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Problem 1. Determine all functions f : R → R such that

f(2x+ f(y)) = x+ y + f(x)

for all x, y ∈ R.
(Gerhard Kirchner)

Answer. The only solution is f(x) = x for all x ∈ R.

Solution. We choose x so that the arguments on both sides become equal, i.e. the equation 2x+f(y) = x
is satisfied. For this value x = −f(y), we get f(−f(y)) = −f(y) + y+ f(−f(y)) and therefore f(y) = y
for all y ∈ R. But this is clearly a solution, therefore, it is the only solution.

(Gerhard Kirchner)

Problem 2. A (convex) trapezoid ABCD shall be called good if it is inscribed, has parallel sides AB
and CD, and CD is shorter than AB. For a good trapezoid, we fix the following notations.

• The line parallel to AD through B intersects the line CD in S.

• The tangents through S to the circumcircle of the trapezoid meet the circumcircle in E and F ,
respectively, where E is on the same side of the line CD as A.

Characterize good trapezoids ABCD (in terms of the side lengths and/or angles of the trapezoid) for
which the angles ∠BSE and ∠FSC are equal. The characterization should be as simple as possible.

(Walther Janous)

Answer. The angles ∠BSE and ∠FSC are equal if and only if ∠BAD = 60° or AB = AD.

Solution. We denote the circumcircle of the trapezoid by u, the second intersection point of the line SB
with u by T and the centre of u by M , see Figure 1. As the trapezoid is inscribed, it is isosceles. As
ABSD is a parallelogram by construction, we have BS = AD = BC and DS = AB.
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Figure 1: Problem 2, Case 1: B between S and T

Consider the reflection across the line MS. It clearly maps E and F to each other and maps u to
itself. We say that the trapezoid meets the angle condition if ∠BSE = ∠FSC.
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The trapezoid meets the angle condition if and only if the reflection maps the rays SB and SC to each
other. Equivalently, the intersection points of these rays with u are mapped to each other corresponding
to the order of the points on the rays.

We first consider the case that B is between S and T , see Figure 1. Then the trapezoid meets the
angle condition if and only if the reflection maps B and C to each other. Equivalently, the triangle
BSC is isosceles with axis of symmetry SM . As M lies on the perpendicular bisector of BC in any
case, this is equivalent to CS = BS. As BS = BC, this is in turn equivalent to the triangle BSC being
equilateral. Again by BS = BC, this is equivalent to ∠CSB = 60°. As ABSD is a parallelogram, the
trapezoid meets the angle condition in this case if and only if ∠BAD = 60°.
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Figure 2: Problem 2, Case 2: T between S and B

We now consider the case that T lies between S and B, see Figure 2. Then the above considerations
show that the trapezoid meets the angle condition if and only if the reflection maps B and D to each
other. Equivalently, the triangle BSD is isosceles with axis of symmetry MS. By the same argument
as in the first case, this is equivalent to SB = SD. This is equivalent to AB = AD.

(Clemens Heuberger)

Problem 3. In the country of Oddland, there are stamps with values 1 cent, 3 cent, 5 cent, etc., one
type for each odd number. The rules of Oddland Postal Services stipulate the following: for any two
distinct values, the number of stamps of the higher value on an envelope must never exceed the number
of stamps of the lower value.

In the country of Squareland, on the other hand, there are stamps with values 1 cent, 4 cent, 9 cent,
etc., one type for each square number. Stamps can be combined in all possible ways in Squareland without
additional rules.

Prove for every positive integer n: In Oddland and Squareland there are equally many ways to
correctly place stamps of a total value of n cent on an envelope. Rearranging the stamps on an envelope
makes no difference.

(Stephan Wagner)

Solution. We construct a bijection between possible combinations in Oddland and possible combinations
in Squareland. Suppose we have a combination of Squareland stamps that sum to n cent, consisting of
a1 stamps of value 1 cent, a2 stamps of value 4 cent, . . . , aM stamps of value M2 cent, so that

n =
M∑
k=1

k2ak.
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Now we express k2 as
∑k

j=1(2j − 1) and interchange the order of summation, which yields

n =
M∑
k=1

k∑
j=1

(2j − 1)ak =
M∑
j=1

(2j − 1)
M∑
k=j

ak.

This gives us a possible combination of Oddland stamps: By setting bj =
∑M

k=j ak, we have

n =
M∑
j=1

(2j − 1)bj.

