

$53^{\text {rd }}$ Austrian Mathematical Olympiad<br>Regional Competition<br>31st March 2022

1. Let $a$ and $b$ be positive real numbers with $a^{2}+b^{2}=\frac{1}{2}$. Prove that

$$
\frac{1}{1-a}+\frac{1}{1-b} \geq 4
$$

When does equality hold?
(Walther Janous)
2. Determine the number of ten-digit positive integers with the following properties:

- Each of the digits $0,1,2, \ldots, 8$ and 9 is contained exactly once.
- Each digit, except 9, has a neighbouring digit that is larger than it.
(Note. For example, in the number 1230, the digits 1 and 3 are the neighbouring digits of 2 and 2 and 0 are the neighbouring digits of 3 . The digits 1 and 0 have only one neighbouring digit.)
(Karl Czakler)

3. Let $A B C$ denote a triangle with $A C \neq B C$. Let $I$ and $U$ denote the incenter and circumcenter of the triangle $A B C$, respectively. The incircle touches $B C$ and $A C$ in the points $D$ and $E$, respectively. The circumcircles of the triangles $A B C$ and $C D E$ intersect in the two points $C$ and $P$.

Prove that the common point $S$ of the lines $C U$ and $P I$ lies on the circumcircle of the triangle $A B C$.
(Karl Czakler)
4. We are given the set

$$
M=\left\{-2^{2022},-2^{2021}, \ldots,-2^{2},-2,-1,1,2,2^{2}, \ldots, 2^{2021}, 2^{2022}\right\} .
$$

Let $T$ be a subset of $M$, such that neighbouring numbers have the same difference when the elements are ordered by size.
(a) Determine the maximum number of elements that such a set $T$ can contain.
(b) Determine all sets $T$ with the maximum number of elements.
(Walther Janous)

Working time: 4 hours.
Each problem is worth 8 points.

