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Problem 1. Let a, b, c be pairwise distinct natural numbers.
Prove that

a3 + b3 + c3

3
≥ abc+ a+ b+ c.

When does equality hold?
(Karl Czakler)

Solution. It is well-known and easily verified that

a3 + b3 + c3 − 3abc =
1

2
(a+ b+ c)((a− b)2 + (b− c)2 + (c− a)2). (1)

Assume without loss of generality that a > b > c ≥ 0. Since the numbers are integers, we obtain
a− b ≥ 1, b− c ≥ 1 and a− c ≥ 2.

Equation (1) now implies

a3 + b3 + c3 − 3abc ≥ 1

2
(a+ b+ c)(1 + 1 + 4) = 3(a+ b+ c)

as desired.
Equality holds for a = b + 1, b = c + 1 and a = c + 2, which are exactly the triples (t + 2, t + 1, t)

where t ≥ 0 is an integer, and for all their permutations.
(Karl Czakler)

Problem 2. Mr. Precise wants to take his tea cup out of the microwave precisely at the front. The
microwave of Mr. Precise is not precisely cooperative.

More precisely, the two of them play the following game:
Let n be a positive integer. The rotating plate of the microwave takes n seconds for a full turn. Each

time the microwave is turned on, the plate is turned clockwise or counterclockwise for an integer number
of seconds such that the tea cup can end up in n possible positions. One of these positions is marked
„front“.

At the start of the game, the microwave rotates the tea cup in one of these positions. Afterwards,
for each move, Mr. Precise enters the integer number of seconds and the microwave decides whether to
turn clockwise or counterclockwise.

For which n can Mr. Precise ensure that after a finite number of moves, he can take out the tea cup
of the microwave precisely from the front position?

(Birgit Vera Schmidt)

Answer. Mr. Precise can ensure his victory when n is a power of 2.

Solution. We label the positions consecutively 0, 1, . . . , n− 1 where 0 is the front position.
If n is a power of 2, say n = 2k, Mr. Precise can simply always put in the current position as number

of seconds. If the microwave turns the plate backwards, the tea cup will end up front immediately.
Otherwise, the number of the position will be doubled and reduced modulo 2k at each turn and therefore
be divisible by 2k after at most k turns. This means that the tea cup ends up front.

Now, let n = 2k ·m, where m > 1 is an odd number.
We will show that the microwave can always choose a number not divisible by m.
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This is clearly true for the first position, for example by choosing the position 1. After that, the tea
cup is in a certain position p not divisible by m and Mr. Precise puts in s seconds. If both p + s and
p − s were divisible by m, this would also be true for the sum, so that m | 2p. Since m is odd, this
implies m | p which is wrong.

(Stephan Pfannerer)

Problem 3. Determine all triples (a, b, c) of integers a ≥ 0, b ≥ 0 und c ≥ 0 that satisfy the equation

ab+20(c− 1) = cb+21 − 1.

(Walther Janous)

Answer. {(1, b, 0) : b ∈ Z>0} ∪ {(a, b, 1) : a, b ∈ Z>0}

Solution. One can first see that the right side factors:

ab+20(c− 1) = (cb+20 + cb+19 + · · ·+ c+ 1)(c− 1).

The case c = 1 will be handled separately (and is very simple). For c ̸= 1 the equation simplifies to

ab+20 = cb+20 + cb+19 + · · ·+ c+ 1.

We therefore distinguish the two cases for c.

• c = 1 leads to
0 = 0.

Therefore, in this case, arbitrary natural numbers a and b are solutions.

• For c ̸= 1 we can divide by c− 1 (see the above equations) and get the equivalent equation

ab+20 = cb+20 + cb+19 + · · ·+ c+ 1.

Obviously,
cb+20 + cb+19 + · · ·+ c+ 1 > cb+20.

