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Problem 1. Determine all positive integers a for which the equation

(o2) () k)

has at least one integer solution x.
For each such integer a, determine the corresponding solutions.

(Richard Henner)

Answer. Only a = 7 yields at least one integer solution. In this case, the solutions are x = 2 and z = 4.

Solution. The left-hand side of the equation is
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Hence for z € {0,—1,..., —a} the equation is equivalent to 2% + (1 — a)z + a + 1 = 0. The roots of this
quadratic equation are g = a=1£va =6a=3 V‘;L&"B’.

For 0 < a < 6, we have a? — 6a = a - (a — 6) < 0 and therefore, a®> — 6a — 3 < 0. Hence the equation
has no real roots.

For a > 9, we have (a — 4)* < a® — 6a — 3 < (a — 3)? and therefore, the roots cannot be integers.

Thus we only have to consider the cases a = 7, a = 8 and a = 9. There are no integer roots for the
casesa =8 and a =9. Fora =7 we get x =2 and = = 4.

(Richard Henner) [

Problem 2. The set M consists of all 7-digit positive integers which contain each of the digits 1, 3, 4,
6, 7, 8 and 9 (in base 10) exactly once.

a) Determine the smallest positive difference d between any two numbers in M.

b) How many pairs (x,y) with x and y in M exist for which x —y = d holds?

(Gerhard Kirchner)

Answer. a) The smallest difference is 9. b) There exist 480 pairs.

Solution.  a) For all numbers in the set M, the sum of digitsis 1 +3+4+6 +7+ 8+ 9 = 38. Hence
they all lie in the same residue class modulo 9. The difference d is therefore a multiple of 9 and
as a consequence d > 9. As an example, the two numbers x = 1346798 and y = 1346789 fulfil the
equation r —y = 9, and hence d = 9 is the smallest possible difference.

b) The equation z = y + 9 yields the following possibilities for the units digits of the two numbers:

units digitofy | 1 | 3 |46 | 7|89
units digitof x | — | — [ 3| — | 6| 7|8




When adding 9 to the units digit 4, 7, 8 or 9 of y, we get a carry of 1, which is added to the tens
digit. We know that there are no zeroes among the digits of x, so the tens digit of y cannot be 9.
Therefore there is no further carry and the rest of the digits of the two numbers have to coincide.
Thus y has to end with the two digits 34, 67, 78 or 89 and x with the two digits 43, 76, 87 or 98,
respectively.

Thus, there are 4 possibilities for the last two digits of y and 5! = 120 possibilities for the remaining
digits. Each of these numbers y has exactly one corresponding number z, and hence there are 480

such pairs.
(Gerhard Kirchner) O

Problem 3. Let ABC be a triangle with AB < AC' and incenter 1. The perpendicular bisector of the
side BC' intersects the angle bisector of ZBAC at the point S, and the angle bisector of ZCBA at the
point T', respectively.
Show that the points C, I, S and T lie on a common circle.
(Karl Czakler)

Solution. The problem is illustrated in Figure [Il] Let o and 3 be the angles of the triangle in A and
B, respectively.

Figure 1: Problem 3

We have
a+p
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!Note that this is the only possible configuration: As AC' > AB, the points A and C lie in different half planes with
respect to the perpendicular bisector of BC. Thus the segment AS and C do not lie in the same half plane with respect
to this bisector. As S lies on the circumcircle of the triangle ABC and I lies in the interior of the triangle, we conclude
that I and C lie in different half planes with respect to the bisector of BC'.

LSIT = ZAIB = 180° —




It is well known that the common point S of the angle bisector in A and the bisector of the side BC
lies on the circumcircle of AABC. By the inscribed angle theorem,

4305:48AS:%.

As T lies on the bisector of the side BC), it follows that

/TCB = /CBT = g,
and thus
/TCS =2 ; 8,

Opposite angles of the quadrilateral TISC' sum to 180° and hence T'ISC' is a cyclic quadrilateral.
(Karl Czakler) O

Problem 4. Determine all quadruples (p,q,r,n) which satisfy the equation
p2 — q2 4 Tn
where p, q, v are prime numbers and n s a positive integer.

(Walther Janous)

Answer. Exactly the two quadruples (3,2,5,1) and (5, 3,2, 4) fulfill the requirement.

Solution. The equation is equivalent to

p—q)p+q) =r".
We CODSideI' tWO cases.

(a) p—q =1 and hence p = 3,

g = 2 and r™ = 5. It follows immediately that r =5 and n = 1, and
we obtain the quadruple (3,2,5,1

) as the first solution.

(b) p—q > 1. The inequality p + ¢ > p — q requires n > 2 and furthermore r | p — ¢ and r | p + ¢.
This yields r | 2p and r | 2q as r is a divisor of the sum and the difference of (p + ¢) and (p — ¢q),
respectively.

Assume that r # 2. Then r = p and r = ¢ and hence r™ = 0, which is a contradiction to r being
a prime number.

Therefore r = 2 and there exist 1 < a < b with a + b = n and
p—q=2* and p+q=2"

Then p — g+ p+q = 2p = 2% + 2° and equivalently p = 2271(2°7 4 1).

The inequality 2°=¢ + 1 > 2! + 1 = 3 yields @ = 1 and thus p = 2°~! + 1 and hence p — ¢ = 2
and ¢ =21 — 1. Thus ¢ = 2" — 1, 2= and p = 2*~! + 1 are three consecutive integers, one of
which is certainly divisible by 3. As p and ¢ are primes and the middle number is a power of 2,
we have ¢ = 3 and p = 5 (the alternative being ¢ = 1 and p = 3, which is impossible). It follows
immediately that n = 4 and we get the quadruple (5, 3,2,4) as the second solution.

(Walther Janous) [



