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Problem 1. Let α 6= 0 be a real number.
Find all functions f : R>0 → R>0 with

f(f(x) + y) = αx+
1

f
(
1
y

)
for all x, y ∈ R>0.

(Walther Janous)

Solution. Answer: If α = 1, the only solution is f(x) = x. For other values of α, there is no solution.
We must have α > 0, otherwise, the right-hand side becomes negative for large values of x. By using

x in the given equation, we can immediately conclude that f is an injective function. Furthermore,
since we can choose arbitrary values for x on the right-hand side, we conclude that f is surjective on an
interval (a,∞). By choosing small values of x and large values of the function on the right-hand side,
we conclude that the right-hand side takes all positive values, so the function f is surjective.

Now, we replace y with f(y) and obtain

f(f(x) + f(y)) = αx+
1

f( 1
f(y)

)
. (1)

The left-hand side is symmetric in x and y, therefore

αx+
1

f( 1
f(y)

)
= αy +

1

f( 1
f(x)

)
.

If we choose an arbitrary �xed value for y, we get

1

f( 1
f(x)

)
= αx+ C.

We substitute this identity into Equation (1) and get

f(f(x) + f(y)) = αx+ αy + C.

Because of injectivity, this implies

f(x) + f(y) = f(z) + f(w), if x+ y = z + w. (2)

In particular, we have

f(x+ 1) + f(y + 1) = f(x+ y + 1) + f(1) for x, y ≥ 0.

With g(x) = f(x+ 1), we get for the function g : R≥0 → R≥0 that

g(x) + g(y) = g(x+ y) + g(0).

We put h(x) = g(x)− g(0) and get h(x) ≥ −g(0) and the Cauchy functional equation

h(x) + h(y) = h(x+ y).
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If we had h(t) < 0 for some t > 0, then the values h(nt) = nh(t) would be arbitrarily small for large
positive integers n. But this is impossible because of the lower bound, so we have h(x) ≥ 0 for all x ≥ 0
and we get for 0 < u < v that h(v) = h(u) + h(v − u) ≥ h(u).

Therefore, the function h(x) is a monotone solution of the Cauchy functional equation which has to
be of the form h(x) = cx. This implies that for x > 1 we also have f(x) = h(x− 1) + g(0) = cx+ d for
some constants c and d. But this also true for 0 < x ≤ 1 which can be seen by plugging y = 3, z = 2
and w = x+ 1 into Equation (2).

Since f is surjective, the contant term has to be 0 (otherwise, small positive values could not be
reached by f or negative values would be reached). Putting f(x) = cx into the original equation and
equating coe�cients gives the conditions c2 = α and c2 = 1. Since c has to be positive, we obtain the
only solution f(x) = x if α = 1.

(Theresia Eisenkölbl)

Problem 2. Let A, B, C and D be four di�erent points lying on a common circle in this order. Assume
that the line segment AB is the (only) longest side of the inscribed quadrilateral ABCD.

Prove that the inequality
AB +BD > AC + CD

holds.
(Karl Czakler)

Solution. Let S denote the common point of the diagonals, and let a = AB and c = CD.
Since ABCD is an inscribed quadrilateral, triangles ABS and DCS are similar. It follows that

numbers r and s must exist, such that AS = sa, BS = ra, DS = sc and CS = rc hold. The inequality
under consideration can therefore be written in the form

a+ ra+ sc > sa+ rc+ c.

This is equivalent to
a(1 + r − s) > c(1 + r − s),

which is certainly correct, since a > c is given and the triangle inequality in ABS implies 1 + r > s.
(Theresia Eisenkölbl)

Problem 3. There are n children in a room. Each child has at least one piece of candy. In Round 1,
Round 2, etc., additional pieces of candy are distributed among the children according to the following
rule:

In Round k, each child whose number of pieces of candy is relatively prime to k receives an additional
piece.

Show that after a su�cient number of rounds the children in the room have at most two di�erent
numbers of pieces of candy.

(Theresia Eisenkölbl)

Solution. We observe that a child that has k − 1 or k + 1 pieces of candy at the start of Round k will
receive an additional piece because of gcd(k, k± 1) = 1 and be in the same situation in the next round.
Furthermore, in each round, the number of the round will increase by 1 and the number of pieces of
each child will increase by 0 or by 1. Therefore, for each child, the di�erence of pieces and the round
number is positive or zero at the start and after each round will either remain equal or drop by 1. Since
we have already seen that the di�erence is stable at −1, it cannot drop below −1.

Therefore, it remains to show that the di�erence +1 and −1 are the only ones that can stay constant
forever which will prove that for each child the number of pieces of candy will eventually drop to k − 1
or k + 1.
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If the di�erence is 0, the child has k pieces of candy. For k = 1, the child receives a piece, but
receives nothing in the following round, so the di�erence drops to −1 after two steps. For k > 1, the
child immediately receives nothing and the di�erence drops to −1.

If the di�erence d is bigger than 1, then there must occur a round with a number divisible by d after
at most d steps. Either the di�erence already drops before this round or this d will be a common divisor
of round number and candy piece number, therefore the di�erence will drop by 1 after at most d steps.

