

National Competition—Final Round—Solutions 25th/26th May 2022

Problem 1. Find all functions $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ with

$$a - f(b) \mid af(a) - bf(b) \text{ for all } a, b \in \mathbb{Z}_{>0}.$$

(Theresia Eisenkölbl)

Answer. The only solution is the identity f(x) = x for all $x \in \mathbb{Z}_{>0}$.

Solution. For a = f(b), we immediately get that af(a) - bf(b) = 0. Therefore,

$$f(b)(f(f(b)) - b) = 0,$$

and we have f(f(b)) = b for all $b \in \mathbb{Z}_{>0}$.

Now, we replace b with f(b) in the given relation and obtain

 $a - b \mid af(a) - bf(b) = (a - b)f(a) + b(f(a) - f(b)),$

from which we obtain

 $a - b \mid b(f(a) - f(b)).$

For b = 1, we get

 $a - 1 \mid f(a) - f(1).$

If we replace a with f(a), we get

 $f(a) - 1 \mid a - f(1).$

This implies that for all a > f(1), we have $f(a) - 1 \le a - f(1)$. If we had f(1) > 1, this would imply f(a) < a for a > f(1) and therefore either a = f(f(a)) < f(a) < a, which is impossible, or $f(a) \le f(1)$, which cannot hold for infinitely many a because of f(f(a)) = a. Therefore, we have f(1) = 1 and a - 1 = f(a) - 1, so that f has to be the identity. The identity clearly satisfies the given relation, so it is the only solution.

(Theresia Eisenkölbl) 🗆

Problem 2. Let ABC be an acute, scalene triangle with orthocenter H, and let M be the midpoint of segment AB, and w the angular bisector of angle $\angle ACB$. Let S be the intersection of w and the perpendicular bisector of AB, and F the foot of the altitude from H onto w.

Prove that segments MS and MF are of equal length.

(Karl Czakler)

Solution. As usual, we will label the angles in the triangle at A, B and C with α , β and γ , respectively. It is well-known that S as well as the reflection of H in the line AB are on the circumcircle of the triangle ABC. We label the reflection of H with H'.

In the following, we will work with oriented angles modulo 180°.

We have $\angle SCH' = \frac{\gamma}{2} - (90^\circ - \beta)$. Using the angle sum in the right triangle *FHC*, we obtain $\angle FHH' = \beta + \frac{\gamma}{2}$.

On the other hand, the inscribed angle theorem for the circumcircle of ABC gives $\angle HH'S = \angle CH'S = \angle CBS = \beta + \angle ABS = \beta + \angle ACS = \beta + \frac{\gamma}{2}$.

By definition of H', the reflection in AB maps H to H'. Since the angles $\angle HH'S$ and $\angle H'HF$ coincide up to orientation, the reflection also maps the line H'S to the line HF.

Let S' be the image of S with respect to this reflection. Because of the previous observation, S' must be on the line HF. Therefore, the triangle FS'S is a right triangle. This clearly implies that M is the mid-point of the segment SS' and is therefore the circumcenter of triangle FS'S. Thales' theorem implies MS = MF, as desired.

(Theresia Eisenkölbl, Josef Greilhuber) 🗆

Problem 3. Lisa writes a positive integer in the decimal system on a board and repeats the following steps:

The last digit is deleted from the number on the board and then four times the deleted digit is added to the remaining shorter number (or to 0 if the original number was a single digit). The result of this calculation is now the new number on the board.

This is repeated until the first time she gets a number that has already been on the board.

- (a) Show that the sequence of steps always terminates.
- (b) What is the last number on the board if Lisa starts with the number $53^{2022} 1$?

Example: If Lisa starts with the number 2022, she gets $202 + 4 \times 2 = 210$ in the first step and then subsequently

 $2022 \mapsto 210 \mapsto 21 \mapsto 6 \mapsto 24 \mapsto 18 \mapsto 33 \mapsto 15 \mapsto 21.$

Since Lisa gets 21 a second time, she stops.

(Stephan Pfannerer)

Solution. Let f be the map defined by the given operation on the number. We can write a positive integer x uniquely as 10a + b with $a, b \in \mathbb{Z}_{\geq 0}$ and $0 \leq b \leq 9$, and get f(x) = f(10a + b) = a + 4b. We denote with $(x_i)_{i\geq 0}$ the sequence of numbers obtained by Lisa if she starts with the positive integer x_0 . The sequence is defined by the recursion $x_{i+1} = f(x_i)$.

(a) We first note that it is immediate by definition that $x_i \in \mathbb{Z}_{>0}$ for all $i \ge 0$ and the process is therefore well-defined.

Now, we show that for $x_i \ge 40$, the next element in the sequence is smaller, i.e. $x_i > x_{i+1}$. We write again $x_i = 10a + b$ as above. From $10a + b = x_i > x_{i+1} = a + 4b$, we obtain the equivalent inequality 9a > 3b which is certainly true because a > 3 and $b \le 9$.

Next, we prove that for $x_i \leq 39$, we also have $x_{i+1} \leq 39$. This immediately follows from $x_{i+1} = f(x_i) = f(10a + b) = a + 4b \leq 3 + 4 \cdot 9 = 39$.

Therefore, there is a number $N \ge 0$, such that $x_i \in \{1, 2, ..., 39\}$ for all $i \ge N$. These are just finitely many possible values, so there are $i \ne j$ with $x_i = x_j$.

