

49 ${ }^{\text {th }}$ Austrian Mathematical Olympiad

Beginners' Competition
12th June 2018

1. Let a, b and c denote positive real numbers. Prove that

$$
\frac{a}{c}+\frac{c}{b} \geq \frac{4 a}{a+b} .
$$

When does equality hold?
(Walther Janous)
2. Let $A B C$ be an acute-angled triangle, M the midpoint of the side $A C$ and F the foot on $A B$ of the altitude through the vertex C.
Prove that $A M=A F$ holds if and only if $\angle B A C=60^{\circ}$.
(Karl Czakler)
3. For a given integer $n \geq 4$ we examine whether there exists a table with three rows and n columns which can be filled by the numbers $1,2, \ldots, 3 n$ such that

- each row totals to the same sum z and
- each column totals to the same sum s.

Prove:
(a) If n is even, such a table does not exist.
(b) If $n=5$, such a table does exist.
(Gerhard J. Woeginger)
4. For a positive integer n we denote by $d(n)$ the number of positive divisors of n and by $s(n)$ the sum of these divisors. For example, $d(2018)$ is equal to 4 since 2018 has four divisors $(1,2,1009,2018)$ and $s(2018)=1+2+1009+2018=3030$.
Determine all positive integers x such that $s(x) \cdot d(x)=96$.
(Richard Henner)

Working time: 4 hours.
Each problem is worth 8 points.

