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Preface

“In studying a philosopher, the right attitude is neither
reverence nor contempt, but first a kind of hypothetical
sympathy, until it is possible to know what it feels like to
believe in his theories, and only then a revival of the
critical attitude, which should resemble, as far as possible,
the state of mind of a person abandoning opinions which he
has hitherto held. Contempt interferes with the first part
of this process, and reverence with the second. Two things
are to be remembered: that a man whose opinions and
theories are worth studying may be presumed to have had
some intelligence, but that no man is likely to have arrived
at complete and final truth on any subject whatever.”

– Bertrand Russell, A History of Western Philosophy

Mathematics is the study of ultimate regularity. Regularity entails order or predictability.
Its antithesis is chaos. When there is regularity, there are discernible objects at play. In other
words, there is structure. Wherever there is structure, there is symmetry. Symmetry means
that, while one aspect of the object changes, another remains unchanged. The present series
of books is an effort to rigorously systematize and provide an exposition of those aspects
of elementary mathematics that appeal to the author. In the course of writing, it became
evident that there are three recurring themes among the proof techniques used, all of which
are forms of symmetry:

1. The discrete Fubini’s principle instructs us to write the same thing in two different
ways. For example, we have applied this principle in several ways:

• A proof of the equality of vertical angles writes 180◦ in two ways (Theorem 2.11).
• A proof of the Pythagorean theorem expresses the area of a square in two ways,

equates them, and simplifies the result to get the famous a2 + b2 = c2 (Theo-
rem 9.12).

• Writing the same vector as the sum of other vectors in multiple ways is helpful.
This is used to get the barycentric coordinates of the incenter (Example 11.26).

• The fourth height of a tetrahedron with three pairwise perpendicular edges that
have a shared vertex is found by equating two ways of getting the volume (Prob-
lem 14.13).

2. Antisymmetry in a partial order is a powerful method of proof that lets us break
down the strong notion of equality into the conjunction of two individually weaker
statements. Examples that appear in this book are:

• The proof that a certain type of equation represents lines and only lines in the
plane invokes antisymmetry (Theorem 1.9).

vi
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• The proof of the standard triangle inequality (Theorem 3.10) uses antisymmetry.
• The set of points (usually in the plane) that satisfy a certain description is known

as the locus of that criteria (Definition 6.4). Proving that a set of points is the
locus of the description is a task for the two directions of the antisymmetry of sets.
This is exemplified by the inscribed angle theorem (Theorem 6.6), perpendicu-
lar bisectors (Theorem 8.13), and angle bisectors (Theorem 8.18). Also, ellipses
(Example 12.26) and hyperbolas (Problem 12.27) are found as certain loci.

• While studying conics (Chapter 12), we find that the minimum and maximum
number of geometric constructions for a given conic are equal, so antisymmetry
says that this is exactly the number of constructions.

3. Modding out by an equivalence relation allows us to focus on the essential properties
of objects which are preserved under the relation.

• To define vectors, we introduce an equivalence relation, called equipollence (Defi-
nition 1.20), on directed line segments. This allows us to work on certain preserved
properties, such as magnitude and angles, with a convenient representative of the
vector, called a position vector.

• Ratios form important equivalence relations. We prove that two linear standard
forms represent the same line if and only if the coefficients in one are all scaled
by the same factor to produce the second, which means each line can be repre-
sented by a unique equivalence class or ratio of coefficients (Theorem 1.33). A
similar result is proven for bivariate quadratics that represent constructible conics
(Theorem 12.14). In the derivation of the cross product formula, we show that all
normal vectors to a plane are scalar multiples of each other, with the cross prod-
uct being one example, which means all coefficient quadruples of the standard
equations of a plane are scalar multiples of each other (Theorem 13.14).

It is our hope that the reader will keep these proof techniques in mind while reading the book,
and that the impression of the importance of symmetry will grow as the reader encounters
the methods time and again.

The intended audience consists of students of math contests, competitions, and olympiads
who want want to take a rigorous second look at the results they might be accustomed
to taking for granted, and teachers, coaches, and trainers who want to reinforce their own
understanding of what they teach.

