two conditions of our problem is P(x) = x - 1.

(Walther Janous)  $\Box$ 

**Problem 2.** Let ABCDE be a regular pentagon with center M. A point  $P \neq M$  is chosen on the line segment MD. The circumcircle of ABP intersects the line segment AE in A and Q and the line through P perpendicular to CD in P and R.

Prove that AR and QR are of the same length.

(Stephan Wagner)

Solution. Let S denote the common point of RP and AE, see Figure 1. Since we are given a regular pentagon, the angles in triangle ABE are well known as  $\angle BAE = 108^{\circ}$  and  $\angle ABE = \angle AEB = 36^{\circ}$ . Since BE and CD are parallel, RP is perpendicular to BE, and we therefore have  $\angle ASP = 126^{\circ}$  and  $\angle QSP = 54^{\circ} = \angle ASR$ . From this,

$$\angle SPA = 54^{\circ} - \angle SAP = \angle PAB - 54^{\circ} = \angle PBA - 54^{\circ} = 126^{\circ} - \angle AQP = 126^{\circ} - \angle SQP = \angle SPQ$$

follows, since ABPQ is inscribed. We therefore see that SP (or RP) bisects the angle  $\angle APQ$ , which implies that AR and QR must be of equal length, as claimed.

(Stephan Wagner)  $\Box$ 

**Problem 3.** Anna and Berta play a game in which they take turns in removing marbles from a table. Anna takes the first turn. When at the beginning of a turn there are  $n \ge 1$  marbles on the table, then the player whose turn it is removes k marbles, where  $k \ge 1$  either is an even number with  $k \le \frac{n}{2}$  or an odd number with  $\frac{n}{2} \le k \le n$ . A player wins the game if she removes the last marble from the table.

Determine the smallest number  $N \ge 100\,000$  such that Berta can enforce a victory if there are exactly N marbles on the table in the beginning.

(Gerhard Woeginger)



Figure 1: Problem 2

Solution. We claim that the losing situations are those with exactly  $n = 2^a - 2$  marbles left on the table for all integers  $a \ge 2$ . All other situations are winning situations.

- Proof: By induction for  $n \ge 1$ . For n = 1 the player wins by taking the single remaining marble. For n = 2 the only possible move is to take k = 1 marbles, and then the opponent wins in the next move.
- Induction step from n-1 to n for  $n \ge 3$ :
  - 1. If n is odd, then the player takes all n marbles and wins.
  - 2. If n is even but not of the form  $2^a 2$ , then n lies between two other numbers of that form, so there exists a unique b with  $2^b - 2 < n < 2^{b+1} - 2$ . Because of  $n \ge 3$  it holds that  $b \ge 2$ . Therefore all three numbers in this chain of inequalities are even, and therefore we can conclude that  $2^b \le n \le 2^{b+1} - 4$ . From the induction hypothesis we know that  $2^b - 2$  is a losing situation, and by taking

$$k = n - (2^{b} - 2) = n - \frac{2^{b+1} - 4}{2} \le n - \frac{n}{2} = \frac{n}{2}$$

marbles we leave it to the opponent.

3. If n is even and of the form  $n = 2^a - 2$ , then the player cannot leave a losing situation with  $2^b - 2$  marbles to the opponent (where b < a holds because at least one marble must be removed, and  $b \ge 2$  holds because after a legal move starting from an even n, at least one marble remains). In order to do so, the player would have to remove  $k = (2^a - 2) - (2^b - 2) = 2^a - 2^b$  marbles. But because of  $b \ge 2$  we know that k is even and strictly greater than  $\frac{n}{2}$  because of  $2^a - 2^b \ge 2^a - 2^{a-1} = 2^{a-1} > 2^{a-1} - 1 = \frac{2^a - 2}{2} = \frac{n}{2}$ ; impossible.

Solution: Berta can enforce a victory if and only if N is of the form  $2^a - 2$ . The smallest number  $N \ge 100\,000$  of this form is  $N = 2^{17} - 2 = 131\,070$ .

(Gerhard Woeginger)  $\Box$ 

**Problem 4.** Find all pairs (a, b) of non-negative integers such that

$$2017^a = b^6 - 32b + 1.$$

(Walther Janous)

Solution. Answer: The two solutions are (0,0) and (0,2).

Since  $2017^a$  is always odd, b must be even, so b = 2c, c integer. Therefore,  $2017^a = 64(c^6 - c) + 1$  and thus  $2017^a \equiv 1 \pmod{64}$ . But we find  $2017 \equiv 33 \pmod{64}$  and  $2017^2 \equiv (1+32)^2 = 1+2 \cdot 32+32^2 \equiv 1 \pmod{64}$ , so that the powers of 2017 modulo 64 alternate between 1 and 33. Therefore, a is even and  $2017^a$  is a perfect square. We denote the polynomial on the right-hand side of the given equation by  $r(b) = b^6 - 32b + 1$  and show that it lies between two consecutive squares for b > 4:

Let b > 4. We have  $r(b) < b^6 = (b^3)^2$  for b > 0. On the other hand,  $r(b) > (b^3 - 1)^2$  because  $b^6 - 32b + 1 > b^6 - 2b^3 + 1 \Leftrightarrow b > 4$ . Since the square  $2017^a$  is now between two consecutive squares, there are no solutions in this case.

Since b is even, it remains to check b = 4, b = 2 and b = 0.

For b = 4, we regard the equation modulo 3 and get  $1 \equiv 1 - 2 + 1 = 0$ , therefore, there is no solution in this case.

For b = 2, we get  $2017^a = 2^6 - 2^6 + 1$ , so we get the solution (a, b) = (0, 2).

For b = 0, we get  $2017^a = 1$ , so we get the solution (a, b) = (0, 0).

Therefore, (0,0) and (0,2) are the only solutions.

(Walther Janous)  $\Box$