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Problem 1. Let f : Z>0 → Z be a function with the following properties:

(i) f(1) = 0,

(ii) f(p) = 1 for all prime numbers p,

(iii) f(xy) = yf(x) + xf(y) for all x, y in Z>0.

Determine the smallest integer n ≥ 2015 that satis�es f(n) = n.
(Gerhard J. Woeginger)

Solution. 1. We claim that

f(q1 · · · qs) = q1 · · · qs
(

1

q1
+ · · ·+ 1

qs

)
(1)

holds for (not necessarily distinct) prime numbers q1, . . . , qs.

We prove the claim by induction on s. For s = 0, the claim reduces to f(1) = 0, which is true by
assumption.

If (1) holds for some s, then

f(q1 · · · qsqs+1) = f((q1 · · · qs)qs+1) = qs+1f(q1 · · · qs) + q1 · · · qsf(qs+1)

= q1 · · · qs+1

( 1

q1
+ · · ·+ 1

qs

)
+ q1 · · · qs = q1 · · · qs+1

( 1

q1
+ · · ·+ 1

qs
+

1

qs+1

)
.

2. It is easily veri�ed that the function given by (1) ful�lls the given functional equation.

3. Let p1, . . . , pr be distinct primes and α1, . . . , αr be positive integers. Then collecting equal primes
in (1) leads to

f(pα1
1 · · · pαr

r ) = pα1
1 · · · pαr

r

r∑
j=1

αj
pj
.

4. We now determine all n ≥ 2015 with f(n) = n. We write n = pα1
1 · · · pαr

r . Then

α1

p1
+ · · ·+ αr

pr
= 1. (2)

We write
α1

p1
+ · · ·+ αr−1

pr−1
=

a

p1 · · · pr−1
for some non-negative integer a. Then

a

p1 · · · pr−1
+
αr
pr

= 1 ⇐⇒ apr + αrp1 · · · pr−1 = p1 · · · pr.

As pr is coprime to p1 · · · pr−1, we conclude that pr | αr. As (2) implies αr ≤ pr, we conclude that
r = 1 and αr = pr.

Thus f(n) = n holds if and only if n = pp for some prime number p. We have

22 = 4 < 33 = 27 < 2015 < 55 = 3125,

so the smallest such n is 3125.
(Clemens Heuberger)
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Problem 2. We are given a triangle ABC. Let M be the mid-point of its side AB.
Let P be an interior point of the triangle. We let Q denote the point symmetric to P with respect to

M .
Furthermore, let D and E be the common points of AP and BP with sides BC and AC, respectively.
Prove that points A, B, D and E lie on a common circle if and only if ∠ACP = ∠QCB holds.

(Karl Czakler)

Solution. Without loss of generality, we assume that P lies either on the segment CM or in the interior
of the triangle AMC. If this is not the case, we exchange the names of vertices A and B and add the
angle ∠PCQ to both given angles.

Let C ′ be the point symmetric to C with respect toM . According to the assumptions of the problem,
Q and B are the points symmetric to P and A with respect to M , respectively. Furthermore, let D′ and
E ′ be the common points of the lines C ′P and CP with the sides AC and AC ′, respectively.
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Figure 1: equivalence lemma

We �rst prove a lemma.

Lemma. Assume that P does not lie on the median CM . In this case, the following two facts hold:

1. Angles ∠ACP and ∠BCQ are equal if and only if the quadrilateral C ′CD′E ′ is circumscribed.

2. Angles ∠CAP and ∠C ′AQ are equal if and only if the quadrilateral ABDE is circumscribed.

Proof.

1. Due to symmetry with respect to M , we have ∠BCQ = ∠AC ′P . Therefore

∠ACP = ∠BCQ

⇐⇒ ∠ACP = ∠AC ′P

⇐⇒ ∠D′CE ′ = ∠D′C ′E ′

⇐⇒ C ′CD′E ′ is circumscribed
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because of the equal angles on the chord D′E ′.

2. Since ∠C ′AQ = ∠PBC also holds because of the symmetry, this follows as above.

�

We �rst prove that if ABDE is circumscribed, then ∠ACP = ∠QCB.
Let ABDE be circumscribed, as in Figure 2. Since BQ lies symmetric to AP with respect to M ,
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Figure 2: Problem 2

AQBP is a parallelogram. Angle ∠CED is supplementary to ∠AED, which is itself supplementary
to ∠ABC because the quadrilateral is circumscribed, and therefore ∠CED = ∠ABC holds. It follows
that triangles CED and CBA are similar.

We now re�ect along the angle bisector of ∠BCA and then perform a homothety, such that D is
mapped onto A. Since the triangles CED and CBA are similar, this must map E onto B. Since AQB
is congruent to BPA, which is itself similar to DPE, triangle DPE is mapped onto AQB, and therefore
P onto Q. It therefore follows that ∠ACP = ∠QCB holds, as required.

Now, we prove the converse direction under the additional assumption that P does not lie on CM .
We assume that ∠ACP = ∠BCQ. The lemma then implies that C ′CD′E ′ is circumscribed. Applying
the result on the �rst direction on the triangle CC ′A instead of ABC implies ∠C ′AQ = ∠CAP . It
therefore follows from the lemma that ABDE lie on a common circle.

