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Problem 1. Determine all triples (a, b, c) of positive integers satisfying the conditions

ged(a, 20) = b, (1)
ged(b, 15) = ¢ and (IT)
ged(a, ) = 5. (III)

(Richard Henner)

Solution. We use equations () und in order to eliminate b and c as follows:
ged(a, ged(ged(a, 20),15)) =5 <= ged(a,a,20,15) =5 <= ged(a,b) =5 <= 5H]a.

Furthermore we determine b and ¢ from () and ([I): () yields b € {5, 10,20}. More specifically we have

b = 5 for a being odd, b = 10 for a = 2 mod 4 and b = 20 for a = 0 mod 4. In all three cases ¢ = 5

follows from (.

In total the solutions form the set {(20¢,20,5), (20t — 10, 10,5), (10t — 5,5,5)| ¢ is a positive integer}.
(Walther Janous, Gerhard Kirchner) [

Problem 2. Let z, y and z be positive real numbers with x +y + 2z = 3.
Prove that at least one of the three numbers

r(x+y—2), yly+ 2z —x) or  z(z+x—y)

1s less or equal 1.

(Karl Czakler)

Solution. Since the three expressions are cyclic, we may w. 1. 0. g. assume that = > y, z. Consequently
we have z > “”J“?)ﬂ = 1. We now show that a := y(y + z — ) = y(3 — 2z) satisfies a < 1.

o Cuasea): For%§x<3(:1earlya§0<1.

e Caseb): Forl <z <3 the factor 3 — 2z is positive. Therefore a < z(3 — 2z). Hence it suffices
to prove z(3 — 2x) < 1, which is equivalent to 2z — 3z +1>0,1i. e. (2z —1)(z — 1) > 0.

This completes the proof.
(Walther Janous) O

Problem 3. Let n > 3 be a fized integer. The numbers 1,2,3,...,n are written on a board. In every
move one chooses two numbers and replaces them by their arithmetic mean. This is done until only a
single number remains on the board.
Determine the least integer that can be reached at the end by an appropriate sequence of moves.
(Theresia Eisenkolbl)



Solution. The answer is 2 for every n. Surely we cannot reach an integer less than 2, since 1 appears
only once and produces an arithmetic mean greater than 1, as soon as it is used.

On the other hand, we can prove by induction on k£ that the number a + 1 can be reached from the
numbers a, a + 1, ..., a + k by a sequence of permitted moves.

For k = 2 one replaces a and a + 2 by a + 1 and afterwards a + 1 and a + 1 by a single a + 1.

For the induction step k — k + 1 one replaces a4+ 1, ..., a + k+ 1 by a + 2 and afterwards a and
a+2bya+1.

In particular with @ = 1 and kK = n — 1 one achieves the desired result.

(Theresia Eisenkélbl) O

Problem 4. Let ABC be an isosceles triangle with AC' = BC and ZACB < 60°. We denote the
incenter and circumcenter by I and O, respectively. The circumcircle of triangle BIO intersects the leg
BC also at point D # B.

(a) Prove that the lines AC and DI are parallel.
(b) Prove that the lines OD and IB are mutually perpendicular.
(Walther Janous)

Solution. Note that the condition ZACB < 60° guarentees that O lies between [ and C.

a) We denote the angles of triangle ABC' by o« = Z/BAC, = ZABC and v = ZACB. Let K and
k be the circumcircles of ABC' and BIO, respectively. The inscribed angle theorem for circle K yields:
/ZBOC = 2a. Therefore we have ZIOB = 180° —2a and because of o = [ we obtain ZIOB = 7.
Furthermore the inscribed angle theorem for circle k gives ZI DB = ~, whence finally ID || AC.
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b) We denote the point of intersection of lines OD by F and IB and the midpoint of AB by G.
Since IO DB is cyclic, we have ZIOD = 180° —(/2, that is ZDOC = (/2 or equivalently ZFOI = /2.
Furthermore ZGIB = 90° —//2 implies ZOIF = 90° —(3/2. Therefore ZIFO = 90°.

(Richard Henner) [



