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Problem 1. Let ABCD be a cyclic quadrilateral and let S be the intersection point of its diagonals.
Furthermore let P be the circumcenter of the triangle ABS and Q the circumcenter of the triangle BCS.
The parallel to AD through P and the parallel to CD through Q intersect in point R.

Prove that R is on BD.
(Karl Czakler)

Solution. We use directed angles modulo 180°. Let E be the foot of S on CD, see Figure 1.
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Figure 1: Problem 1

Due to the sum of angles in the isosceles triangle APS and the central angle theorem in the
circumcircle of the triangle ABS, we get

∠ASP = 90° − 1

2
∠SPA = 90° − ∠SBA.

The inscribed angle theorem in the cyclic quadrilateral ABCD yields

90° − ∠SBA = 90° − ∠DBA = 90° − ∠DCA.
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Using the sum of angles in the right triangle CES, we finally get

90° − ∠DCA = ∠CSE.

Combining this, we get ∠ASP = ∠CSE.
Therefore, the points P , S and E are collinear. The line through them is perpendicular to DC and

therefore also to its parallel QR. The altitude of the triangle PQR through the vertex P therefore is
part of the line PS. Analogously, we show that the altitude of PQR through Q is part of the line QS.

Therefore, S is the orthocenter of the triangle PQR. Since the line BD is perpendicular to its
bisector PQ and passes through S, the point R must be on that line.

(Karl Czakler)

Problem 2. There are 2020 points in the plane, some of which are black and the others are green.
For each black point the following holds: There are exactly two green points that have a distance of

2020 to this black point.
Determine the smallest possible number of green points.

(Walther Janous)

Answer. The smallest possible number is 45 green points.

Solution. We define green circles as circles with a green center and with a radius of 2020. According
to the problem statement, black points can only be placed in intersection points of exactly two green
circles.

If we have g green circles, each can intersect with each other at most twice, so there can be at most(
g
2

)
· 2 = g2 − g black points. Together with the g green points, we have a maximum of g2 − g + g = g2

points.
Due to 442 < 2020(< 452), we therefore need at least 45 green points.
There are numerous ways to place 45 green circles in such a way that each intersects with each other

twice and there is no point where more than two of them intersect.
For example, we can choose an arbitrary line segment AB of length less than 4040 anywhere in the

plane and place the 45 green points on it in any way we wish.
It is clear that any two green circles intersect twice because the distance of their centers is less than

twice their radius.
Furthermore, it is easy to check that no three green circles intersect in one point, because the further

apart the centers of two intersecting circles, the smaller the orthogonal distance of their intersection
point to AB. If there existed a point S where three circles intersect, then their centers would have to
satisfy M1M2 = M2M3 = M1M3, which is not possible because they are all on the same line segment.

We therefore have 45·(45−1)
2

· 2 = 1980 points in which two of the 45 circles intersect, and place black
points in 1975 of them.

This shows that a configuration with 45 green points is indeed possible and concludes the proof.
(Walther Janous, Birgit Vera Schmidt)

Problem 3. Let a be a fixed positive integer and (en) the sequence defined by e0 = 1 and

en = a+
n−1∏
k=0

ek

for n ≥ 1.

(a) Prove that there are infinitely many primes that divide an element of the sequence.

(b) Prove that there exists a prime that divides no element of the sequence.
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(Theresia Eisenkölbl)
Solution.

Lemma. The equation gcd(a, en) = 1 holds for all n ≥ 0.

Proof. We show by induction on n that gcd(a, ek) = 1 for all k ≤ n. This is obvious for n = 0. For
the induction step, we note that gcd(a, en) = gcd(a, a +

∏n−1
k=0 ek) = gcd(a,

∏n−1
k=0 ek) = 1, which

proves the lemma. ■

For the first part, we now follow the strategy of Euclid’s proof that there are infinitely many primes.
Let p1, . . . , pN be distinct primes which each divide at least one element of the sequence. We can choose
M so that each of these primes divides an en with n < M , which implies that all of them divide

∏M−1
k=0 ek.

By the lemma, they cannot divide a, therefore, none of these primes can divide eM . Since eM > 1, it
must have a prime divisor that is not yet on our list. Therefore, we can always add new prime divisors
to our list and find an infinite number of primes which divide an element of the given sequence.

For the second part, we start with the case a ̸= 1. We choose one of the primes that divide a. By
the lemma, this prime divides no element of the sequence as desired.

From now on, we assume a = 1 and we define mn :=
∏n

k=0 ek for n ≥ 0. From the given recurrence
relation, we immediately get mn+1 = mnen+1 = mn(1 + mn) and m0 = 1. Modulo 5, we get m1 ≡ 2
(mod 5), m2 ≡ 1 (mod 5). Since mn+1 only depends on mn, we see that mn is always congruent to 1 or
2 modulo 5 and therefore never divisible by 5. Its divisor en is also never divisible by 5 as desired.

