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Problem 1. Let k and n be positive integers.
Determine all functions f : R → R satisfying

xkf(y)− ynf(x) = f
(y
x

)
for all real numbers x and y with x ̸= 0.

(Walther Janous)

Answer. • k ̸= n: f(x) = 0, x ∈ R

• k = n:
f(x) =

{
C(xk − x−k), x ̸= 0
0, x = 0

where C ∈ R.

Solution. We denote the functional equation by (F ).

• y = 0 in (F ) leads to xkf(0) = f(0) for all x ̸= 0, whence f(0) = 0.

• y = x (where x ̸= 0) in (F ) yields

(xk − xn)f(x) = f(1). (1)

In particular we get for x = 1: 0 · f(1) = f(1), so f(1) = 0.

• y = 1 in (F ) results in 0− f(x) = f
(

1
x

)
. This means, we have for all x ̸= 0:

f
(1
x

)
= −f(x). (2)

In particular we get for x = −1: f(−1) = −f(−1), so f(−1) = 0.

• In summary, we have shown f(x) = 0 for x ∈ {−1, 0, 1}.

We will now distinguish between two cases.

(i) k ̸= n. Using (1) implies f(x) = 0 for xk − xn ̸= 0. But all real solutions of xk − xn = 0 are
elements of {−1, 0, 1}. Therefore, f(x) = 0 is the unique solution, This can easily be confirmed
by checking..

(ii) k = n. We replace x (̸= 0) by 1
x

in (F ) and get

x−kf(y)− ykf
(1
x

)
= f(xy),

that is, because of (2),
x−kf(y) + ykf(x) = f(xy). (3)

Swapping x and y leads to
y−kf(x) + xkf(y) = f(xy).
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This and (3) imply
(yk − y−k)f(x) = (xk − x−k)f(y)

for all x, y ̸= 0. Thus we have for all x, y ̸= 0 subject to xk − x−k ̸= 0 and yk − y−k ̸= 0:

f(x)

xk − x−k
=

f(y)

yk − y−k
.

Therefore, there exists a real constant C such that

f(x) = C(xk − x−k)

for x ̸= 0 and xk − x−k ̸= 0, that is x /∈ {−1, 0, 1}. Since f(−1) = 0 and f(1) = 0, the function
term also gives the correct values for x ∈ {−1, 1}. Consequently, all functions are of the form

f(x) =

{
C(xk − x−k), x ̸= 0
0, x = 0

where C ∈ R. We check that they are solution as follows.

◦ For x, y ̸= 0 (F ) becomes

Cxk(yk − y−k)− Cyk(xk − x−k) = C(ykx−k − xky−k) = C
((y

x

)k

−
(y
x

)−k)
,

◦ while for y = 0, the equation (F ) becomes 0− 0 = 0.

(Walther Janous)

Problem 2. Let ABC be a triangle with AC < BC. Let L be the point of intersection of the angle
bisector of ∠ACB with the perpendicular bisector of AC. Let M be the midpoint of segment BC and let
N be the midpoint of the arc from A to B of the circumcircle which contains C.

Show that LMN is a right triangle.
(Karl Czakler)
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Solution.

A B

C

L

S

N

M ′

G

U

Let U be the circumcenter of the triangle ABC and let S be the midpoint of the arc AB on
the circumcircle that does not contain C. Let G and M ′ be the second points of intersection of the
circumcircle of LNC with BN and BC, respectively. We want to prove that M ′ = M .

Since S and N are south pole and north pole of the triangle ABC, the angle bisector of ∠BCA is
perpendicular to CN and passes through S. By the inscribed angle theorem, we get

∠GBC = ∠NBC = ∠NSC = ∠NSL

and

∠CGB = 180◦ − ∠NGC = 180◦ − ∠NLC = ∠SLN.

Therefore, the triangles BGC and SLN are similar.
Again, by the inscribed angle theorem, we get

∠M ′GB = ∠M ′CN = ∠BCN

and since NC is perpendicular to CS, LU is perpendicular to AC and CS is the angle bisector of
∠ACB, we get

∠M ′GB = ∠BCN = 90◦ − ∠SCB = 90◦ − ∠ACL = ∠SLU.

Since the triangles BGC and SNL are similar, U is the midpoint of SN and ∠M ′GB = ∠SLU , we get
that M ′ is the midpoint of the segment BC and therefore, identical to M . So, C,L,M and N lie on a
circle, and thus ∠LCN = 90◦ implies ∠NML = 90◦.