Suggestions, comments, and error submissions would be greatly appreciated. These may in-
clude suggestions for strengthening or generalizing theorems, and additional material. Mes-
sages may be sent to

academy@existsforall.com

Samer Seraj
Mississauga, Ontario, Canada

June 25, 2024

© 2024 Samer Seraj. All rights reserved.
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Chapter 1

Lines

“As long as algebra and geometry have been separated,
their progress have been slow and their uses limited, but
when these two sciences have been united, they have lent
each mutual forces, and have marched together towards
perfection.”

– Joseph-Louis Lagrange

We first define the Cartesian plane. Carving out subsets of the plane or space according to a
function, equation, or a predicate is an immensely useful way of describing a geometric shape.
This is a critical link between algebra and geometry. We will pay particular attention to
the interchangeability of lines and linear functions. Afterwards, we will work with Euclidean
vectors, which are often defined in elementary contexts as “arrows” such that arrows with
the same length and direction are considered to be the same. This can be made rigorous
using an equivalence relation called equipollence. Along the way, an accomplishment will be
to prove the uniqueness of the standard form of a line in two dimensions, up to scaling.

1.1 Equations of Lines

We will model the Euclidean plane using the Cartesian plane. It is in this playground that
we will be able to easily define and study geometric subsets of the plane, such as points,
lines, line segments, rays, circles, and conics.

Definition 1.1. The Cartesian plane is the Cartesian product

R2 = R× R = {(x, y) : x ∈ R, y ∈ R},

the elements of which are called points and the components of each point (x, y) are called its
coordinates. Specifically, the x-coordinate is the left component and the y-coordinate
is the right component. Visually, the Cartesian plane is a way of locating points on a flat
plane. A point is represented by a single dot, since as it has no dimensions such as length or
width, and a point is usually denoted by a capital letter like P . The x-coordinate of a point
measures how far and in what direction the point lies horizontally, and the y-coordinate
measures how far and in what direction the point lies vertically. Multiple points are said to
coincide if they have the same pair of coordinates.

Definition 1.2. In the Cartesian plane, the origin is (0, 0), the y-axis is the vertical line
through the origin consisting of all points (x, y) such that x = 0, and the x-axis as the
horizontal line through the origin consisting of all points (x, y) such that y = 0. Intuitively,
each axis can be considered to be a copy of the real number line.
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2 CHAPTER 1. LINES

Definition 1.3. The Cartesian plane has four quadrants, created by the axes. Starting
from the top-right and going counterclockwise, these are:

1. Quadrant 1: on the top-right, where x > 0 and y > 0

2. Quadrant 2: on the top-left, where x < 0 and y > 0

3. Quadrant 3: on the bottom-left, where x < 0 and y < 0

4. Quadrant 4: on the bottom-right, where x > 0 and y < 0

x-axis

y-axis

Q1Q2

Q3 Q4

Definition 1.4. The graph of a function f : X → Y is the set

{(x, y) ∈ X × Y : f(x) = y},

though, formally speaking, this set of ordered pairs is actually the definition of the function
itself. If X and Y are subsets of R, then the graph of f can be represented visually by
plotting all such pairs as points (x, y) on the Cartesian plane. As a reminder, recall that the
definition of a function requires that every x ∈ X has a corresponding y ∈ Y, but it is not
necessarily true that every y ∈ Y has a corresponding x ∈ X, since Y is a codomain and not
necessarily the range.

Definition 1.5. If f : X → Y is a function where Y is a subset of the real numbers (or any
set with an additive identity, like the field of complex numbers), then the preimage f−1(0) is
called the zero set of f and its elements are called the roots or zeros of f. Geometrically,
if X and Y are subsets of the real numbers, then the zero set is the set of points at which
the x-axis intersects the function. The elements of f−1(0) are also sometimes called the
solutions of the equation f(x) = 0.

The determination of the roots of functions is a fundamental problem in algebra. Part of
what makes root-finding an even more frequent activity than one might imagine is that, for
any fixed y ∈ Y, the determination of the preimage f−1(y) is equivalent to finding the roots
of g(x) = f(x) − y or the solutions of f(x) = y. In Volume 1, we developed methods of
determining the roots of quadratic functions through factoring and the quadratic formula
and, more generally, methods for polynomials.

© 2024 Samer Seraj. All rights reserved.



