

49th Austrian Mathematical Olympiad

Beginners' Competition—Solutions 12th June 2018

Problem 1. Let a, b and c denote positive real numbers. Prove that

$$\frac{a}{c} + \frac{c}{b} \ge \frac{4a}{a+b}.$$

When does equality hold?

(Walther Janous)

Solution. (Gerhard Kirchner) Multiplication by bc and completing squares yields

$$\left(c - \frac{2ab}{a+b}\right)^2 + ab\left(\frac{a-b}{a+b}\right)^2 \ge 0.$$

Equality holds if a = b and $c = \frac{2ab}{a+b}$, i. e. for a = b = c.

Problem 2. Let ABC be an acute-angled triangle, M the midpoint of the side AC and F the foot on AB of the altitude through the vertex C.

Prove that AM = AF holds if and only if $\angle BAC = 60^{\circ}$.

(Karl Czakler)

Solution. (Karl Czakler) We will prove the two directions of the equivalence separately.

• Let AM = AF.

Since $\triangle ACF$ is rectangular, the Thales theorem gives AM = MF. Hence the triangle AMF is equilateral and therefore $\angle BAC = 60^{\circ}$.

• Now let $\angle BAC = 60^{\circ}$.

Since $\triangle ACF$ is rectangular, we again have AM = MF. Now $\triangle AMF$ is isosceles and the base angle is $\angle BAC = \angle FAM = 60^{\circ}$. Thus, the other base angle $\angle AFM$ also equals 60°. Hence all angles are 60°. Therefore, $\triangle AMF$ is equilateral and we have AM = AF.

Problem 3. For a given integer $n \ge 4$ we examine whether there exists a table with three rows and n columns which can be filled by the numbers 1, 2, ..., 3n such that

- each row totals to the same sum z and
- each column totals to the same sum s.

Prove:

- (a) If n is even, such a table does not exist.
- (b) If n = 5, such a table does exist.

(Gerhard J. Woeginger)

Solution. (Gerhard Kirchner)

1. Summing up all entries we get

$$1 + 2 + \ldots + 3n = \frac{3n(3n+1)}{2} = 3z = ns.$$

Hence $s = \frac{3(3n+1)}{2}$. If n is even, then 3n + 1 and hence also 3(3n + 1) are odd. Therefore s is not an integer, a contradiction.

2. For n = 5 we get s = 24 and z = 40. For example the following table fulfills the conditions:

15	6	2	7	10
8	4	13	12	3
1	14	9	5	11

Problem 4. For a positive integer n we denote by d(n) the number of positive divisors of n and by s(n)the sum of these divisors. For example, d(2018) is equal to 4 since 2018 has four divisors (1, 2, 1009, 2018) and s(2018) = 1 + 2 + 1009 + 2018 = 3030. Determine all positive integers x such that $s(x) \cdot d(x) = 96$.

(Richard Henner)

Solution. (Clemens Heuberger) We note that d(1)s(1) = 1. For all $x \ge 2$, we have $d(x) \ge 2$ and $s(x) \ge x$. Thus d(x)s(x) = 96 implies that $2x \le 96$ and thus $x \le 48$. Checking all remaining cases $2 \le x \le 48$ leads to the solutions $x \in \{14, 15, 47\}$. Of course, the number of cases to consider can be reduced by more refined case distinctions, e.g. with respect to d(x).