(Karl Czakler, Josef Greilhuber)
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Problem 3. Anna and Bertha play two games on a regular 2025-gon. One of these is the Triangle Game
and the other is the Quadrilateral Game. In both games, a move consists of drawing a diagonal of the
2025-gon that has not been drawn previously and does not intersect any previously drawn diagonal in an
inner point. The players take alternate moves starting with Anna. The game ends when no additional
allowed diagonal can be drawn.

(a) The Triangle Game: If one or two triangles are created when the diagonal is drawn, the player
labels the resulting triangle(s) with her initial. The player with the most labeled triangles at the
end of the game wins. If they have the same number of labeled triangles, the game ends in a tie.
Does Anna have a winning strategy, does Bertha have a winning strategy, or must the game end
in a tie if both players play in an optimal way?

(b) The Quadrilateral Game: If one or two quadrilaterals with no diagonals inside are created when
the diagonal is drawn, the player labels the resulting quadrilateral(s) with her initial. No diagonals
may be drawn in labeled quadrilaterals. The player with the most labeled quadrilaterals at the end
of the game wins. If they have the same number of labeled quadrilaterals, the game ends in a tie.
Does Anna have a winning strategy, does Bertha have a winning strategy, or must the game end
in a tie if both players play in an optimal way?

(Theresia Eisenkölbl)

Answer. 1. Answer: Bertha has a winning strategy.
2. Answer: Anna has a winning strategy.

Solution. (a) We will prove by induction that Bertha has a winning strategy for any convex polygon
with an odd number n > 3 of sides.

For n = 5, this is obviously true, since for any diagonal chosen by Anna, any diagonal chosen by
Bertha gives an advantage of 1 point.

For general odd n, Bertha can assume without loss of generality, that the polygon is regular. Bertha
chooses one of the endpoints of Anna’s first diagonal, reflects this diagonal with respect to the the
symmetry axis of the polygon through the chosen endpoint, and draws this mirror image.

The two diagonals divide the polygon in three polygons. One of them has both diagonals as sides.
If it is a triangle, then Bertha has an advantage of 1 point from this triangle. Otherwise, it is an odd
polyon with n > 3 sides, and by induction hypothesis, Bertha can obtain an advantage of at least one
point in this polygon as long as she always answers moves of Anna in this polygon. (This is possible
since there will always be k− 3 diagonals in a convex k-gon that is fully divided into triangles, so there
is an even number of moves inside this polygon.)

For the two outer polygons that each have just one of the two first diagonals as sides, they are either
both triangles, giving the players one point each, or Bertha can simply mirror any move of Anna in one
of them in the other one. This guarantees that Anna and Bertha get the same number of points in the
outer polygons.

Bertha will win with an advantage of 1 point if she follows this strategy.
(b) We call a convex polygon of order r if it has r+2 vertices (which means that it could be divided

into r triangles by r − 1 non-intersecting diagonals). A diagonal divides the polygon into two polygons
of orders a, b ≥ 1 with a+ b = r.

We will now determine for all r ≥ 3 (a pentagon) the maximal difference in points that the first
player can guarantee and write down this difference.

n = 3: 1 . Anna cuts off a quadrilateral (a = 2), and the game ends with 1 point advantage for
Anna.

n = 4: 2 . Anna divides the polygon into two quadrilaterals. The game ends with 2 points advantage
for Anna.

n = 5: 0 . The choice a = 1, b = 4 gives 2 points for Bertha. The choice a = 2, b = 3 gives 0 points
difference. So Anna will choose the second option.
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n = 6: 0 . The choice (a, b) = (1, 5) gives 0 points difference, the choice (2, 4) gives 1 point for
Bertha. The choice (3, 3) gives 0 points difference (both players take one quadrilateral). So Anna will
choose (1, 5) or (3, 3).

n = 7: 1 . The choice (1, 6) gives 0 points difference. The choice (2, 5) gives 1 point advantage for
Anna. The choice (3, 4) gives 1 point advantage for Bertha (who will play in the polygon of order 4
to secure the 2 points there while Anna can take the 1 point in the polygon of order 3). So Anna will
choose (2, 5).

For n > 7, we have: If Anna cuts off a quadrilateral (a = 2), then she gets a point while Bertha gets
the points for order r− 2. If Bertha gets 0 points advantage there, then Anna has 1 point advantage in
total. If Berthat gets 1 point advantage there, then Anna has 0 points advantage in total.