If P lies on CM and ∠ACP = ∠BCQ holds, C, P , M and Q are all points on the angle bisector.
It then follows that ABC is isosceles, and since P lies on the axis of symmetry, we see that ED ‖ AB
holds. It follows that ABDE is an isosceles trapezoid, and it is therefore circumscribed.

(Levi Haunschmid, Sara Kropf)

Problem 3. We consider the following operation applied to a positive integer: The integer is represented
in an arbitrary base b ≥ 2, in which it has exactly two digits and in which both digits are di�erent from
0. Then the two digits are swapped and the result in base b is the new number.

Is it possible to transform every number > 10 to a number ≤ 10 with a series of such operations?
(Theresia Eisenkölbl)

3



Solution. We show that each number > 10 can be transformed to a smaller number. In that way, we
will eventually reach a number ≤ 10.

If the number n = 2k + 1 is odd, we choose base b = k with n = (21)k. Swapping the two digits, we
obtain the new number (12)k = k + 2. Since k ≥ 5, the choice of b = k as base is admissible (the digits
are smaller than the base) and we have k + 2 ≤ 2k − 5 + 2 < 2k + 1 as desired.

If the number n = 2k is even, we choose the base b = 2k − 2 with n = (12)2k−2 and obtain the new
number (21)2k−2 = 4k − 3. Now we choose the base k − 1 with 4k − 3 = (41)k−1 and obtain the new
number (14)k−1 = k + 3. Since k > 5, both bases are admissible, and we have k + 3 < 2k as desired.

(Theresia Eisenkölbl)

Problem 4. Let x, y, z be positive real numbers with x+ y + z ≥ 3. Prove that

1

x+ y + z2
+

1

y + z + x2
+

1

z + x+ y2
≤ 1.

When does equality hold?
(Karl Czakler)

Solution. By Cauchy's inequality, we have

(x+ y + z2)(x+ y + 1) ≥ (x+ y + z)2, (3)

hence
1

x+ y + z2
≤ x+ y + 1

(x+ y + z)2
.

Thus it su�ces to show that∑
cyc

x+ y + 1

(x+ y + z)2
=

2(x+ y + z) + 3

(x+ y + z)2
≤ 1.

This is equivalent to the inequality

(x+ y + z)2 − 2(x+ y + z)− 3 ≥ 0,

which holds for x+ y + z ≥ 3.
Equality in (3) holds if and only if (x, y, z2) und (x, y, 1) are collinear, i.e., z2 = 1 or, equivalently,

z = 1. Cyclic permutation shows that equality holds if and only if x = y = z = 1.
(Karl Czakler)

Problem 5. Let I be the incenter of triangle ABC and let k be a circle through the points A and B.
This circle intersects

• the line AI in points A and P ,

• the line BI in points B and Q,

• the line AC in points A and R and

• the line BC in points B and S,

with none of the points A, B, P , Q, R und S coinciding and such that R and S are interior points of
the line segments AC and BC, respectively.

Prove that the lines PS, QR and CI meet in a single point.
(Stephan Wagner)
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Figure 3: Problem 5

Solution. We de�ne angles α = ∠BAC and β = ∠CBA as usual, cf. Figure 3. Since points A, B, S and
R lie on a common circle, we have ∠BSR = 180◦ − α, and therefore ∠RSC = α. Similarly, ∠CRS = β
also holds.

If P lies in the interior of ABC, we have ∠RSP = ∠RAP = α/2. This means that PS bisects the
angle ∠CSR.

If Q is outside of ABC, we have ∠QRA = ∠QBA = β/2, and in this case QR also bisects the angle
∠SRC.

Independent of the positioning of Q and R with respect to the triangle, we therefore see that QR,
PS and CI are the bisectors of the interior angles of CRS, and they therefore meet in the incenter of
this triangle, as claimed.

(Clemens Heuberger)

Problem 6. Max has 2015 jars labelled with the numbers 1 to 2015 and an unlimited supply of coins.
Consider the following starting con�gurations:

(a) All jars are empty.

(b) Jar 1 contains 1 coin, jar 2 contains 2 coins, and so on, up to jar 2015 which contains 2015 coins.

(c) Jar 1 contains 2015 coins, jar 2 contains 2014 coins, and so on, up to jar 2015 which contains 1
coin.

Now Max selects in each step a number n from 1 to 2015 and adds n coins to each jar except to the
jar n.

Determine for each starting con�gurations in (a), (b), (c), if Max can use a �nite, strictly positive
number of steps to obtain an equal number of coins in each jar.

(Birgit Vera Schmidt)

Solution. Max can achieve his goal in all three cases by the procedures described below.
Let N = 2015 be the number of jars.

(a) Let Max select jar j exactly (N !/j) times. Then jar j will contain∑
k 6=j

k · N !

k
= (N − 1) ·N !

coins which does not depend on j as desired and has clearly needed at least one step.
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(b) Let Max select each jar j exactly once. Then jar j will contain j +
∑

k 6=j k =
∑

k k coins which
does not depend on j as desired.

(c) Let Max select jar j exactly (N !/j − 1) times. Then jar j will contain

N + 1− j +
∑
k 6=j

k ·
(N !

k
− 1
)
= N + 1− j +

∑
k 6=j

(N !− k) = (N − 1)N ! + (N + 1)−
∑
k

k

coins which does not depend on j as desired.

(Clemens Heuberger)
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