
Czech-Polish-Slovak-Austrian Match, Day 1

1. Find all quadruples (a, b, c, d) of positive integers satisfying gcd(a, b, c, d) = 1 and

a | b + c, b | c + d, c | d + a, d | a + b.

2. In an acute triangle ABC, the incircle ω touches BC at D. Let Ia be the excenter
of ABC opposite to A, and let M be the midpoint of DIa. Prove that the circumcircle
of triangle BMC is tangent to ω.

3. For any two convex polygons P1 and P2 with mutually distinct vertices, denote by
f(P1, P2) the total number of their vertices that lie on a side of the other polygon. For
each positive integer n ≥ 4, determine

max{f(P1, P2) | P1 and P2 are convex n-gons}.

(We say that a polygon is convex if all its internal angles are strictly less than 180◦.)



Czech-Polish-Slovak-Austrian Match, Day 2

4. Determine the number of 2021-tuples of positive integers such that the number 3 is
an element of the tuple and consecutive elements of the tuple differ by at most 1.

5. The sequence a1, a2, a3, . . . satisfies a1 = 1, and for all n ≥ 2, it holds that

an =
{

an−1 + 3 if n− 1 ∈ {a1, a2, . . . , an−1};
an−1 + 2 otherwise.

Prove that for all positive integers n, we have

an < n · (1 +
√

2).

6. Let ABC be an acute triangle and suppose points A, Ab, Ba, B, Bc, Cb, C, Ca,
and Ac lie on its perimeter in this order. Let A1 6= A be the second intersection point
of the circumcircles of triangles AAbCa and AAcBa. Analogously, B1 6= B is the second
intersection point of the circumcircles of triangles BBcAb and BBaCb, and C1 6= C is the
second intersection point of the circumcircles of triangles CCaBc and CCbAc. Suppose
that the points A1, B1, and C1 are all distinct, lie inside the triangle ABC, and do not lie
on a single line. Prove that lines AA1, BB1, CC1, and the circumcircle of triangle A1B1C1
all pass through a common point.



CPSA 2021 – solutions

1. Find all quadruples (a, b, c, d) of positive integers satisfying gcd(a, b, c, d) = 1 and

a | b + c, b | c + d, c | d + a, d | a + b.

Vítězslav Kala (Czech Republic)

Solution. Without loss of generality, assume that a = max{a, b, c, d}. Then

a ≤ b + c ≤ 2a,

and so we have 2 possible cases:

CASE 1. b + c = 2a.

In this case, a = b = c, and so

a = c | (d + a)− a = d.

But a ≥ d, and so we must have a = b = c = d, and by the coprimality assumption, we
get the solution (1, 1, 1, 1).

CASE 2. b + c = a.

Let c + d = kb for some positive integer k. The relation c | d + a then implies

c | c + d + (b + c) = (k + 1)b + c,

and so (k + 1)b = lc for some positive integer l.

Moreover, we have
d | a + b = 2b + c,

and so md = m(kb− c) = 2b + c for some positive integer m.

We now have the system
(k + 1)b = lc

(km− 2)b = (m + 1)c.

From the second equation, we see that km− 2 > 0, and so

l = (k + 1)b

c
= (k + 1)(m + 1)

km− 2 = 1 + k + m + 3
km− 2 .

Since l is an integer, we have
km− 2 | k + m + 3.

However, if (k − 1)(m − 1) > 6, then km − 2 > k + m + 3, which would contradict
km− 2 | k + m + 3.



Note that m = 1 is not possible, for then we would have d = 2b+c > b+c = a. Therefore,
there are 5 remaining cases.

CASE 2a. k = 1.

Then m− 2 | m + 4, and so m− 2 | 6, i.e. m is one of the numbers 3, 4, 5, 8 (recall that
we know that m− 2 = km− 2 > 0). The corresponding values of l are then 8, 5, 4, 3. By
the coprimality assumption, this uniquely determines the solutions as

(a, b, c, d) ∈ {(5, 4, 1, 3), (7, 5, 2, 3), (3, 2, 1, 1), (5, 3, 2, 1)}.

CASE 2b. k = 2 for 2 ≤ m ≤ 7.

