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4. Let 𝛼 be a given real number. Determine all pairs (𝑓, 𝑔) of functions 𝑓, 𝑔 : R → R
satisfying

𝑥𝑓(𝑥 + 𝑦) + 𝛼 · 𝑦𝑓(𝑥 − 𝑦) = 𝑔(𝑥) + 𝑔(𝑦)
for all 𝑥, 𝑦 ∈ R. (Walther Janous, Austria)

Solution. Depending on 𝛼, the solutions are given by:

∙ If 𝛼 = 1, then 𝑓(𝑥) = 𝐶 and 𝑔(𝑥) = 𝐶𝑥 for 𝑥 ∈ R and 𝐶 an arbitrary real
constant.

∙ If 𝛼 = −1, then 𝑓(𝑥) = 𝐶𝑥 and 𝑔(𝑥) = 𝐶𝑥2 for 𝑥 ∈ R and 𝐶 an arbitrary real
constant.

∙ Else, 𝑓(𝑥) = 𝑔(𝑥) = 0 for 𝑥 ∈ R.

Letting 𝑥 = 𝑦 = 0, we obtain 2𝑔(0) = 0, thus 𝑔(0) = 0. Letting 𝑦 = 0, we obtain
𝑥𝑓(𝑥) = 𝑔(𝑥) for all 𝑥 ∈ R. Thus, the equation can be rewritten as

𝑥𝑓(𝑥 + 𝑦) + 𝛼𝑦𝑓(𝑥 − 𝑦) = 𝑥𝑓(𝑥) + 𝑦𝑓(𝑦). (1)

Letting 𝑥 = 0 in (1), we obtain 𝛼𝑦𝑓(−𝑦) = 𝑦𝑓(𝑦). This yields

∀𝑥 ̸= 0: 𝑓(−𝑥) = 𝛼𝑓(𝑥). (2)

If 𝑓(𝑥) = 0 for all 𝑥 ̸= 0, we let 𝑦 = −𝑥 ̸= 0 in (1) and obtain 𝑥𝑓(0) = 0, therefore
𝑓 is the zero function, which always solves the equation.

Assume now that there exists 𝑟 ̸= 0 with 𝑓(𝑟) ̸= 0. Then it follows from (2) that
𝑓(𝑟) = 𝛼𝑓(−𝑟) = 𝛼2𝑓(𝑟), thus 𝛼2 = 1 and hence 𝛼 ∈ {±1}.

The right-hand side of (1) is symmetric in 𝑥 and 𝑦. By switching 𝑥 and 𝑦, we
thus obtain the equation

𝑥𝑓(𝑥 + 𝑦) + 𝛼𝑦𝑓(𝑥 − 𝑦) = 𝑦𝑓(𝑥 + 𝑦) + 𝛼𝑥𝑓(𝑦 − 𝑥).

For 𝑟 ∈ R we let 𝑥 = (𝑟 + 1)/2 and 𝑦 = (𝑟 − 1)/2, which yields

𝑓(𝑟) = 𝛼
𝑟 + 1

2 𝑓(−1) − 𝛼
𝑟 − 1

2 𝑓(1).

By (2), we obtain

𝑓(𝑟) = 𝛼𝑓(1)
2

(︁
𝛼(𝑟 + 1) − (𝑟 − 1)

)︁
.

In the case 𝛼 = 1 this means 𝑓(𝑟) = 𝑓(1) for all 𝑟 ∈ R. In the case 𝛼 = −1 this
means 𝑓(𝑟) = 𝑟𝑓(1) for all 𝑟 ∈ R. Both functions solve the equation, as can be
checked easily.



5. Determine whether there exist 100 disks 𝐷2, 𝐷3, . . . , 𝐷101 in the plane such that
the following conditions hold for all pairs (𝑎, 𝑏) of indices satisfying 2 ≤ 𝑎 < 𝑏 ≤ 101:

1. If 𝑎 | 𝑏 then 𝐷𝑎 is contained in 𝐷𝑏.

2. If GCD(𝑎, 𝑏) = 1 then 𝐷𝑎 and 𝐷𝑏 are disjoint.

(A disk 𝐷(𝑂, 𝑟) is a set of points in the plane whose distance to a given point 𝑂 is at
most a given positive real number 𝑟.) (Josef Greilhuber & Josef Tkadlec, Austria)

Solution. Such disks do not exist. Suppose otherwise and denote by 𝑂𝑖 the center
of the disk 𝐷𝑖. Consider the set 𝑆 = {𝑂2, 𝑂3, 𝑂5, 𝑂7, 𝑂11} of centers of five disks
with pairwise coprime indices. We distinguish two cases:

