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Problem 1. Determine all positive integers a for which the equation(
1 +

1

x

)
·
(
1 +

1

x+ 1

)
· · ·

(
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1

x+ a

)
= a− x

has at least one integer solution x.
For each such integer a, determine the corresponding solutions.

(Richard Henner)

Answer. Only a = 7 yields at least one integer solution. In this case, the solutions are x = 2 and x = 4.

Solution. The left-hand side of the equation is(
1 +

1

x

)
·
(
1 +

1

x+ 1

)
· · ·

(
1 +

1

x+ a

)
=

x+ 1

x
· x+ 2

x+ 1
· · · x+ a+ 1

x+ a
=

x+ a+ 1

x
.

Hence for x ̸∈ {0,−1, . . . ,−a} the equation is equivalent to x2 + (1− a)x+ a+ 1 = 0. The roots of this
quadratic equation are x = a−1±

√
a2−6a−3
2

.
For 0 < a ≤ 6, we have a2 − 6a = a · (a− 6) ≤ 0 and therefore, a2 − 6a− 3 < 0. Hence the equation

has no real roots.
For a > 9, we have (a− 4)2 < a2 − 6a− 3 < (a− 3)2 and therefore, the roots cannot be integers.
Thus we only have to consider the cases a = 7, a = 8 and a = 9. There are no integer roots for the

cases a = 8 and a = 9. For a = 7 we get x = 2 and x = 4.
(Richard Henner)

Problem 2. The set M consists of all 7-digit positive integers which contain each of the digits 1, 3, 4,
6, 7, 8 and 9 (in base 10) exactly once.

a) Determine the smallest positive difference d between any two numbers in M .

b) How many pairs (x, y) with x and y in M exist for which x− y = d holds?

(Gerhard Kirchner)

Answer. a) The smallest difference is 9. b) There exist 480 pairs.

Solution. a) For all numbers in the set M , the sum of digits is 1 + 3+ 4+ 6+ 7+ 8+ 9 = 38. Hence
they all lie in the same residue class modulo 9. The difference d is therefore a multiple of 9 and
as a consequence d ≥ 9. As an example, the two numbers x = 1346798 and y = 1346789 fulfil the
equation x− y = 9, and hence d = 9 is the smallest possible difference.

b) The equation x = y + 9 yields the following possibilities for the units digits of the two numbers:

units digit of y 1 3 4 6 7 8 9
units digit of x − − 3 − 6 7 8
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When adding 9 to the units digit 4, 7, 8 or 9 of y, we get a carry of 1, which is added to the tens
digit. We know that there are no zeroes among the digits of x, so the tens digit of y cannot be 9.
Therefore there is no further carry and the rest of the digits of the two numbers have to coincide.
Thus y has to end with the two digits 34, 67, 78 or 89 and x with the two digits 43, 76, 87 or 98,
respectively.

Thus, there are 4 possibilities for the last two digits of y and 5! = 120 possibilities for the remaining
digits. Each of these numbers y has exactly one corresponding number x, and hence there are 480
such pairs.

(Gerhard Kirchner)

Problem 3. Let ABC be a triangle with AB < AC and incenter I. The perpendicular bisector of the
side BC intersects the angle bisector of ∠BAC at the point S, and the angle bisector of ∠CBA at the
point T , respectively.

Show that the points C, I, S and T lie on a common circle.
(Karl Czakler)

Solution. The problem is illustrated in Figure 1.1 Let α and β be the angles of the triangle in A and
B, respectively.

A B

C

I

S

T

Figure 1: Problem 3

We have
∠SIT = ∠AIB = 180° − α + β

2
.

1Note that this is the only possible configuration: As AC > AB, the points A and C lie in different half planes with
respect to the perpendicular bisector of BC. Thus the segment AS and C do not lie in the same half plane with respect
to this bisector. As S lies on the circumcircle of the triangle ABC and I lies in the interior of the triangle, we conclude
that I and C lie in different half planes with respect to the bisector of BC.
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It is well known that the common point S of the angle bisector in A and the bisector of the side BC
lies on the circumcircle of △ABC. By the inscribed angle theorem,

∠BCS = ∠BAS =
α

2
.

As T lies on the bisector of the side BC, it follows that

∠TCB = ∠CBT =
β

2
,

and thus
∠TCS =

α + β

2
.

Opposite angles of the quadrilateral TISC sum to 180° and hence TISC is a cyclic quadrilateral.
(Karl Czakler)

Problem 4. Determine all quadruples (p, q, r, n) which satisfy the equation

p2 = q2 + rn

where p, q, r are prime numbers and n is a positive integer.
(Walther Janous)

Answer. Exactly the two quadruples (3, 2, 5, 1) and (5, 3, 2, 4) fulfill the requirement.

Solution. The equation is equivalent to

(p− q)(p+ q) = rn.

We consider two cases:

(a) p − q = 1 and hence p = 3, q = 2 and rn = 5. It follows immediately that r = 5 and n = 1, and
we obtain the quadruple (3, 2, 5, 1) as the first solution.

(b) p − q > 1. The inequality p + q > p − q requires n ≥ 2 and furthermore r | p − q and r | p + q.
This yields r | 2p and r | 2q as r is a divisor of the sum and the difference of (p+ q) and (p− q),
respectively.

Assume that r ̸= 2. Then r = p and r = q and hence rn = 0, which is a contradiction to r being
a prime number.

Therefore r = 2 and there exist 1 ≤ a < b with a+ b = n and

p− q = 2a and p+ q = 2b.

Then p− q + p+ q = 2p = 2a + 2b and equivalently p = 2a−1(2b−a + 1).

The inequality 2b−a + 1 ≥ 21 + 1 = 3 yields a = 1 and thus p = 2b−1 + 1 and hence p − q = 2
and q = 2b−1 − 1. Thus q = 2b−1 − 1, 2b−1 and p = 2b−1 + 1 are three consecutive integers, one of
which is certainly divisible by 3. As p and q are primes and the middle number is a power of 2,
we have q = 3 and p = 5 (the alternative being q = 1 and p = 3, which is impossible). It follows
immediately that n = 4 and we get the quadruple (5, 3, 2, 4) as the second solution.

(Walther Janous)
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