

$48^{\text {th }}$ Austrian Mathematical Olympiad

National Competition (Final Round, part 1)—Solutions 30th April 2017

Problem 1. Determine all polynomials $P(x) \in \mathbb{R}[x]$ satisfying the following two conditions:
(a) $P(2017)=2016$ and
(b) $(P(x)+1)^{2}=P\left(x^{2}+1\right)$ for all real numbers x.
(Walther Janous)

Solution. Letting $Q(x):=P(x)+1$ we get the two new conditions $Q(2017)=2017$ and $Q\left(x^{2}+1\right)=$ $Q(x)^{2}+1, x \in \mathbb{R}$.

We now define the sequence $\left\langle x_{n}\right\rangle_{n \geq 0}$ recursively by $x_{0}=2017$ and $x_{n+1}=x_{n}^{2}+1, n \geq 0$. A straightforward induction yields $Q\left(x_{n}\right)=x_{n}, n \geq 0$, because $Q\left(x_{n+1}\right)=Q\left(x_{n}^{2}+1\right)=Q\left(x_{n}\right)^{2}+1=$ $x_{n}^{2}+1=x_{n+1}$.

Because of $x_{0}<x_{1}<x_{2}<\cdots$ the two polynomials $Q(x)$ and $\mathrm{id}(x)=x$ coincide at infinitely many arguments x. Therefore, $Q(x)=x$ and thus the unique polynomial satisfying the two conditions of our problem is $P(x)=x-1$.
(Walther Janous)

Problem 2. Let $A B C D E$ be a regular pentagon with center M. A point $P \neq M$ is chosen on the line segment $M D$. The circumcircle of $A B P$ intersects the line segment $A E$ in A and Q and the line through P perpendicular to $C D$ in P and R.

Prove that $A R$ and $Q R$ are of the same length.
(Stephan Wagner)

Solution. Let S denote the common point of $R P$ and $A E$, see Figure 11. Since we are given a regular pentagon, the angles in triangle $A B E$ are well known as $\angle B A E=108^{\circ}$ and $\angle A B E=\angle A E B=36^{\circ}$. Since $B E$ and $C D$ are parallel, $R P$ is perpendicular to $B E$, and we therefore have $\angle A S P=126^{\circ}$ and $\angle Q S P=54^{\circ}=\angle A S R$. From this,

$$
\angle S P A=54^{\circ}-\angle S A P=\angle P A B-54^{\circ}=\angle P B A-54^{\circ}=126^{\circ}-\angle A Q P=126^{\circ}-\angle S Q P=\angle S P Q
$$

follows, since $A B P Q$ is inscribed. We therefore see that $S P$ (or $R P$) bisects the angle $\angle A P Q$, which implies that $A R$ and $Q R$ must be of equal length, as claimed.
(Stephan Wagner)
Problem 3. Anna and Berta play a game in which they take turns in removing marbles from a table. Anna takes the first turn. When at the beginning of a turn there are $n \geq 1$ marbles on the table, then the player whose turn it is removes k marbles, where $k \geq 1$ either is an even number with $k \leq \frac{n}{2}$ or an odd number with $\frac{n}{2} \leq k \leq n$. A player wins the game if she removes the last marble from the table.

Determine the smallest number $N \geq 100000$ such that Berta can enforce a victory if there are exactly N marbles on the table in the beginning.

Figure 1: Problem 2
Solution. We claim that the losing situations are those with exactly $n=2^{a}-2$ marbles left on the table for all integers $a \geq 2$. All other situations are winning situations.

Proof: By induction for $n \geq 1$. For $n=1$ the player wins by taking the single remaining marble. For $n=2$ the only possible move is to take $k=1$ marbles, and then the opponent wins in the next move.

Induction step from $n-1$ to n for $n \geq 3$:

1. If n is odd, then the player takes all n marbles and wins.
2. If n is even but not of the form $2^{a}-2$, then n lies between two other numbers of that form, so there exists a unique b with $2^{b}-2<n<2^{b+1}-2$. Because of $n \geq 3$ it holds that $b \geq 2$. Therefore all three numbers in this chain of inequalities are even, and therefore we can conclude that $2^{b} \leq n \leq 2^{b+1}-4$. From the induction hypothesis we know that $2^{b}-2$ is a losing situation, and by taking

$$
k=n-\left(2^{b}-2\right)=n-\frac{2^{b+1}-4}{2} \leq n-\frac{n}{2}=\frac{n}{2}
$$

marbles we leave it to the opponent.
3. If n is even and of the form $n=2^{a}-2$, then the player cannot leave a losing situation with $2^{b}-2$ marbles to the opponent (where $b<a$ holds because at least one marble must be removed, and $b \geq 2$ holds because after a legal move starting from an even n, at least one marble remains). In order to do so, the player would have to remove $k=\left(2^{a}-2\right)-\left(2^{b}-2\right)=2^{a}-2^{b}$ marbles. But because of $b \geq 2$ we know that k is even and strictly greater than $\frac{n}{2}$ because of $2^{a}-2^{b} \geq$ $2^{a}-2^{a-1}=2^{a-1}>2^{a-1}-1=\frac{2^{a}-2}{2}=\frac{n}{2}$; impossible.

Solution: Berta can enforce a victory if and only if N is of the form $2^{a}-2$. The smallest number $N \geq 100000$ of this form is $N=2^{17}-2=131070$.
(Gerhard Woeginger)

Problem 4. Find all pairs (a, b) of non-negative integers such that

$$
2017^{a}=b^{6}-32 b+1
$$

Solution. Answer: The two solutions are $(0,0)$ and $(0,2)$.
Since 2017^{a} is always odd, b must be even, so $b=2 c, c$ integer. Therefore, $2017^{a}=64\left(c^{6}-c\right)+1$ and thus $2017^{a} \equiv 1(\bmod 64)$. But we find $2017 \equiv 33(\bmod 64)$ and $2017^{2} \equiv(1+32)^{2}=1+2 \cdot 32+32^{2} \equiv 1$ $(\bmod 64)$, so that the powers of 2017 modulo 64 alternate between 1 and 33 . Therefore, a is even and 2017^{a} is a perfect square. We denote the polynomial on the right-hand side of the given equation by $r(b)=b^{6}-32 b+1$ and show that it lies between two consecutive squares for $b>4$:

Let $b>4$. We have $r(b)<b^{6}=\left(b^{3}\right)^{2}$ for $b>0$. On the other hand, $r(b)>\left(b^{3}-1\right)^{2}$ because $b^{6}-32 b+1>b^{6}-2 b^{3}+1 \Leftrightarrow b>4$. Since the square 2017^{a} is now between two consecutive squares, there are no solutions in this case.

Since b is even, it remains to check $b=4, b=2$ and $b=0$.
For $b=4$, we regard the equation modulo 3 and get $1 \equiv 1-2+1=0$, therefore, there is no solution in this case.

For $b=2$, we get $2017^{a}=2^{6}-2^{6}+1$, so we get the solution $(a, b)=(0,2)$.
For $b=0$, we get $2017^{a}=1$, so we get the solution $(a, b)=(0,0)$.
Therefore, $(0,0)$ and $(0,2)$ are the only solutions.
(Walther Janous)