This proves that after su�ciently long time all children will have k − 1 or k + 1 pieces of candy at
the start of Round k and all of them will receive one additional piece during each round forever after.

(Theresia Eisenkölbl)

Problem 4. Let ABC be a triangle and P a point inside the triangle such that the centers MB and MA

of the circumcircles kB and kA of triangles ACP and BCP , respectively, lie outside the triangle ABC.
In addition, we assume that the three points A, P and MA are collinear as well as the three points B,
P and MB. The line through P parallel to side AB intersects circles kA and kB in points D and E,
respectively, where D, E 6= P .

Show that DE = AC +BC.
(Walther Janous)

Solution. We put ϕ := ∠CBP , cf. Figure 1. Then we get for the corresponding central angle ∠CMAP =

A B

C

P

MA

MB

D

ϕ

2ϕ

Figure 1: Problem 4

2ϕ. Since MACMBP is a deltoid having MAMB as its axis of symmetry, we deduce ∠CMAMB = ϕ =
∠CBMB. Therefore, B and analogously A lie on the circumcircle of MACMB. In other words, the two
centers MA and MB lie on the circumcircle of ABC.

ThusMA andMB are the south poles corresponding to vertices A and B, respectively. As a result, P
is the incenter of triangle ABC. Hence ∠PBA = ∠CBP and because of PD ‖ AB also ∠CBP = ∠BPD
holds true. This means that PBDC is an isosceles trapezoid with diagonals of equal lengths and
PD = BC follows.

In a similar way PE = AC can be shown. Finally, by addition we arrive at the claimDE = AC+BC.
(Clemens Heuberger, Walther Janous)
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Problem 5. On a circle 2018 points are marked.
Each of these points is labeled with an integer. Let each number be larger than the sum of the preceding

two numbers in clockwise order.
Determine the maximal number of positive integers that can occur in such a con�guration of 2018

integers.
(Walther Janous)

Solution. Let the points be labeled a0, a1, . . . , a2017 clockwise with cyclical notation, i.e., ak+2018 = ak
for all integers k.

Lemma. In a valid con�guration, no two neighbouring numbers can be both non-negative.

Proof. Assume that there exist neighbouring numbers ak−1 and ak which are both non-negative.
We get ak+1 > ak + ak−1 ≥ ak, with the �rst inequality following from the problem statement and
the second from ak−1 ≥ 0. Since now also ak and ak+1 are both non-negative, we analogously get
ak+2 > ak+1, then ak+3 > ak+2, and so on, until we have ak+2018 > ak+2017 > · · · > ak+1 > ak =
ak+2018, a contradiction. �

Therefore at most every second number can be non-negative. Next we will show that these are still
too many non-negative numbers.

Lemma. In a valid con�guration, it is not possible that every second number is non-negative.

Proof. Assume that this is the case, so w.l.o.g. a2k ≥ 0 and a2k+1 < 0 for all integers k. Then
we get a3 > a2 + a1 ≥ a1, where again the �rst inequality follows from the problem statement
and the second from a2 ≥ 0. Analogously we get a5 > a3, then a7 > a5, et cetera, until we have
a1 = a2019 > a2017 > a2015 > · · · > a3 > a1, a contradiction. �

We can therefore summarize: A con�guration with more than 1009 non-negative numbers is not
possible because otherwise by the pigeonhole principle we would have two neighbouring non-negative
numbers, which is not allowed according to the �rst lemma. A con�guration with exactly 1009 non-
negative numbers contradicts either the �rst or the second lemma.

With 1008 positive and 1010 negative numbers we �nd for example the con�guration

−4035, 1,−4033, 1,−4031, 1,−4029, . . . , 1,−2021, 1,−2019,−2017,

which we can easily check for correctness.
(Birgit Vera Schmidt)

Problem 6. Determine all digits z such that for each integer k ≥ 1 there exists an integer n ≥ 1 with
the property that the decimal representation of n9 ends with at least k digits z.

(Walther Janous)

Solution. Answer: This is possible for z ∈ {0, 1, 3, 7, 9}.
For z = 0 we easily �nd 10l with any su�ciently large integer l such that 9l ≥ k.
For z ∈ {2, 4, 6, 8} the number n9 is even and therefore also n must be even, and hence n9 must

be divisible by 29. However, numbers ending with 222, 444 or 666 are already not divisible by 8, and
numbers ending with 8888 are not divisible by 16. Therefore, there does not exist a solution for these
values of z.

Similarly, for z = 5 the number n9 is divisible by 5, therefore also n itself is divisible by 5 and
therefore, n9 must even be divisible by 59. However, numbers ending with 55 are not divisible by 25.
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For z ∈ {1, 3, 7, 9}, let b := (zzz . . . z︸ ︷︷ ︸
k

)10. Since gcd(9, ϕ(10
k)) = gcd(9, 4·10k−1) = 1, by the Euclidean

algorithm there exist numbers x and y such that 9x + ϕ(10k)y = 1. We claim that n := bx has the
desired property. Because of gcd(b, 10k) = 1 this can be easily demonstrated using Euler-Fermat:

(bx)9 = b9x ≡ b9x+ϕ(10k)y = b1 = b (mod 10k).

(Clemens Heuberger, Walther Janous)
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