

54th Austrian Mathematical Olympiad

Regional Competition—Solutions 30th March 2023

Problem 1. Let a, b and c be real numbers with $0 \le a, b, c \le 2$. Prove that

$$(a-b)(b-c)(a-c) \le 2.$$

When does equality hold?

(Karl Czakler)

Solution. We order the variables by size:

For $a \ge b \ge c$, all three factors are positive and we have $(a - b)(b - c)(a - c) \ge 0$.

For $b \ge c \ge a$ and $c \ge a \ge b$, two of the factors are negative and one factor is positive, so we have again $(a-b)(b-c)(a-c) \ge 0$.

For all the other orderings of variables, we have either three negative factors or one negative and two positive factors. This implies $(a - b)(b - c)(a - c) \le 0$, so the inequality holds for these cases and there is no case of equality.

Let us now consider $a \ge b \ge c$.

With the AM-GM-inequality, we get

$$(a-b)(b-c) \le \frac{(a-b+b-c)^2}{4} = \frac{(a-c)^2}{4}.$$

So we obtain

$$(a-b)(b-c)(a-c) \le \frac{(a-c)^2}{4}(a-c) = \frac{(a-c)^3}{4} \le \frac{2^3}{4} = 2.$$

The two remaining cases of orderings can be treated analogously.

We see that equality holds for a-c = 2 and a-b = b-c, which implies a = 2, b = 1 and c = 0. Taking into account the analogous cases, we see that equality holds exactly for the triples (2, 1, 0), (1, 0, 2) and (0, 2, 1).

(Karl Czakler) \Box

Problem 2. Let ABCD be a rhombus with $\angle BAD < 90^{\circ}$. The circle passing through D with center A intersects the line CD a second time in point E. Let S be the intersection of the lines BE and AC. Prove that the points A, S, D and E lie on a circle.

(Karl Czakler)

Solution. By the inscribed angle theorem, it is enough to show that $\angle SED = \angle SAD$. Since ABCD is a rhombus, we have

$$\angle SAD = \frac{1}{2} \angle BAD.$$

Since ABCE is an isosceles trapezoid, we have by symmetry that

$$\angle SED = \angle ECS = \frac{1}{2} \angle DCB = \frac{1}{2} \angle BAD,$$

which finishes the proof.

(Theresia Eisenkölbl)

Figure 1: Problem 2

Problem 3. Determine all natural numbers $n \ge 2$ with the property that there are two permutations (a_1, a_2, \ldots, a_n) and (b_1, b_2, \ldots, b_n) of the numbers $1, 2, \ldots, n$ such that $(a_1 + b_1, a_2 + b_2, \ldots, a_n + b_n)$ are consecutive natural numbers.

(Walther Janous)

Answer. The permutations exist if and only if n is odd.

Solution. We have

$$(a_1 + b_1) + (a_2 + b_2) + \ldots + (a_n + b_n) = 2(1 + 2 + \ldots + n) = n(n+1).$$

On the other hand, there is a natural number N such that

$$a_1 + b_1 = N, a_2 + b_2 = N + 1, \dots, a_n + b_n = N + n - 1$$

and therefore

$$(a_1 + b_1) + (a_2 + b_2) + \ldots + (a_n + b_n) = nN + (1 + \ldots + (n-1)) = nN + n(n-1)/2.$$

We obtain the equation n(n + 1) = nN + n(n - 1)/2 which becomes $N = n + 1 - \frac{n-1}{2} = \frac{n+3}{2}$. Therefore, the number N is an integer if and only if n is odd.

It remains to investigate if two permutations with the desired property exist for every odd number n with $n \ge 3$. Let n = 2k + 1 with $k \ge 1$.

Experimenting with k = 1 and k = 2 can lead to the following pattern:

$$\begin{pmatrix} 1 & k+2 & 2 & k+3 & 3 & \dots & 2k+1 & k+1 \\ k+1 & 1 & k+2 & 2 & k+3 & \dots & k & 2k+1 \end{pmatrix}$$

Summing the two rows gives the 2k+1 consecutive numbers $k+2, k+3, \ldots, 3k+1, 3k+2$ as desired.

(Walther Janous) \Box

Problem 4. Determine all pairs (x, y) of positive integers such that for d = gcd(x, y) the equation

$$xyd = x + y + d^2$$

holds.

(Walther Janous)

Answer. There are three such pairs, (x, y) = (2, 2), (x, y) = (2, 3) and (x, y) = (3, 2).

Solution. For x = 1, we get d = 1 and the given equation becomes the contradiction y = y + 2. This works analogously for y = 1.

Therefore, we can assume $x \ge 2$ and $y \ge 2$.

We start with the case d = 1 which gives the equation

$$xy = x + y + 1 \iff (x - 1)(y - 1) = 2.$$

The possible factorizations $2 = 1 \cdot 2$ and $2 = 2 \cdot 1$ give the pairs (x, y) = (2, 3) and (x, y) = (3, 2), respectively, because gcd(x, y) = 1 is satisfied.

Now, we treat the case $d \ge 2$. The given equation is equivalent to

$$\frac{1}{xd} + \frac{1}{yd} + \frac{d}{xy} = 1.$$

Because of $xd \ge 4$ and $yd \ge 4$, we get

$$1 \le \frac{1}{4} + \frac{1}{4} + \frac{d}{xy} \iff xy \le 2d.$$

Together with $xy \ge d^2$, we obtain d = 2, x = y = 2 which gives indeed the third pair (x, y) = (2, 2) with gcd(2, 2) = 2.

(Walther Janous) \Box