

$46^{\text {th }}$ Austrian Mathematical Olympiad

Beginners' Competition
June 9, 2015

1. Let a, b, c be integers with $a^{3}+b^{3}+c^{3}$ divisible by 18 . Prove that $a b c$ is divisible by 6 .
(Karl Czakler)
2. Let x, y be positive real numbers with $x y=4$.

Prove that

$$
\frac{1}{x+3}+\frac{1}{y+3} \leq \frac{2}{5} .
$$

For which x and y does equality hold?
(Walther Janous)
3. Anton chooses as starting number an integer $n \geq 0$ which is not a square. Berta adds to this number its successor $n+1$. If this sum is a perfect square, she has won. Otherwise, Anton adds to this sum, the subsequent number $n+2$. If this sum is a perfect square, he has won. Otherwise, it is again Berta's turn and she adds the subsequent number $n+3$, and so on.

Prove that there are infinitely many starting numbers, leading to Anton's win.
(Richard Henner)
4. Let k_{1} and k_{2} be internally tangent circles with common point X. Let P be a point lying neither on one of the two circles nor on the line through the two centers. Let N_{1} be the point on k_{1} closest to P and F_{1} the point on k_{1} that is farthest from P. Analogously, let N_{2} be the point on k_{2} closest to P and F_{2} the point on k_{2} that is farthest from P.
Prove that $\angle N_{1} X N_{2}=\angle F_{1} X F_{2}$.
(Robert Geretschläger)

Working time: 4 hours.
Each problem is worth 8 points.