We then have 2m− 2 | m + 5, and so the only possibilities are (m, l) ∈ {(3, 3), (7, 2)}, to
which the corresponding solutions are

(a, b, c, d) ∈ {(2, 1, 1, 1), (5, 2, 3, 1)}.

CASE 2c. m = 2 for 3 ≤ k ≤ 7.

Then 2k − 2 | k + 5, and so the only possibilities are (k, l) ∈ {(3, 3), (7, 2)} and so

(a, b, c, d) ∈ {(7, 3, 4, 5), (5, 1, 4, 3)}.

CASE 2d. k = 3 for 3 ≤ m ≤ 4.

Then 3m− 2 | m + 6. The only possibility is m = 4, and so l = 2 and

(a, b, c, d) = (3, 1, 2, 1).

CASE 2e. k = 4 and m = 3.

Here, we get l = 2 and
(a, b, c, d) = (7, 2, 5, 3).

Altogether, we have found the following solutions:

(a, b, c, d) ∈ {(7, 5, 2, 3), (7, 3, 4, 5), (7, 2, 5, 3), (5, 4, 1, 3), (5, 3, 2, 1),
(5, 2, 3, 1), (5, 1, 4, 3), (3, 2, 1, 1), (3, 1, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1)}

(and all their rotations when we remove the assumption that a is largest).

Alternative solution. We will show a different finish of case 2 from the previous
solution. we need to fulfill

b | c + d, c | d + b, d | 2b + c.

We will distinguish cases based on which of the numbers b, c, d is largest.



CASE 2a. b = max(b, c, d).

Then b = (c+d)/2 or b = c+d by the same reasoning as in in case 1. The first statement
yields b = c = d, which gives (a, b, c, d) = (2, 1, 1, 1) when combined with the coprimality
condition.

If, on the other hand, b = c + d holds, then the conditions above ensure c | 2d and d | 3c,
thus c | 2d | 6c, so that 2d ∈ {c, 2c, 3c, 6c}. Each of these possibilities determines a and b
uniquely by the coprimality condition. We arrive at the solutions

(a, b, c, d) ∈ {(3, 2, 1, 1), (5, 3, 2, 1), (5, 4, 1, 3), (7, 5, 2, 3)}.

CASE 2b. c = max(b, c, d).

By the same reasoning as in case 2a, we get

(a, b, c, d) ∈ {(2, 1, 1, 1), (5, 2, 3, 1), (5, 1, 4, 3), (7, 2, 5, 3), (3, 1, 2, 1)}.

CASE 2c. d = max(b, c, d).

Because of b + c = a ≥ d ≥ (2b + c)/3, we can only have d | 2b + c for d = (2b + c)/2 or
d = (2b + c)/3. Again, the latter case yields b = c = d and the solution (2, 1, 1, 1).

For d = (2b + c)/2 = b + c/2, we find that c has to be even, and so c = 2C for a positive
integer C. Now, we obtain b | c + d = 2C + (b + C), which means b | 3C, as well as
C | c | d + b = (b + C) + b, and therefore C | 2b. We infer b | 3C | 6b and from that
3C ∈ {b, 2b, 3b, 6b}. Only 3C = 2b yields a new solution, specifically (7, 3, 4, 5).

2. In an acute triangle ABC, the incircle ω touches BC at D. Let Ia be the excenter
of ABC opposite to A, and let M be the midpoint of DIa. Prove that the circumcircle
of triangle BMC is tangent to ω. Patrik Bak (Slovakia)

Solution. Let I be the incenter of ABC and let F be the second intersection point
of MD and ω and let N be the midpoint of FD. Points B, N, I, C, Ia are concyclic, as
they lie on the circle with a diameter IIa. The power of a point gives

DF ·DM = 2DN · 1
2DIa = DB ·DC,

which means that F, B, M, C are concyclic.

Let E the projection of Ia on BC. It is well-known that D and E are symmetric with
respect to the midpoint of BC. Since MD = MIa = ME, the congruence of trian-
gles MDB and MEC gives MB = MC.