(b) The answer is 39. First, we observe that $f(x) \equiv 4 \cdot x \pmod{39}$: Let x = 10a + b, as before. Then we get:

 $f(x) = a + 4b \equiv 40a + 4b = 4 \cdot (10a + b) = 4x \pmod{39}.$

We calculate the residue of the starting number modulo 39. We have

$$53^{2022} - 1 \equiv 1^{2022} - 1 \equiv 0 \pmod{13}$$

and similarly

$$53^{2022} - 1 \equiv (-1)^{2022} - 1 \equiv 0 \pmod{3},$$

so we get $39|53^{2022} - 1 = x_0$. Using the above observation, we conclude that $39|x_i$ for all $i \ge 0$. Let N be the smallest index with $0 < x_N < 40$. Since $39|x_N$, we must have $x_N = 39$. Since x_i is strictly decreasing for i < N and f(39) = 39, the number 39 is the first one written twice on the blackboard.

(Michael Drmota) \Box

Problem 4. Decide if for every polynomial P of degree ≥ 1 with integer coefficients, there are infinitely many primes that each divide a P(n) for a positive integer n.

(Walther Janous)

Answer. There are infinitely many such primes for every polynomial satisfying the conditions.

Solution. We write $P(x) = a_m x^m + \ldots + a_1 x + a_0$ with $m \ge 1$, $a_m \ne 0$ and integers a_j , $0 \le j \le m$.

- If $a_0 = 0$, we have $p \mid P(p)$ for every prime p.
- If $a_0 \neq 0$, we assume that there are only finitely many primes with the desired property. We label them p_1, \ldots, p_N (we have $N \geq 1$, because the non-constant polynomial cannot take the values ± 1 for all positive integers).

Let q be the product of these N primes. Then, we have for all positive integers k that

$$P(a_0q^k) = a_m(a_0q^k)^m + \ldots + a_1a_0q^k + a_0$$

$$\iff P(a_0q^k) = a_0(a_ma_0^{m-1}q^{km} + \ldots + a_1q^k + 1).$$

The expression in parentheses is clearly not divisible by any of the N primes. Therefore, it has to take the values ± 1 , and we get

$$P(a_0q^k) = \pm a_0.$$

As before, we can argue that the non-constant polynomial P cannot take just two values for infinitely many arguments. This contradiction implies the existence of infinitely many primes with the desired property.

(Walther Janous) \Box

Problem 5. Let ABC be an isosceles triangle with base AB.

We choose an interior point P of the altitude in C. The circle with diameter CP intersects the line connecting B and P a second time in D_P and the line connecting points A and C a second time in E_P . Prove that there exists a point F, such that for every choice of P the points D_P , E_P and F are collinear.

(Walther Janous)

Answer. The point F with this property is the mid-point of AB.

Solution. Let M be the mid-point of AB. We want to prove that M is on all lines $g_P = D_P E_P$ and therefore, the desired point F.

Figure 1: Problem 5

The points C, D_P , E_P and P lie on a circle by definition of D_P and E_P . By Thales' theorem, we get $PE_P \perp AE_P$ and by definition of M, we get $PM \perp AM$. We obtain that $AMPE_P$ is also a cyclic quadrilateral.

In the circumcircle of CD_PE_PP , we compute

$$\angle(D_P E_P, AC) = \angle(D_P E_P, E_P C) = \angle(D_P P, PC) = \angle(BP, MC)$$

and in the circumcircle of $AMPE_P$, we compute

$$\angle(ME_P, AC) = \angle(ME_P, AE_P) = \angle(MP, AP) = \angle(MC, AP).$$

Since MC is the altitude of the isosceles triangle, we have $\angle(BP, MC) = \angle(MC, AP)$, and we obtain $\angle(D_P E_P, AC) = \angle(ME_P, AC)$.

Therefore, the points D_P , E_P and M are collinear independent of P, and M is the desired point F.

(Theresia Eisenkölbl)

- **Problem 6.** (a) Prove that a square with sidelength 1000 can be tiled with 31 squares such that at least one of them has sidelength smaller than 1.
 - (b) Prove that there is also a tiling with 30 squares with the same properties.

(Walther Janous)

Solution. (a) We first divide the square into four squares with half the side-length. Then, we choose one of them and divide it again into four smaller squares which gives a tiling with 7 squares. We apply this method 10 times in total, each of which adds 3 squares to the number of squares in the tiling, so we get a tiling with $1 + 10 \cdot 3 = 31$ squares. The four smallest have a side-length of $1000/2^{10} < 1$.

Figure 2: On the left, we see the tiling for question (a), on the right, we see the construction for question (b) for a square with side-length 15.

(b) To be able to work with integer coordinates, we scale the 1000×1000 -square to a 1023×1023 -square and we will scale the whole tiling back at the end. We divide the square into a 512×512 -square, two 511×511 -squares and a region R_1 which is a 512×512 -square Q_1 , where a 1×1 -square has been removed. Therefore, we have used three squares and still have to tile the region R_1 .

Now, we divide Q_1 into four smaller squares which divides the region R_1 into three squares of sidelength 252 plus a region R_2 which is a 256 × 256-square Q_2 where a 1 × 1-square has been removed.

The eighth iteration of this argument will add three 2×2 -squares plus a region R_8 , which gives a total of $3 \cdot 9 = 27$ squares. Since R_8 can be divided in three 1×1 -squares, we have a tiling of the 1023×1023 -square into 30 squares where the three smallest have side-length 1. Scaling the whole figure back to side-length 1000 gives a tiling of the desired type with the smallest side-length 1000/1023.

(Walther Janous) \Box