Therefore a ≥ c+ 1 must hold. Because of the binomial theorem we, thus, obtain

ab+20 ≥ (c+ 1)b+20

= cb+20 +

(
b+ 20

1

)
cb+19 + · · ·+

(
b+ 20

b+ 19

)
c+ 1

≥ cb+20 + cb+19 + · · ·+ c+ 1

= ab+20.

Hence, both inequalities must be equations.

We consider the second inequality in particular. Because of(
b+ 20

1

)
= b+ 20 > 1

this can only be an equation if c = 0. In the case of c > 0, the second inequality is strict and
therefore leads to a contradiction and there is no solution.

In the remaining case c = 0, the resulting equation

ab+20 = 1

is easy to solve. Since a is a natural number, a = 1. (This also follows from the necessary
relationship a = c+ 1.) Hence, in this case b may be any natural number.
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Alternatively, one can see in the case c > 0 that

cb+20 < cb+20 + cb+19 + · · ·+ c+ 1

< cb+20 +

(
b+ 20

1

)
cb+19 + · · ·+

(
b+ 20

b+ 19

)
c+ 1

= (c+ 1)b+20.

So ab+20 is in this case strictly between cb+20 and (c + 1)b+20, which is impossible for natural numbers.
(The case c = 0 must then be treated separately as above.)

(Michael Drmota)

Problem 4. Let α be a real number.
Determine all functions f : R → R satisfying

f(f(x) + y) = f(x2 − y) + αf(x)y

for all x, y ∈ R.
(Walther Janous)

Solution. First, we set y = (x2 − f(x))/2 which gives αf(x)(x2 − f(x))/2 = 0. Now, we distinguish the
cases α ̸= 0 und α = 0.

(a) In the case α ̸= 0, this equation implies f(x) = 0 or f(x) = x2 for each x separately.

In particular, f(0) = 0.

◦ It is easily verified that f(x) = 0, x ∈ R, is a solution.
◦ Next, we investigate the function f(x) = x2, x ∈ R. The functional equation becomes

(x2 + y)2 = (x2 − y)2 + αx2y ⇐⇒ 2x2y = −2x2y + αx2y ⇐⇒ (α− 4)x2y = 0

which holds for all x and y exactly when α = 4. Therefore, for α = 4, there is an additional
solution f(x) = x2, x ∈ R.

◦ It remains to investigate the case, where there are numbers x, y ∈ R \ {0} with f(y) = y2

and f(x) = 0. Suppose that x and y were two such numbers.
Then the original functional equation becomes f(y) = f(x2 − y). Because of f(y) = y2 ̸= 0,
we have f(x2 − y) ̸= 0 and therefore f(x2 − y) = (x2 − y)2. This implies

y2 = (x2 − y)2 = x4 − 2x2y + y2,

i.e.. y = x2/2, so that y is the only number with f(y) = y2 and f(z) = 0 for all z ∈ R \ {y}.
Repeating this argument, we obtain y = z2/2 for all z ∈ R \ {y}, a contradiction.

(b) For α = 0, the functional equation becomes

f(f(x) + y) = f(x2 − y). (2)

It is easy to check that constant functions and the function f(x) = −x2 are solutions.

Now, assume that there is a real number a with f(a) = b ̸= −a2. We define d = b+ a2 ̸= 0.

Putting x = a in the functional equation (2) gives f(b + y) = f(a2 − y) for all y ∈ R. With
y = z − b, we obtain f(z) = f(d − z) for all z ∈ R. Using x = z and x = d − z in the functional
equation (2), we get

f(z2 − y) = f(f(z) + y) = f(f(d− y) + y) = f((d− z)2 − y).
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Therefore,
f(z2 − y) = f((d− z)2 − y)

for all real numbers y and z. With y = z2, we obtain f(0) = f(d2 − 2dz) for all z ∈ R. Because of
d ̸= 0 the second argument attains all real numbers, so that f is constant. This proves that there
are no other solutions.

