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Problem 1. Determine the smallest constant C such that the inequality

(X + Y )2(X2 + Y 2 + C) + (1−XY )2 ≥ 0

holds for all real numbers X and Y .
For which values of X and Y does equality hold for this smallest constant C?

(Walther Janous)

Answer. The smallest constant is C = −1. Equality holds for X = Y = 1/
√
3 or X = Y = −1/

√
3.

Solution. We first investigate the case X = Y . It is easily seen that the inequality becomes equivalent
to

(3X2 − 1)2 + 4(C + 1)X2 ≥ 0

which implies C ≥ −1 by setting X2 = 1
3
.

It remains to prove that the inequality is true for all X and Y for C = −1.
Since we had the term (3X2 − 1)2 in the above case, we compare the term (X2 + XY + Y 2 − 1)2

with the terms in the given inequality and get the equivalent inequality

(X2 +XY + Y 2 − 1)2 + (X − Y )2 ≥ 0.

This is obviously true and gives the conditions X = Y and 3X2 − 1 = 0 for equality which are the two
cases X = Y = 1√

3
and X = Y = − 1√

3
.

(Theresia Eisenkölbl)

Problem 2. Let ABC be an acute triangle with AB > AC. Let D, E and F denote the feet of its
altitudes on BC, AC and AB, respectively. Let S denote the intersection of lines EF and BC.

Prove that the circumcircles k1 and k2 of the two triangles AEF and DES touch in E.
(Karl Czakler)

Solution. Let t1 be the tangent line to k1 in point E and let t2 be the tangent line to k2 in point E. The
tangent-secant theorem applied to circle k1 gives

∠(EF, t1) = ∠FAE = α

with the usual notation for the angles in triangle ABC.
The tangent-secant theorem applied to circle k2 gives

∠(EF, t2) = ∠SDE = ∠CDE = α,

where the last equality comes from the fact that ABDE is a cyclic quadrilateral since all four vertices
lie on the Thales circle with diameter AB.

Therefore, t1 and t2 are parallel and they both contain the point E. So, the two tangents are identical
which implies that the circles touch in E.

(Theresia Eisenkölbl)
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Figure 1: Problem 2

Problem 3. Initially, the numbers 1, 2, . . . , 2024 are written on a blackboard. Trixi and Nana play a
game, taking alternate turns. Trixi plays first.

The player whose turn it is chooses two numbers a and b, erases both, and writes their (possibly
negative) difference a − b on the blackboard. This is repeated until only one number remains on the
blackboard after 2023 moves. Trixi wins if this number is divisible by 3, otherwise Nana wins.

Which of the two has a winning strategy?
(Birgit Vera Schmidt)

Solution. We will prove that Nana has a winning strategy.
The only relevant property of all numbers in the game is their residue modulo 3. Therefore, we will

call all numbers 0, 1 or 2 according to their residue, and we will also call 1s and 2s non-zeros.
We observe that each move either does not change the number of non-zeros (if one or two zeros are

involved in the move) or decreases the number of non-zeros by 1 or 2 ( if no zero is involved in the
move).

Nana can play arbitratrily for a long time while the number of non-zeros decreases, until that number
reaches 1, 2, 3 or 4 at the start of her move. This has to happen because it is not possible to go from
5 or more non-zeros to 0 non-zeros in two moves, and Trixi certainly cannot win as long as there are
non-zeros on the blackboard.

If the number of non-zeros is 4, then Nana will avoid decreasing the number or non-zeros by using
one or two zeros to force Trixi to decrease the number to 2 or 3. This has to happen because Trixi
always starts a move with an even quantity of numbers, so she is the first one without zeros as long as
there are 4 non-zeros.

If the number of non-zeros is 3, then two of them have the same value. Nana chooses these two and
replaces them with zero. This leaves one non-zero which can change between 1 and 2, but never be
removed until the end. So Nana wins.

If the number of non-zeros is 2, and they are distinct, then Nana replaces them with their difference
1 which again can never become zero.

If the number of non-zeros is 2 and they have the same value, then Nana will use one of them and a
0 to convert them to (1, 2). This is possible because Nana always starts her move with an odd quantity
of numbers, so she certainly has an available 0. If Trixi uses (1, 2), she will lose since the last non-zero
cannot be converted to zero. She also cannot use two zeros, because then Nana is in the previous case
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and wins. So Trixi has to convert one of them with an additional 0 to present Nana with two equal
non-zeros. However, Nana can repeat her move until Trixi has not zeros left to do so. So Trixi will
eventually be forced to use (1, 2) and loses.

