

Beginners' Competition - Solutions

June 9, 2015

Problem 1. Let a, b, c be integers with $a^{3}+b^{3}+c^{3}$ divisible by 18. Prove that abc is divisible by 6 .
(Karl Czakler)
Solution. We need to prove that $a b c$ is divisible by 2 and by 3 . We will give proofs by contradiction.
Suppose that $a b c$ is odd. This implies that a, b and c are odd. Therefore, $a^{3}+b^{3}+c^{3}$ is odd and certainly not divisible by 18 . This contradiction shows that $a b c$ is even.

Suppose that $a b c$ is not divisible by 3 . Then neither a, b nor c is divisible by 3, i.e. they are in (possibly distinct) congruence classes among the following congruence classes mod 9.

$$
\begin{array}{c|c|c|c|c|c|c|}
x & 1 & 2 & 4 & -4 & -2 & -1 \\
\hline x^{3} & 1 & -1 & 1 & -1 & 1 & -1
\end{array}
$$

We conclude that $a^{3}+b^{3}+c^{3}$ is equal to $-3,-1,1$ or $3 \bmod 9$. Therefore, $a^{3}+b^{3}+c^{3}$ is not divisible 9 and consequently not by 18 . This contradiction shows that $a b c$ is divisible by 3 .
(Gerhard Kirchner)
Problem 2. Let x, y be positive real numbers with $x y=4$.
Prove that

$$
\frac{1}{x+3}+\frac{1}{y+3} \leq \frac{2}{5}
$$

For which x and y does equality hold?
(Walther Janous)
Solution. Clearing denominators, we obtain the equivalent inequality

$$
5 x+5 y+30 \leq 2 x y+6 x+6 y+18
$$

which simplifies to $x+y \geq 12-2 x y=4$. This inequality is a direct consequence of the AM-GM inequality

$$
\frac{x+y}{2} \geq \sqrt{x y}=2 .
$$

Equality holds exactly for $x=y=2$.
(Walther Janous)
Problem 3. Anton chooses as starting number an integer $n \geq 0$ which is not a square. Berta adds to this number its successor $n+1$. If this sum is a perfect square, she has won. Otherwise, Anton adds to this sum, the subsequent number $n+2$. If this sum is a perfect square, he has won. Otherwise, it is again Berta's turn and she adds the subsequent number $n+3$, and so on.

Prove that there are infinitely many starting numbers, leading to Anton's win.
(Richard Henner)
Solution. We will prove that Anton wins for the infinity of starting numbers $3 x^{2}-1$ with $x \geq 1$.
Since $3 x^{2}-1 \equiv 2 \bmod 3$, it cannot be a perfect square. After Berta adds the subsequent integer $3 x^{2}$, the sum $6 x^{2}-1$ is also $\equiv 2 \bmod 3$ and consequently not a perfect square. Now Anton adds the subsequent number $3 x^{2}+1$ and obtains the perfect square $9 x^{2}$. Therefore, Anton has won and we have found an infinity of possible starting numbers.
(Richard Henner)

Problem 4. Let k_{1} and k_{2} be internally tangent circles with common point X. Let P be a point lying neither on one of the two circles nor on the line through the two centers. Let N_{1} be the point on k_{1} closest to P and F_{1} the point on k_{1} that is farthest from P. Analogously, let N_{2} be the point on k_{2} closest to P and F_{2} the point on k_{2} that is farthest from P.

Prove that $\angle N_{1} X N_{2}=\angle F_{1} X F_{2}$.
(Robert Geretschläger)
Solution. The line segment $N_{1} F_{1}$ is a diameter of k_{1} passing through P. Similarly, $N_{2} F_{2}$ is a diameter of k_{2} passing through P.

Due to Thales's theorem, we have $\angle N_{1} X F_{1}=90^{\circ}$ and $\angle N_{2} X F_{2}=90^{\circ}$.
Letting $\angle N_{2} X F_{1}=\alpha$, we obtain

$$
\angle N_{1} X N_{2}=90^{\circ}-\alpha \quad \text { and } \quad \angle F_{1} X F_{2}=90^{\circ}-\alpha,
$$

which proves the equality of the angles.

Figure 1: Problem 4
(Karl Czakler)