It remains to realize that the circle through F , B, M , and C is tangent to ω at F . This
can be seen from homothety: Without loss of generality let BC be horizontal. Then D
is a lowest point of ω, Since MB = MC, also M is the lowest point of the circumricle
of MBC. If there is a circle through M, B, C tangent to ω, then the tangency point
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must be the second intersection point of the circumcircle of MBC and line MD, which
is indeed F .

3. For any two convex polygons P1 and P2 with mutually distinct vertices, denote by
f(P1, P2) the total number of their vertices that lie on a side of the other polygon. For
each positive integer n ≥ 4, determine

max{f(P1, P2) | P1 and P2 are convex n-gons}.

(We say that a polygon is convex if all its internal angles are strictly less than 180◦.)
Josef Tkadlec (Czech Republic)

Solution. We will show that F (n) = b4n/3c for any n ≥ 4.

For the construction, see Figure 1.

For the bound, fix n ≥ 4 and two convex n-gons P1, P2. Call any of the 2n vertices good
if it lies on a side of the other polygon.

If the interiors of P1 and P2 do not intersect, then at most 2 points are good. Indeed, in
this case, there is a line ` such that each corresponding (closed) half-plane contains one
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. . .

Figure 1

of the polygons. Since both the polygons are convex, at most 2 + 2 of their vertices lie
on `, hence f(P1, P2) ≤ 2 < b4n/3c for any n ≥ 4.

Suppose that the interiors do intersect and take any point X inside both P1 and P2,
not lying on any line through two vertices. A rotating ray emanating from X defines
a cyclical order of the 2n vertices. It suffices to show that among any three consecutive
vertices in this order, at most 2 are good – the bound then follows by summing over all
consecutive triples.

Color vertices of P1 black (B) and vertices of P2 white (W). By symmetry, it suffices to
distinguish three cases of the colors of the three consecutive vertices: WWW, WWB, and
WBW.

Split the plane into n “wedges” with a shared apex X and rays passing through all (black)
vertices of P1. Note that since X is inside P1, these wedges are convex and each wedge
contains precisely one side of P1 (and each side of P1 is contained in precisely one wedge).

In each of the three cases, we suppose that all three vertices are good, argue that the three
vertices in fact lie on the same line and then reach a contradiction with the convexity
of P2 by finding three collinear white vertices on that line (see Figure 2).

. . . . . . . . . . . .

(i) (ii)

. . . . . .

(iii)

Figure 2

(i) WWW: All three white vertices lie in the same wedge, hence on the same side of P1,
a contradiction.

(ii) BWW: Both white vertices lie in the same wedge, hence on the same side of P1. This
side has the black vertex as one endpoint, hence the three vertices are collinear. Since
the black vertex is also good, there is a third white vertex on that line on the other
side of the black vertex, a contradiction.



(iii) BWB: The white vertex lies on the segment connecting the two black vertices, hence
the three vertices are collinear. Since both the black vertices are also good, there is
one more white vertex on each side, a contradiction.

This completes the proof.

Remark. One can show that F (3) = 3 6= b4 · 3/3c.

4. Determine the number of 2021-tuples of positive integers such that the number 3
is an element of the tuple and consecutive elements of the tuple differ by at most 1.

Walther Janous (Austria)

Solution. First, we count the number of such tuples ignoring the first property.

Any tuple (a1, . . . , a2021) having the second property is uniquely determined by min2021
i=1 ai

and the tuple (a2 − a1, . . . , a2021 − a2020) ∈ {−1, 0, 1}2020.

Hence, if the minimum is given, there are 32020 tuples satisfying only the second condition.

To account for the first condition, that is, to have 3 as an entry of the sequence, we need
the minimum from above to belong to {1, 2, 3} on one hand, and the maximum of all ai to
be greater than or equal to 3 on the other hand. This is equivalent to min2021

i=1 ai ∈ {1, 2, 3}
and for the sequence (a1, . . . , a2021) to have entries from {1, 2} (these sequences all have
the second property).

Therefore, the desired number of sequences fulfilling both conditions is 3 · 32020− 22021 =
32021 − 22021.

5. The sequence a1, a2, a3, . . . satisfies a1 = 1, and for all n ≥ 2, it holds that

an =
{

an−1 + 3 if n− 1 ∈ {a1, a2, . . . , an−1};
an−1 + 2 otherwise.

