

46th Austrian Mathematical Olympiad

Beginners' Competition June 9, 2015

- 1. Let a, b, c be integers with $a^3 + b^3 + c^3$ divisible by 18. Prove that abc is divisible by 6. (Karl Czakler)
- 2. Let x, y be positive real numbers with xy = 4. Prove that

$$\frac{1}{x+3} + \frac{1}{y+3} \le \frac{2}{5}.$$

For which x and y does equality hold?

(Walther Janous)

3. Anton chooses as starting number an integer $n \ge 0$ which is not a square. Berta adds to this number its successor n + 1. If this sum is a perfect square, she has won. Otherwise, Anton adds to this sum, the subsequent number n + 2. If this sum is a perfect square, he has won. Otherwise, it is again Berta's turn and she adds the subsequent number n + 3, and so on.

Prove that there are infinitely many starting numbers, leading to Anton's win.

(Richard Henner)

4. Let k_1 and k_2 be internally tangent circles with common point X. Let P be a point lying neither on one of the two circles nor on the line through the two centers. Let N_1 be the point on k_1 closest to P and F_1 the point on k_1 that is farthest from P. Analogously, let N_2 be the point on k_2 closest to P and F_2 the point on k_2 that is farthest from P.

Prove that $\angle N_1 X N_2 = \angle F_1 X F_2$.

(Robert Geretschläger)

Working time: 4 hours. Each problem is worth 8 points.