If Anna chooses another division into two polygons, then Bertha can choose the better part for her
move, but she can also answer Anna’s moves in the other part. Anna can at most obtain 0 difference in
points, but that is already guaranteed by the previous method which gives either 0 or 1. Note that it
does not matter whether Bertha is forced at one point to play an extra move in a polygon because by
induction, beginning in smaller polygons is never a disadvantage.

We get the following table for points advantage for the first player:
r 3 4 5 6 7 8 9 10 11 12 13 . . .

1 2 0 0 1 1 0 0 1 1 0 . . .
This has a period of length 4. Since 2025 sides correspond to order 2023, we get that our r is

congruent to 3 modulo 4, so the value at r = 7 is the one we seek. We conclude that Anna will have an
advantage of 1 point if both sides play optimally.

(Theresia Eisenkölbl)

Problem 4. For a positive integer n, let a1, a2, . . . , an be positive real numbers with a1a2 · · · an = 2n.
Prove that

a21 + a1a
2
2 + a1a2a

2
3 + . . .+ a1a2 · · · an−1a

2
n ≥ 4(2n − 1),

and determine when equality holds.
(Karl Czakler)

Solution. For all k ≥ 1, we have (ak − 2)2 ≥ 0, which can be rewritten as

a2k ≥ 4ak − 4.

Equality only holds for ak = 2. Thus it follows that

a21 + a1a
2
2 + a1a2a

2
3 + · · ·+ a1a2 · · · an−1a

2
n =

n∑
k=1

a1a2 · · · ak−1a
2
k

≥
n∑

k=1

a1a2 · · · ak−1(4ak − 4)

= 4
n∑

k=1

a1a2 · · · ak − 4
n∑

k=1

a1a2 · · · ak−1

= 4a1a2 · · · an − 4 = 4(2n − 1).

Equality holds if and only if a1 = a2 = · · · = an = 2.
(Karl Czakler)

Problem 5. Let ABC be a triangle. For every integer n ≥ 2, point Dn lies on segment CB with
CDn = 1

n
CB, and point En lies on segment CA with CEn = 1

n+1
CA.

Prove that all lines DnEn pass through a common point.
(Walther Janous)
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Figure 1: Problem 5

Solution. Let F be the point such that ABCF is a parallelogram. We want to prove that F lies on
DnEn.

Let X be the point on the extension of BC beyond B such that CDn = BX. Because of symmetry,
we have that FDn is parallel to AX. Therefore, the intersection Y of FDn and AC satisfies

CY : CA = CDn : CX =
CDn

CB +BX
=

CDn

nCDn + CDn

= 1 : (n+ 1) = CEn : CA.

This implies Y = En which proves that F is on DnEn.
(Theresia Eisenkölbl)

Problem 6. Determine all positive integers n, such that there exist positive integers z1 < z2 < · · · < zn
satisfying gcd(zj, zk) = zk − zj for all j and k with 1 ≤ j < k ≤ n.

(Walther Janous)
Solution.

Lemma. Let a < b be positive integers. Then gcd(a, b) = b− a holds if and only if (b− a) | a.

Proof. If gcd(a, b) = b − a, then (b − a) | a follows from the definition of the greatest common
divisor.

Assume now that (b − a) | a and set d = b − a. Then a = dx for a suitable positive integer x
by assumption and b = a+ (b− a) = dx+ d = d(x+ 1). Thus

gcd(a, b) = gcd(dx, d(x+ 1)) = d gcd(x, x+ 1) = d,

as required. ■

A tuple (z1, . . . , zn) of positive integers is said to be a valid tuple if gcd(zj, zk) = zk − zj for all
1 ≤ j < k ≤ n.

We now prove that a valid tuple exists for all n ≥ 1 by induction on n. For n = 1, every 1-tuple is
valid.

Assume now that (z1, . . . , zn) is a valid tuple. Set A = lcm(z1, . . . , zn), z′1 = A and z′k = A+ zk−1 for
2 ≤ k ≤ n+ 1. We claim that (z′1, . . . , z

′
k) is a valid tuple.

If 2 ≤ j < k ≤ n+ 1, then

z′k − z′j = (A+ zk−1)− (A+ zj−1) = (zk−1 − zj−1) | zj−1 | (zj−1 + A) = z′j (1)

by the lemma, induction hypothesis and construction of A.

6



If 2 ≤ k ≤ n+ 1, then
z′k − z′1 = (A+ zk−1)− A = zk−1 | A = z′1 (2)

by construction of A.
The lemma and (1) and (2) imply that (z′1, . . . , z

′
n+1) is a valid tuple.

(Clemens Heuberger)
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