Prove that for all positive integers n, we have

an < n · (1 +
√

2).
Dominik Burek (Poland)

Solution. First, it is easy to see that for any n ≥ 2, we have an = 2n + k − 1 where
k = max{i: ai < n}. Indeed, an is obtained by adding to a1 twos and threes in n − 1
steps, where 3 is added in steps a1, a2, . . . , ak, and two is added in the remaining n−1−k

steps. Hence an = a1 + 3k + 2(n− k− 1) = 2n + k− 1. Also, note that such a k satisfies
k + 1 < n provided n ≥ 3.

Now, we shall prove the following stronger statement: For any n ≥ 1, we have

(1 +
√

2)n− 2 < an < (1 +
√

2)n.



This is clearly true for n = 1 and n = 2. For the inductive step, let n ≥ 3 and suppose that
this holds for all indices smaller than n. Write an = 2n+k−1 where k = max{i: ai < n},
so that we have ak < n ≤ ak+1. We have to prove that

(1 +
√

2)n− 2 < 2n + k − 1 < (1 +
√

2)n.

This is equivalent to
(
√

2− 1)n− 1 < k < (
√

2− 1)n + 1.

We have

(
√

2− 1)n− 1 ≤ (
√

2− 1)ak+1 − 1 < (
√

2− 1)(
√

2 + 1)(k + 1)− 1 = k,

where the first inequality holds since n ≤ ak+1, and the second one holds by the induction
hypothesis applied to k + 1.

Similarly,

(
√

2− 1)n + 1 > (
√

2− 1)ak + 1 > (
√

2− 1)((
√

2 + 1)k − 2) + 1
= k − 2(

√
2− 1) + 1 = k + 3− 2

√
2 > k

because n > ak and, by the inductive hypothesis, ak > (1 +
√

2)k − 2.

This finishes the proof of the double inequality

(1 +
√

2)n− 2 < an < (1 +
√

2)n,

and we are done.

6. Let ABC be an acute triangle and suppose points A, Ab, Ba, B, Bc, Cb, C, Ca,
and Ac lie on its perimeter in this order. Let A1 6= A be the second intersection point
of the circumcircles of triangles AAbCa and AAcBa. Analogously, B1 6= B is the second
intersection point of the circumcircles of triangles BBcAb and BBaCb, and C1 6= C is the
second intersection point of the circumcircles of triangles CCaBc and CCbAc. Suppose
that the points A1, B1, and C1 are all distinct, lie inside the triangle ABC, and do not lie
on a single line. Prove that lines AA1, BB1, CC1, and the circumcircle of triangle A1B1C1
all pass through a common point.

Josef Tkadlec (Czech Republic), Patrik Bak (Slovakia)

Solution. First, we prove will that the three lines are concurrent.

Point A1 is the center of the spiral similarity that maps BaAb to AcCa, and so the triangles
A1BaAb and A1AcCa are similar (this is also easy to verify by direct angle-chasing). We
aim to use the trigonometric form Ceva’s Theorem. Let hc and hb be the distances of A1
to the sides AB and AC, respectively. Using the similar triangles, we get

sin^BAA1

sin^A1AC
= hc/AA1

hb/AA1
= hc

hb
= BaAb

AcCa
,
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which is cyclic in terms of A, B, C, hence the lines are concurrent by the trigonometric
form Ceva’s Theorem

Next, we will prove that the intersection point of lines AA1, BB1 and CC1 lines on the
circumcircle of A1B1C1.

Focus on points B1, Bc and C1 lying on the lines determined by the vertices of XBC.
Due to Miquel’s theorem, the circumcircles of XB1C1, BB1Bc and CC1Bc are concurrent,
denote their common point by M .

Applying Miquel’s theorem on points Ab, Bc, and Ca lying on the sides of ABC gives
that M lies also on the circumcircle of AAbCa. Due to this, we can repeat the logic used
to define M with regards to triangle XAB to prove that X, A1, B1 and M are concyclic.
Altogether, points X, A1, B1, C1 and M are concyclic, so we are done.


