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1. Let 𝜔 be a circle. Points 𝐴, 𝐵, 𝐶, 𝑋, 𝐷, 𝑌 lie on 𝜔 in this order such that
𝐵𝐷 is its diameter and 𝐷𝑋 = 𝐷𝑌 = 𝐷𝑃 , where 𝑃 is the intersection of 𝐴𝐶 and
𝐵𝐷. Denote by 𝐸, 𝐹 the intersections of line 𝑋𝑃 with lines 𝐴𝐵, 𝐵𝐶, respectively.
Prove that points 𝐵, 𝐸, 𝐹, 𝑌 lie on a single circle. (Patrik Bak, Slovakia)

Solution. First, we show that the quadrilateral 𝑌 𝑃𝐶𝐹 is cyclic. Indeed, by
simple angle-chasing we have

∠𝑌 𝑃𝐹 = 2 · ∠𝑌 𝑃𝐷 = 180∘ − ∠𝐵𝐷𝑌 = 180∘ − ∠𝐵𝐶𝑌 = ∠𝑌 𝐶𝐹.

The rest is angle-chasing again. We have ∠𝐸𝐹𝑌 = ∠𝑃𝐹𝑌 = ∠𝑃𝐶𝑌 = ∠𝐴𝐶𝑌 =
∠𝐴𝐵𝑌 = ∠𝐸𝐵𝑌 as desired.
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2. We consider positive integers 𝑛 having at least six positive divisors. Let the
positive divisors of 𝑛 be arranged in a sequence (𝑑𝑖)1≤𝑖≤𝑘 with

1 = 𝑑1 < 𝑑2 < · · · < 𝑑𝑘 = 𝑛 (𝑘 ≥ 6).

Find all positive integers 𝑛 such that

𝑛 = 𝑑2
5 + 𝑑2

6.

(Walther Janous, Austria)

Solution. In what follows we shall show that this question has the unique answer
𝑛 = 500. Indeed, from 𝑛 = 𝑑2

5 + 𝑑2
6 we readily infer that 𝑛 has to be even. (For,

otherwise 𝑑5 and 𝑑6 had to be odd. This in turn would yield 𝑛 even.) Therefore
𝑑2 = 2 is fixed. Furthermore from 𝑑5 | 𝑛 we get 𝑑5 | 𝑑2

6 and similarly 𝑑6 | 𝑑2
5. This

means:
Every prime dividing 𝑑5 also divides 𝑑6 and vice versa.



If 𝑑5 has only one prime factor, i.e. it is a power of a prime, then 𝑑5 = 𝑝𝑘 and
𝑑6 = 𝑝𝑘+1. But since 𝑝𝑘 < 2𝑝𝑘 ≤ 𝑝𝑘+1, it follows that 𝑝 = 2 and 𝑛 = 𝑑2

5 + 𝑑2
6 =

22𝑘 + 22𝑘+2 = 5 · 22𝑘. Therefore either 𝑛 = 20, which is not a solution, or

𝑑2 = 2, 𝑑3 = 4, 𝑑4 = 5, 𝑑5 = 8, 𝑑6 = 10,

a contradiction.
Now 𝑑5 and 𝑑6 have at least two prime factors 𝑝 and 𝑞 with 𝑝 < 𝑞 and 𝑝2𝑞2 |

𝑑2
5 + 𝑑2

6 = 𝑛. Then 𝑑5 ≥ 𝑝𝑞 and since 1 < 𝑝 < 𝑞, 𝑝2 < 𝑝𝑞 we also have 𝑑5 ≤ 𝑝𝑞. Now

𝑑2 = 𝑝 = 2, {𝑑3, 𝑑4} = {𝑞, 𝑝2} = {𝑞, 4}, 𝑑5 = 𝑝𝑞 = 2𝑞, 𝑑6 = 𝑝2𝑞 = 4𝑞.

We get 𝑛 = 𝑑2
5 + 𝑑2

6 = 20𝑞2, hence 𝑞 ≤ 5. Checking the cases 𝑞 = 3 and 𝑞 = 5 gives
the unique solution 𝑛 = 500.

3. A dissection of a convex polygon into finitely many triangles by segments is called
a trilateration if no three vertices of the created triangles lie on a single line (vertices
of some triangles might lie inside the polygon). We say that a trilateration is good
if its segments can be replaced with one-way arrows in such a way that the arrows
along every triangle of the trilateration form a cycle and the arrows along the whole
convex polygon also form a cycle. Find all 𝑛 ≥ 3 such that the regular 𝑛-gon has a
good trilateration. (Josef Greilhuber, Austria)

Solution. We show that the regular 𝑛-gon has a good trilateration if and only if
3 | 𝑛.

Given a regular 𝑛-gon and its good trilateration, color the triangles whose arrows
go clockwise in black and the other ones in white. In this way, any two triangles
sharing an edge have received different colors and all the triangles sharing an edge
with the perimeter of the whole 𝑛-gon have received the same color (wlog black).
We say that a segment in the trilateration is interior if it is not one of the sides of
the 𝑛-gon. Let 𝑥 be the number of interior segments. Since each interior segment is
a side of precisely one white triangle and the sides of white triangle are all different
interior segments, we have 3 | 𝑥. Arguing likewise for the black triangles, we obtain
3 | 𝑥 + 𝑛. Hence 3 | 𝑛.

It remains to show that when 3 | 𝑛 then the regular 𝑛-gon has a good trilatera-
tion. This is straightforward by mathematical induction.
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n = 3 n = 6 n → n+ 3