(i) Some three points from 𝑆 lie on a single line: Suppose the three collinear
points are 𝑂𝑖, 𝑂𝑗, 𝑂𝑘 in this order. Then 𝑖 · 𝑘 ≤ 7 · 11 ≤ 101, hence the disk
𝐷𝑖·𝑘 is defined. By 1., it contains both 𝐷𝑖 and 𝐷𝑘, thus it contains 𝑂𝑖 and
𝑂𝑘 and by convexity it also contains 𝑂𝑗. Therefore, disks 𝐷𝑗, 𝐷𝑖·𝑘 intersect, a
contradiction with 2.
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(ii) No three points from 𝑆 lie on a single line: Then there exist four points from 𝑆
that form a convex quadrilateral. (Indeed, either the convex hull of 𝑆 contains
at least four points, or it is a triangle. In the latter case, the line passing
through the two interior points intersects two sides of the triangle and the two
interior points form a convex quadrilateral with the endpoints of the side that
is not intersected.) Suppose the four vertices of the convex quadrilateral are
𝑂𝑖, 𝑂𝑗, 𝑂𝑘, 𝑂𝑙 in this order. Then, as before, both 𝑖 · 𝑘 and 𝑗 · 𝑙 are at most
7 · 11 ≤ 101 hence the disks 𝐷𝑖·𝑘 and 𝐷𝑗·𝑙 are defined. By 1. and by convexity,
they both contain the intersection 𝑃 of diagonals of 𝑂𝑖𝑂𝑗𝑂𝑘𝑂𝑙, which is a
contradiction with 2.

6. Let 𝐴𝐵𝐶 be an acute triangle with 𝐴𝐵 < 𝐴𝐶 and ∠𝐵𝐴𝐶 = 60∘. Denote its
altitudes by 𝐴𝐷, 𝐵𝐸, 𝐶𝐹 and its orthocenter by 𝐻. Let 𝐾, 𝐿, 𝑀 be the midpoints
of sides 𝐵𝐶, 𝐶𝐴, 𝐴𝐵, respectively. Prove that the midpoints of segments 𝐴𝐻, 𝐷𝐾,
𝐸𝐿, 𝐹𝑀 lie on a single circle. (Dominik Burek, Poland)

Solution. Denote the midpoints of 𝐴𝐻, 𝐷𝐾, 𝐸𝐿, 𝐹𝑀 by 𝑇 , 𝑋, 𝑌 , 𝑍, respectively.
Furthermore, let 𝑂 be the circumcenter of triangle 𝐴𝐵𝐶 and 𝑈 the midpoint of 𝐴𝑂
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(that is, the circumcenter of triangle 𝐴𝑀𝐿). We will show that 𝑈 lies on the circle
too.

First, we show that 𝑇𝑈𝑌 𝑍 is cyclic. In fact, we show that is is an isosceles
trapezoid whose line of symmetry is the angle bisector of ∠𝐵𝐴𝐶: Since ∠𝐵𝐴𝐶 =
60∘, we have 𝐴𝐸 = 1

2𝐴𝐵 = 𝐴𝑀 , thus △𝐴𝑀𝐸 is equilateral and, likewise, △𝐴𝐹𝐿 is
equilateral. Since 𝑌 and 𝑍 are the midpoints of lateral sides 𝐸𝐿, 𝑀𝐹 of a trapezoid
𝐸𝐿𝐹𝑀 , triangle 𝐴𝑌 𝑍 is also equilateral and the perpendicular bisector of 𝑌 𝑍 is
the angle bisector of ∠𝐵𝐴𝐶. Regarding 𝑇𝑈 , since lines 𝐴𝑇 and 𝐴𝑈 are isogonal in
∠𝐵𝐴𝐶 and 𝐴𝐹 = 𝐴𝐿, the right triangles 𝐴𝐹𝐻 and 𝐴𝐿𝑂 are congruent. Thus the
perpendicular bisector of 𝑇𝑈 is the angle bisector of ∠𝐵𝐴𝐶 as well.

Second, we show that 𝑈𝑌 𝑋𝑍 is cyclic: Let 𝑉 be the center of parallelogram
𝐴𝑀𝐾𝐿. Since 𝑉 is the midpoint of 𝑀𝐿, it lies on the midline 𝑌 𝑍 of trapezoid
𝑀𝐸𝐿𝐹 . Since it is the midpoint of 𝐴𝐾, it also lies on the midline 𝑈𝑋 of trapezoid
𝐴𝑂𝐾𝐷. Thus, it remains to check that 𝑉 𝑌 · 𝑉 𝑍 = 𝑉 𝑈 · 𝑉 𝑋, which is straightfor-
ward. For the left-hand side, we have 𝑉 𝑌 = 1

2𝑀𝐸 = 1
4𝐴𝐵 and 𝑉 𝑍 = 1

2𝐿𝐹 = 1
2𝐴𝐹 .

For the right-hand side, we have 𝑉 𝑈 = 1
2𝑂𝐾 = 1

4𝐴𝐻 and 𝑉 𝑋 = 1
2𝐴𝐷. Plugging

this in, we need 𝐴𝐵 · 𝐴𝐹 = 𝐴𝐻 · 𝐴𝐷 which follows from 𝐵𝐹𝐻𝐷 being cyclic.
Since both 𝑇𝑈𝑌 𝑍 and 𝑈𝑌 𝑋𝑍 are cyclic, so is 𝑇𝑌 𝑋𝑍.