(Walther Janous)

Problem 5. Let ABCD be an inscribed convex quadrilateral with diagonals AC and BD. Each of the
four vertices is reflected on the diagonal it does not lie on.

Prove that the resulting four points lie on a common circle or a common line.

(a) Investigate when the four resulting points lie on a common line and give a simple equivalent
condition for the quadrilateral ABCD.

(b) Prove that in all other cases, the four resulting points lie on a common circle.

(Theresia Eisenkölbl)

Solution. (a) We denote the reflections of A, B, C and D with A′, B′, C ′ resp. D′ and we denote the
intersection of the diagonals with S. Since the points A and C are reflected in the same line BD
and the point S remains invariant under this reflection, the whole line ASC becomes A′SC ′ after
reflection in BD. Analogously, the line BSD becomes B′SD′ after reflection in AC.

If we denote the smaller angle between the two diagonals by φ, these two actions on the lines
correspond to a rotation of the line AC with center S in direction BD with rotation angle 2φ and
a rotation of the line BD with center S in direction AC with rotation angle 2φ.

Therefore, the angle between the lines A′SC ′ and B′SD′ is the angle 3φ. This has to be a multiple
of 180°, so that the original angle has to be 0° or 60°. The first case is not possible since the points
of the inscribed quadrilateral cannot lie on a line.

We obtain that the four new points lie on a line if and only if the diagonals of the given inscribed
quadrilateral make an angle of 60°.

(b) Since the reflections do not only preserve the collinearity of ASC and BSD, but also the position
of S between the two points and the distances to the two points, we want to use the power of S
with respect to the circle ABCD.

Because of the reflections, we have

SA = SA′, SB = SB′, SC = SC ′, SD = SD′,

and since ABCD is an inscribed quadrilateral, we have

SA · SC = SB · SD.

Therefore, we obtain
SA′ · SC ′ = SA · SC = SB · SD = SB′ · SD′.

Since the two lines A′SC ′ and B′SD′ do not coincide in this case, we can apply the properties of
the power of a point in reverse, and we get that A′, B′, C ′ and D′ lie on a circle.

(Theresia Eisenkölbl)

4



A

B

C

D

A′B′

C ′

D′

S

Figure 1: Problem 5
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Problem 6. Suppose that p is an odd prime number and M a set of p2+1
2

integer squares.
Investigate if one can choose p elements of this set so that the arithmethic mean of these p elements

is an integer.
(Walther Janous)

Answer. Yes.

Solution. The idea is to choose from the p2+1
2

square numbers p numbers that are in the same residue
class modulo p. Obviously, the sum of these p numbers is then divisible by p and thus the arithmetic
mean is an integer.

It is known that the square numbers do not run through all residue classes modulo p, but only
through 1 + p−1

2
= p+1

2
ones. (On the one hand, this is the residue class 0 if one squares a number

divisible by p. Because of a2 ≡ (p− a)2 mod p, the squares of numbers a that are not divided by p run
through a maximum of half of the p−1 nonzero residue classes. On the other hand, x2 ≡ y2 mod p gives
the relation p | (x− y)(x+ y) and so x ≡ y mod p or x ≡ −y mod p. Therefore, the squares of numbers
a, which are not divisible by p, run through exactly half of the p− 1 residue classes different from zero.)

We now divide the p2+1
2

square numbers into the p+1
2

residue classes that correspond to square
numbers. Because of the pigeon hole principle, there is therefore a residue class, that contains at least⌈

(p2 + 1)/2

(p+ 1)/2

⌉
numbers.

Because of
(p2 + 1)/2

(p+ 1)/2
=

p2 + 1

p+ 1
=

p2 + p

p+ 1
− p− 1

p+ 1
= p− p− 1

p+ 1

and 0 < p−1
p+1

< 1 it follows that ⌈
(p2 + 1)/2

(p+ 1)/2

⌉
= p,

what was to be shown.
(Michael Drmota)
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