Czech-Polish-Slovak Match

IST Austria, 23-26 June 2019
(Second day - 25 June 2019)
4. Let α be a given real number. Determine all pairs (f, g) of functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
x f(x+y)+\alpha \cdot y f(x-y)=g(x)+g(y)
$$

for all $x, y \in \mathbb{R}$.
(Walther Janous, Austria)

Solution. Depending on α, the solutions are given by:

- If $\alpha=1$, then $f(x)=C$ and $g(x)=C x$ for $x \in \mathbb{R}$ and C an arbitrary real constant.
- If $\alpha=-1$, then $f(x)=C x$ and $g(x)=C x^{2}$ for $x \in \mathbb{R}$ and C an arbitrary real constant.
- Else, $f(x)=g(x)=0$ for $x \in \mathbb{R}$.

Letting $x=y=0$, we obtain $2 g(0)=0$, thus $g(0)=0$. Letting $y=0$, we obtain $x f(x)=g(x)$ for all $x \in \mathbb{R}$. Thus, the equation can be rewritten as

$$
\begin{equation*}
x f(x+y)+\alpha y f(x-y)=x f(x)+y f(y) . \tag{1}
\end{equation*}
$$

Letting $x=0$ in (1), we obtain $\alpha y f(-y)=y f(y)$. This yields

$$
\begin{equation*}
\forall x \neq 0: f(-x)=\alpha f(x) . \tag{2}
\end{equation*}
$$

If $f(x)=0$ for all $x \neq 0$, we let $y=-x \neq 0$ in (1) and obtain $x f(0)=0$, therefore f is the zero function, which always solves the equation.

Assume now that there exists $r \neq 0$ with $f(r) \neq 0$. Then it follows from (2) that $f(r)=\alpha f(-r)=\alpha^{2} f(r)$, thus $\alpha^{2}=1$ and hence $\alpha \in\{ \pm 1\}$.

The right-hand side of (1) is symmetric in x and y. By switching x and y, we thus obtain the equation

$$
x f(x+y)+\alpha y f(x-y)=y f(x+y)+\alpha x f(y-x) .
$$

For $r \in \mathbb{R}$ we let $x=(r+1) / 2$ and $y=(r-1) / 2$, which yields

$$
f(r)=\alpha \frac{r+1}{2} f(-1)-\alpha \frac{r-1}{2} f(1) .
$$

By (2), we obtain

$$
f(r)=\frac{\alpha f(1)}{2}(\alpha(r+1)-(r-1)) .
$$

In the case $\alpha=1$ this means $f(r)=f(1)$ for all $r \in \mathbb{R}$. In the case $\alpha=-1$ this means $f(r)=r f(1)$ for all $r \in \mathbb{R}$. Both functions solve the equation, as can be checked easily.
5. Determine whether there exist 100 disks $D_{2}, D_{3}, \ldots, D_{101}$ in the plane such that the following conditions hold for all pairs (a, b) of indices satisfying $2 \leq a<b \leq 101$:

1. If $a \mid b$ then D_{a} is contained in D_{b}.
2. If $\operatorname{GCD}(a, b)=1$ then D_{a} and D_{b} are disjoint.
(A disk $D(O, r)$ is a set of points in the plane whose distance to a given point O is at most a given positive real number r.) (Josef Greilhuber \& Josef Tkadlec, Austria)

Solution. Such disks do not exist. Suppose otherwise and denote by O_{i} the center of the disk D_{i}. Consider the set $S=\left\{O_{2}, O_{3}, O_{5}, O_{7}, O_{11}\right\}$ of centers of five disks with pairwise coprime indices. We distinguish two cases:
(i) Some three points from S lie on a single line: Suppose the three collinear points are O_{i}, O_{j}, O_{k} in this order. Then $i \cdot k \leq 7 \cdot 11 \leq 101$, hence the disk $D_{i . k}$ is defined. By 1., it contains both D_{i} and D_{k}, thus it contains O_{i} and O_{k} and by convexity it also contains O_{j}. Therefore, disks $D_{j}, D_{i \cdot k}$ intersect, a contradiction with 2 .

(ii) No three points from S lie on a single line: Then there exist four points from S that form a convex quadrilateral. (Indeed, either the convex hull of S contains at least four points, or it is a triangle. In the latter case, the line passing through the two interior points intersects two sides of the triangle and the two interior points form a convex quadrilateral with the endpoints of the side that is not intersected.) Suppose the four vertices of the convex quadrilateral are $O_{i}, O_{j}, O_{k}, O_{l}$ in this order. Then, as before, both $i \cdot k$ and $j \cdot l$ are at most $7 \cdot 11 \leq 101$ hence the disks $D_{i \cdot k}$ and $D_{j \cdot l}$ are defined. By 1 . and by convexity, they both contain the intersection P of diagonals of $O_{i} O_{j} O_{k} O_{l}$, which is a contradiction with 2.
6. Let $A B C$ be an acute triangle with $A B<A C$ and $\angle B A C=60^{\circ}$. Denote its altitudes by $A D, B E, C F$ and its orthocenter by H. Let K, L, M be the midpoints of sides $B C, C A, A B$, respectively. Prove that the midpoints of segments $A H, D K$, $E L, F M$ lie on a single circle.
(Dominik Burek, Poland)

Solution. Denote the midpoints of $A H, D K, E L, F M$ by T, X, Y, Z, respectively. Furthermore, let O be the circumcenter of triangle $A B C$ and U the midpoint of $A O$

(that is, the circumcenter of triangle $A M L$). We will show that U lies on the circle too.

First, we show that $T U Y Z$ is cyclic. In fact, we show that is is an isosceles trapezoid whose line of symmetry is the angle bisector of $\angle B A C$: Since $\angle B A C=$ 60°, we have $A E=\frac{1}{2} A B=A M$, thus $\triangle A M E$ is equilateral and, likewise, $\triangle A F L$ is equilateral. Since Y and Z are the midpoints of lateral sides $E L, M F$ of a trapezoid $E L F M$, triangle $A Y Z$ is also equilateral and the perpendicular bisector of $Y Z$ is the angle bisector of $\angle B A C$. Regarding $T U$, since lines $A T$ and $A U$ are isogonal in $\angle B A C$ and $A F=A L$, the right triangles $A F H$ and $A L O$ are congruent. Thus the perpendicular bisector of $T U$ is the angle bisector of $\angle B A C$ as well.

Second, we show that $U Y X Z$ is cyclic: Let V be the center of parallelogram $A M K L$. Since V is the midpoint of $M L$, it lies on the midline $Y Z$ of trapezoid $M E L F$. Since it is the midpoint of $A K$, it also lies on the midline $U X$ of trapezoid $A O K D$. Thus, it remains to check that $V Y \cdot V Z=V U \cdot V X$, which is straightforward. For the left-hand side, we have $V Y=\frac{1}{2} M E=\frac{1}{4} A B$ and $V Z=\frac{1}{2} L F=\frac{1}{2} A F$. For the right-hand side, we have $V U=\frac{1}{2} O K=\frac{1}{4} A H$ and $V X=\frac{1}{2} A D$. Plugging this in, we need $A B \cdot A F=A H \cdot A D$ which follows from $B F H D$ being cyclic.

Since both $T U Y Z$ and $U Y X Z$ are cyclic, so is $T Y X Z$.