This can be interpreted as a collection of b1 stamps of value 1 cent, b2 stamps of value 3 cent, . . . ,
bM stamps of value (2M − 1) cent. We have b1 ≥ b2 ≥ · · · ≥ bM by definition, so this is a legal
combination in Oddland.

Conversely, if a combination in Oddland is given by the values b1, b2, . . . , bM , we can use the identities
a1 = b1 − b2, a2 = b2 − b3, . . . , aM−1 = bM−1 − bM , aM = bM to recover the corresponding combination
in Squareland. (Note that these values are nonnegative whenever b1 ≥ b2 ≥ · · · ≥ bM .)

Since these two operations obviously are inverse to one another, we have found a bijection, which
proves the statement.

(Stephan Wagner)

Problem 4. Let a, b and c be positive real numbers satisfying a+ b+ c+ 2 = abc.
Prove

(a+ 1)(b+ 1)(c+ 1) ≥ 27.

When does equality occur?
(Karl Czakler)

Answer. Equality occurs if and only if a = b = c = 2.

Solution. We set x = a+ 1, y = b+ 1 and z = c+ 1. Thus we have to show

xyz ≥ 27

subject to
xyz = xy + yz + zx.

From the constraint we get

xyz = xy + yz + zx ≥ 3 3
√

x2y2z2

by using the inequality between the arithmetic and the geometric means of xy, yz and zx. This is clearly
equivalent to xyz ≥ 27.

Equality occurs if and only if xy = yz = zx, or, equivalently, x = y = z. By the constraint, this is
equivalent to x = y = z = 3 and finally a = b = c = 2.

(Clemens Heuberger)

Problem 5. We are given an arbitrary acute-angled triangle ABC and its altitudes AD and BE where
D and E denote their feet on sides BC and AC, respectively. Let furthermore F and G be two points
on segments AD and BE, respectively, such that

AF

FD
=

BG

GE
.

The line through C and F intersects BE in point H and the line through C and G intersects AD in
point I. Prove that the four points F , G, H and I are concyclic.

(Walther Janous)
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Figure 3: Problem 5

Solution. The two right-angled triangles ADC and BEC are inversely similar to each other, see Figure 3.
Here, the sides AD and BE correspond to each other.

But the condition
AF

FD
=

BG

GE

means: The two points F and G divide the two sides AD and BE, respectively, in equal ratios. Thus,
the two oriented angles ∠DFC and ∠CGE are equal, which implies that the oriented angles ∠IFH and
∠IGH are equal modulo 180°. Thus the inscribed angle theorem implies that the four points F , G, H
and I are concyclic.

(Walther Janous)

Remark. The solution only uses that ABDE is inscribable.

Problem 6. Determine the smallest possible positive integer n with the following property: For all
positive integers x, y and z with x | y3 and y | z3 and z | x3 we also have xyz | (x+ y + z)n.

(Gerhard J. Woeginger)

Answer. The smallest possible integer with that property is n = 13.

Solution. We note that we have xyz | (x + y + z)n if and only if for each prime p the inequality
vp(xyz) ≤ vp((x+y+z)n) holds, where as usual vp(m) denotes the exponent of p in the prime factorization
of m.

Let x, y and z be positive integers with x | y3, y | z3 and z | x3. Let p be an arbitrary prime, and
w.l.o.g. let the multiplicity of p be lowest in z, that is, vp(z) = min{vp(x), vp(y), vp(z)}.

Then we have vp(x + y + z) ≥ vp(z), and from the divisibility constraints we get vp(x) ≤ 3vp(y) ≤
9vp(z). It follows that

vp(xyz) = vp(x) + vp(y) + vp(z)

≤ 9vp(z) + 3vp(z) + vp(z) = 13vp(z)

≤ 13vp(x+ y + z) = vp((x+ y + z)13), (1)

which proves that for n = 13 the desired property is satisfied.
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It remains to show that this is indeed the smallest possible integer with this property. For doing so,
let n now be a number that has the desired property. By setting (x, y, z) = (p9, p3, p1) with an arbitrary
prime p (in order to achieve that both inequalities in (1) become equalities), we get

13 = vp(p
13) = vp(p

9 · p3 · p1) = vp(xyz)

≤ vp((x+ y + z)n) = vp((p
9 + p3 + p1)n) = n · vp(p(p8 + p2 + 1)) = n,

which yields n ≥ 13.
(Birgit Vera Schmidt, Gerhard J. Woeginger)
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