(Clemens Heuberger)

Problem 4. Determine all functions f : R → R satisfying

f(xf(y) + 1) = y + f(f(x)f(y))

for all x, y ∈ R.
(Theresia Eisenkölbl)

Answer. There is one such function, namely f(x) = x− 1, x ∈ R.

Solution. We prove injectivity by setting both y = a and y = b with f(a) = f(b) in the original equation
and obtaining

a = f(xf(a) + 1)− f(f(x)f(a)) = f(xf(b) + 1)− f(f(x)f(b)) = b.

Now, we set y = 0. Using injectivity, we obtain

xf(0) + 1 = f(x)f(0).

For f(0) = 0, this becomes 1 = 0, which is not possible. Therefore, we can divide by f(0) and obtain
f(x) = x+ c for some constant c.

Plugging this into the original equation immediately gives that the only solution is c = −1. Therefore,
the only solution is f(x) = x− 1.

(Theresia Eisenkölbl)

Problem 5. Let h be a semicircle with diameter AB. An arbitrary point P on the line segment AB is
chosen. The line through P that is perpendicular to AB intersects h at point C. The line segment PC
divides the area of the semicircle into two parts. In each of them, a circle is inscribed that touches AB,
PC and h. The point of tangency of AB and each circle is D and E, respectively, where D is between
A and P .

Prove that the size of the angle ∠DCE does not depend on the choice of P .
(Walther Janous)

3



A B
ED

C

P

U

V

k

K

h

Figure 2: Problem 5

Solution. We denote the inscribed circle that touches AB in E by k. Furthermore, we denote the point
of tangency of k and h by U and the point of tangency of k and PC by V , see Figure 2. Finally, let K
be the circle of which h is one half.

Lemma 1. The points U , V and A are collinear.

Proof. The point of tangency U of k and K is the center of a homothety that maps k to K.
Therefore, also the point of tangency of the tangent perpendicular to AB is mapped to the point
of tangency with the tangent perpendicular to AB, that is, V is mapped to A. Hence U , V and
A are collinear. ■

Lemma 2. It holds that AC = AE.

Proof. From Lemma 1 we get that the triangles APV and AUB are similar, because they have
one angle in common and both have one right angle. Therefore, we have AV

AP
= AB

AU
and thus

AV · AU = AP · AB.
Using the power of the point A with respect to the circle k, we get

AE2 = AV · AU = AP · AB.

On the other hand, it is well known that in a right triangle, the length of a cathetus is the
geometric mean of the length of the adjacent segment cut by the altitude to the hypotenuse and
the length of the whole hypotenuse (Euclid’s theorem); applying this in triangle ABC yields that
AC2 = AP · AB. Therefore, we have AC = AE as desired. ■

In the isosceles triangle EAC it therefore follows that

∠PCE = 90° − ∠AEC = ∠CAB/2 = (90° − ∠ABC)/2 = ∠PCB/2.

This means that the line CE is the angle bisector of ∠PCB. Analogously, CD is the angle bisector
of ∠ACP .
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This implies ∠DCE = ∠ACB/2 = 45° independent of the choice of P .
(Theresia Eisenkölbl)

Problem 6. The players Alfred and Bertrand together determine a polynomial xn + an−1x
n−1 + · · ·+ a0

of the given degree n ≥ 2. To do so, in n moves they alternatingly choose the value of one coefficient,
where all coefficients must be integers and a0 ̸= 0 must hold. Alfred makes the first move. Alfred wins if
the final polynomial has an integer root.

(a) For which n is Alfred able to force a victory if the coefficients aj are chosen from right to left, that
is, for j = 0, 1, . . . , n− 1?

(b) For which n is Alfred able to force a victory if the coefficients aj are chosen from left to right, that
is, for j = n− 1, n− 2, . . . , 0?

(Theresia Eisenkölbl, Clemens Heuberger)

Answer. In both cases, Alfred can force a victory if and only if n is odd.

Solution. (a) If Alfred makes the last move, he sets x = 1 and gets a linear equation in an−1 for making
1 a root. Since an−1 has a coefficient of 1 in this linear equation, it has an integer solution.

If Bertrand makes the last move, it is known that only divisors of the absolute term are candidates
for roots. He therefore gets a finite number of linear equations in an−1 for one of these divisors
being a root and chooses an−1 in such a way that it does not satisfy any of them.

(b) If Alfred makes the last move, he writes P (x) = xQ(x) + a0. He chooses an integer y ̸= 0
with Q(y) ̸= 0 (which is certainly possible because Q(x) is not the zero polynomial) and chooses
a0 = −yQ(y). This ensures that a0 ̸= 0 and P (y) = 0.

If Bertrand makes the last move, he also writes

P (x) = xQ(x) + a0

and chooses a prime p that is neither one of the finitely many roots of Q(x)+1 = 0 or Q(−x)−1 = 0
nor is equal to −Q(1) or Q(−1). He then sets a0 = p. The conditions ensure that P (±p) ̸= 0 and
P (±1) ̸= 0 hold and therefore P cannot have any integer roots.

This means that Alfred can force a victory if and only if he makes the last move, that is, if n is odd.

(Clemens Heuberger)
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