

56th Austrian Mathematical Olympiad

Regional Competition—Solutions 3rd April 2025

Problem 1. Let $n \ge 3$ be a positive integer. Furthermore, let $x_1, \ldots, x_n \in [0, 2]$ be real numbers subject to $x_1 + \ldots + x_n = 5$.

Prove the inequality

$$x_1^2 + \ldots + x_n^2 \le 9.$$

When does equality hold?

(Walther Janous)

Answer. Equality holds if two numbers are 2, one number is 1 and the remaining numbers are 0.

Solution. We order the *n* numbers such that $x_1 \ge x_2 \ge \ldots \ge x_n$. Because of 9 = 4 + 5 the inequality reads in equivalent form

$$\sum_{j=1}^{n} x_j^2 \le 4 + \sum_{j=1}^{n} x_j,$$

that is $S \leq 4$ with

$$S = \sum_{j=1}^{n} x_j (x_j - 1).$$

The further considerations use facts of the parabola p(x) = x(x-1) over the interval [0, 2], in particular $p(x) = 2 \iff x = 2, p(x) = 0 \iff x \in \{0, 1\}$ and $p(x) < 0 \iff x \in (0, 1)$.

For $x_1 \leq 1$ we have $S \leq 0$. Let $k \geq 1$ be the index with $x_k > 1$ and $x_{k+1} \leq 1$. From $5 = \sum_{j=1}^n x_j \geq x_1 + \ldots + x_k > k$ we get $k \leq 4$.

- k = 1 leads to $S \le 2$.
- k = 2 yields $S \le 2 + 2 = 4$ with equality for $x_1 = x_2 = 2$ and $p(x_j) = 0, j = 3, ..., n$. This and $\sum_{i=1}^{n} x_j = 5$ imply $x_3 = 1$ and $x_4 = ... = x_n = 0$.
- For k = 3 we have $S \le x_1(x_1 1) + x_2(x_2 1) + x_3(x_3 1)$. Consequently, $S \le 2(x_1 1 + x_2 1 + x_3 1) \le 2 \cdot (5 3) = 4$. In the first inequality, for equality one would have to have $x_1 = x_2 = x_3 = 2$, contradicting $x_1 + x_2 + x_3 \le 5$.
- For k = 4 we arrive at a similar contradiction because $x_1 = x_2 = x_3 = x_4 = 2$ would now have to hold.

This proves the inequality. In it, equality holds if two numbers are 2, one number is 1 and the remaining numbers are 0 .

(Walther Janous) \Box

Problem 2. Let ABC be an isosceles triangle with AC = BC and circumcircle k. The line through B perpendicular to BC is denoted by n. Furthermore, let M be any point on n. The circle k_1 with center M and radius BM intersects AB once more at point P and the circumcircle k once more at point Q.

Prove that the points P, Q and C lie on a straight line.

(Karl Czakler)

Solution. Let $\angle BAC = \angle CBA = \alpha$.

We consider the triangle PQB with the circumcircle k_1 . By the chord tangent theorem we have

$$\angle BPQ = \angle CBQ$$

and therefore

$$\angle BPQ + \angle QBA = \angle CBQ + \angle QBA = \angle CBA = \alpha$$

From the sum of the angles in the triangle PQB it follows that

 $\angle PQB = 180^0 - \alpha.$

The triangle BQC has the circumcircle k and by the periphery angle theorem we obtain

$$\angle BQC = \angle BAC = \alpha.$$

The angles PQB and BQC are supplementary and therefore the points P, Q and C lie on a straight line.

(Karl Czakler) \Box

Problem 3. There are 6 different bus lines in a city, each stopping at exactly 5 stations and running in both directions. Nevertheless, for every two different stations there is always a bus line connecting these two stations. Determine the maximum number of stations in this city.

(Karl Czakler)

Answer.

Solution. In total, there are $6 \cdot 5 = 30$ stations. Every bus that stops at a particular station also stops at four other stations. Thus if there are more than 5 = 1 + 4 stations, at least two lines must stop at each station. If there are more than 9 = 1 + 4 + 4 stations, at least three lines must stop at each station. Let n be the number of stations. The following inequality holds

$$3n \leq 30$$

thus

 $n \leq 10.$

Hence the maximum number of stations is 10.

This number can actually be achieved: Denote the lines by $1, 2, \dots 6$ and the stations by $A, B, \dots J$. A possible timetable is given by:

Line	Station				
1	Α	В	С	D	Е
2	A	В	F	G	Η
3	Α	В	С	Ι	J
4	С	D	F	G	Η
5	D	Е	Η	Ι	J
6	E	F	G	Ι	J

(Karl Czakler) \Box

Problem 4. Let z be a positive integer that is not divisible by 8. Furthermore, let $n \ge 2$ be a positive integer.

Prove that none of the numbers of the form $z^n + z + 1$ is a square number.

(Walther Janous)

Solution. We analyse the problem modulo 8 and consider the sequences $R(z) = (z^n + z + 1 \pmod{8})_{n \ge 2}$ for $z \equiv 1, 2, \ldots, 7$:

- For $z \equiv 1 \pmod{8}$ we get R(1) = (3, 3, 3, ...).
- For $z \equiv 2 \pmod{8}$ we get R(2) = (7, 3, 3, 3, ...).
- For $z \equiv 3 \pmod{8}$ we get R(3) = (5, 7, 5, 7, 5, 7, ...).
- For $z \equiv 4 \pmod{8}$ we get $R(4) = (5, 5, 5, \ldots)$.
- For $z \equiv 5 \pmod{8}$ we get R(5) = (7, 3, 7, 3, 7, 3, ...).
- For $z \equiv 6 \pmod{8}$ we get R(6) = (3, 7, 7, 7, ...).
- For $z \equiv 7 \pmod{8}$ we get R(7) = (1, 7, 1, 7, 1, 7, ...).

Since the quadratic residues modulo 8 are the residues 0, 1, 4, only the case $z \equiv 7 \pmod{8}$ for even n remains to be analysed. In all other cases, $z^n + z + 1$ cannot be a square.

Let n = 2k (with a positive integer k). But then

$$z^{2k} < z^{2k} + z + 1 < z^{2k} + 2z^k + 1 = (z^k + 1)^2,$$

so $z^n + z + 1$ is strictly between two consecutive square numbers and therefore cannot be a square number.

Therefore, $z^n + z + 1$ (for $n \ge 2$ and $n \not\equiv 0 \mod 8$) is never a square number.

(Walther Janous) \Box