

46th Austrian Mathematical Olympiad

Beginners' Competition – Solutions June 9, 2015

Problem 1. Let a, b, c be integers with $a^3 + b^3 + c^3$ divisible by 18. Prove that abc is divisible by 6. (Karl Czakler)

Solution. We need to prove that abc is divisible by 2 and by 3. We will give proofs by contradiction.

Suppose that *abc* is odd. This implies that *a*, *b* and *c* are odd. Therefore, $a^3 + b^3 + c^3$ is odd and certainly not divisible by 18. This contradiction shows that *abc* is even.

Suppose that abc is not divisible by 3. Then neither a, b nor c is divisible by 3, i.e. they are in (possibly distinct) congruence classes among the following congruence classes mod 9.

We conclude that $a^3 + b^3 + c^3$ is equal to -3, -1, 1 or $3 \mod 9$. Therefore, $a^3 + b^3 + c^3$ is not divisible 9 and consequently not by 18. This contradiction shows that *abc* is divisible by 3.

(Gerhard Kirchner) \Box

Problem 2. Let x, y be positive real numbers with xy = 4. Prove that

$$\frac{1}{x+3} + \frac{1}{y+3} \le \frac{2}{5}$$

For which x and y does equality hold?

(Walther Janous)

Solution. Clearing denominators, we obtain the equivalent inequality

 $5x + 5y + 30 \le 2xy + 6x + 6y + 18,$

which simplifies to $x + y \ge 12 - 2xy = 4$. This inequality is a direct consequence of the AM-GM inequality

$$\frac{x+y}{2} \ge \sqrt{xy} = 2.$$

Equality holds exactly for x = y = 2.

(Walther Janous) \Box

Problem 3. Anton chooses as starting number an integer $n \ge 0$ which is not a square. Berta adds to this number its successor n + 1. If this sum is a perfect square, she has won. Otherwise, Anton adds to this sum, the subsequent number n+2. If this sum is a perfect square, he has won. Otherwise, it is again Berta's turn and she adds the subsequent number n + 3, and so on.

Prove that there are infinitely many starting numbers, leading to Anton's win.

(Richard Henner)

Solution. We will prove that Anton wins for the infinity of starting numbers $3x^2 - 1$ with $x \ge 1$.

Since $3x^2 - 1 \equiv 2 \mod 3$, it cannot be a perfect square. After Berta adds the subsequent integer $3x^2$, the sum $6x^2 - 1$ is also $\equiv 2 \mod 3$ and consequently not a perfect square. Now Anton adds the subsequent number $3x^2 + 1$ and obtains the perfect square $9x^2$. Therefore, Anton has won and we have found an infinity of possible starting numbers.

(Richard Henner) \Box

Problem 4. Let k_1 and k_2 be internally tangent circles with common point X. Let P be a point lying neither on one of the two circles nor on the line through the two centers. Let N_1 be the point on k_1 closest to P and F_1 the point on k_1 that is farthest from P. Analogously, let N_2 be the point on k_2 closest to P and F_2 the point on k_2 that is farthest from P.

Prove that $\angle N_1 X N_2 = \angle F_1 X F_2$.

(Robert Geretschläger)

Solution. The line segment N_1F_1 is a diameter of k_1 passing through P. Similarly, N_2F_2 is a diameter of k_2 passing through P.

Due to Thales's theorem, we have $\angle N_1 X F_1 = 90^\circ$ and $\angle N_2 X F_2 = 90^\circ$. Letting $\angle N_2 X F_1 = \alpha$, we obtain

 $\angle N_1 X N_2 = 90^{\circ} - \alpha$ and $\angle F_1 X F_2 = 90^{\circ} - \alpha$,

which proves the equality of the angles.

Figure 1: Problem 4

(Karl Czakler) \square