If there is just one non-zero left, Nana can play arbitrarily because this single non-zero will remain
until the end of the game.

(Theresia Eisenkölbl)

Problem 4. Let ABC be an obtuse triangle with orthocenter H and centroid S. Let D, E and F be the
midpoints of segments BC, AC, AB, respectively.

Show that the circumcircle of triangle ABC, the circumcircle of triangle DEF and the circle with
diameter HS have two distinct points in common.

(Josef Greilhuber)

Solution. Let M and O denote the circumcenters of the triangles DEF and ABC, respectively. We will
use the well-known facts that the points H, M , S and O lie on the Euler line of triangle ABC in this
order, and that HM : MS : SO = 3 : 1 : 2.

Since S is in the interior of ABC, it is inside the circumcircle of ABC. However, since ABC is
obtuse, the orthoscenter H is outside the circumcircle. This implies that the circle with diameter HS
intersects the circumcircle of ABC in two points.

Let X be one of these intersection points. We will prove that MX : OX = 1 : 2. Let N be the
midpoint of HS. Using Thales’ theorem, we get that HN , XN and SN have the same length, and
HN : NM : MS : SO = 2 : 1 : 1 : 2. This implies that MN : XN = XN : ON . Therefore, the triangles
XNM and ONX are similar with ratio 1 : 2 = MN : XN . Therefore, we have MX : OX = 1 : 2 as
desired.
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Figure 2: Figure for Problem 4

(Josef Greilhuber)
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Problem 5. Let n be a positive integer and let z1, z2, . . ., zn be positive integers such that for j =
1, 2, . . . , n the inequalities

zj ≤ j

hold and z1 + . . .+ zn is even.
Prove that the number 0 occurs among the values of

z1 ± z2 ± . . .± zn,

where + or − can be chosen independently for each operation.
(Walther Janous)

Solution. We carry out the proof with complete induction.

• n = 1. Here z1 = 1 and the sum cannot be even, so there is nothing to prove.

• n = 2. Here z1 ≤ 1, z2 ≤ 2 and the condition that z1 + z2 is even lead to z1 = z2 = 1 together
with z1 − z2 = 0.

• n = 3. Here z1 ≤ 1, z2 ≤ 2, z3 ≤ 3 and the condition that z1 + z2 + z3 is even result in the three
possibilities (1, 1, 2) and (1, 2, 1) or (1, 2, 3) with 1 + 1− 2 = 0, 1− 2 + 1 = 0 and 1 + 2− 3 = 0.

• Suppose that the statement holds up to n and now draw the conclusion from n to n + 1. We
distinguish between two cases.

(a) zn+1 = zn: In this case, z1 + . . . + zn−1 is even. Therefore, 0 can be represented in the form
z1 ± . . .± zn−1 and thus also as z1 ± . . .± zn−1 + zn − zn+1.

(b) zn+1 ̸= zn: With z1 + . . . + zn−1 + zn + zn+1 the sum z1 + . . . + zn−1 + |zn+1 − zn| is also
even. Furthermore, 1 ≤ |zn+1 − zn| ≤ |(n + 1) − 1| = n and we so can apply the induction
assumption for the n numbers z1, . . . , zn−1, |zn+1 − zn|. Consequently, 0 can be represented
as z1 ± . . . ± zn−1 ± |zn+1 − zn|. Because |zn+1 − zn| = ±(zn+1 − zm), we end up with a
representation of 0 in the form z1 ± . . . ± zn−1 ± zn ± zn+1|, which completes the induction
step.

(Walther Janous)

Problem 6. For each prime number p, determine the number of residue classes modulo p which can be
represented as a2 + b2 modulo p, where a and b are arbitrary integers.

(Daniel Holmes)

Answer. All p residue classes.

Solution. With a2 + 02 we first obtain all quadratic residue classes.
Since not all residue classes are quadratic residues, there is a quadratic residue class a2 that is followed

by a quadratic non-residue class, so that n = a2 + 1 is not a quadratic residue and therefore of course
n ̸≡ 0 (mod p).

However, since the product of two quadratic non-residue classes is a quadratic residue class, it follows
for each quadratic non-residue class m that m = nmn/n2 = (a2+1)c2/n2 ≡ (acn−1)2+(cn−1)2 (mod p)
and therefore all quadratic residue classes can also be represented as the sum of two squares.

(Theresia Eisenkölbl)
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