1.1. EQUATIONS OF LINES 3

Definition 1.6. If k : X × Y → R is a function, the graph of the equation k(x, y) = 0 is
the set

{(x, y) ∈ X × Y : k(x, y) = 0}.
This is also called the zero set of k. If X and Y are subsets of R, then the graph can be
plotted on the Cartesian plane. Sometimes, an equation is presented as

k1(x, y) = k2(x, y)

where k1, k2 are functions. In this case, its graph is defined as

{(x, y) ∈ X × Y : k1(x, y) = k2(x, y)},

which is also the graph of k(x, y) if we define k = k1 − k2.

Example. Graphs of equations are a generalization of the graphs of functions f : X → Y
such that Y is a subset of R: by defining k(x, y) = f(x) − y, we find that the graph of the
equation k(x, y) = 0 is the graph of the function f. However, there are graphs of equations
that are not the graph of any function, such as the circle

(x− a)2 + (x− b)2 = r2

with center (a, b) and radius r (Corollary 2.3).
We will work on understanding the relationship between linear subsets of the plane (i.e. lines
and its contiguous subsets) and linear functions.

Definition 1.7. Given two distinct points p, q in the plane, the line through p, q is defined
as the set of points

{p+ t(q − p) : t ∈ R} = {(1− t)p+ tq : t ∈ R}.

If the capital letters P,Q are used to denote the endpoints, then the line may be denoted,
as an object, by

←→
PQ. There are some contiguous subsets of lines:

• The line segment with endpoints p and q is the set

{p+ t(q − p) : t ∈ [0, 1]}.

Note that we get p and q for t = 0 and t = 1 respectively. If the capital letters P,Q
denote the endpoints p, q, then the segment is denoted as PQ, though we will often
drop the bar to simply write PQ. Moreover, PQ is also used to refer to the segment’s
length (this is the distance between the endpoints, as give by Theorem 2.1) or even the
line through P,Q in informal settings. Rest assured, our terminology and notation will
avoid ambiguity, even if it will not always be formal. The midpoint of the segment is

the point in the set when the parameter is t =
1

2
.

• The open line segment corresponding to segment PQ is PQ without its endpoints
P and Q, which means we are talking about the set

{p+ t(q − p) : t ∈ (0, 1)}.

This is also called the interior of line segment PQ.

© 2024 Samer Seraj. All rights reserved.



4 CHAPTER 1. LINES

• The ray with origin p and containing the point q is the set

{p+ t(q − p) : t ∈ R≥0}.

This is an object that is extended indefinitely on only one end instead of how a line is
extended on both ends. If the capital letters P,Q are used to denote p, q respectively,
then the ray is denoted as

−→
PQ. Any point on the ray, except P may be chosen to be

the direction-determining point Q.

Different regions of a line, relative to two points p and q on the line, are discussed in
Theorem 3.12.

Lemma 1.8. A set ℓ is a line if and only if there exists a point p = (p1, p2) and a non-zero
point v = (v1, v2) such that

ℓ = {p+ tv : t ∈ R}.

Proof. In one direction, let
ℓ = {p+ t(q − p) : t ∈ R}

be a line. We can let v = q − p ̸= 0 to get that

ℓ = {p+ tv : t ∈ R}.

In the other direction, let ℓ = {p + tv : t ∈ R} for some non-zero point v in the plane. We
can let q = p+ v so that v = q − p, and get the line

ℓ = {p+ t(q − p) : t ∈ R}.

Theorem 1.9 (Equation of a general line). Let p = (p1, p2) be a point in R2 and let
v = (v1, v2) be a point that is not the origin. Then

{p+ tv : t ∈ R} = {(x, y) ∈ R2 : (y − p2)v1 = (x− p1)v2}.

According to Lemma 1.8, a set is a line if and only if it can be represented in the form of
the set on the left side, so the right side provides a second way of representing all lines (and
only lines). A conversion process is described below.

Proof. We will prove this by showing that the two sets are subsets of each other, which
allows us to invoke antisymmetry. If

(x, y) = (p1, p2) + t(v1, v2) = (p1 + tv1, p2 + tv2)

is an element of {p+ tv : t ∈ R}, then as long as t ̸= 0,

(y − p2)v1 = (p2 + tv2 − p2)
(x− p1

t

)
= (x− p1)v2

If t = 0, then we can immediately verify as a separate case that it holds that

(y − p2)v1 = 0 = (x− p1)v2

© 2024 Samer Seraj. All rights reserved.



1.1. EQUATIONS OF LINES 5

because (x, y) = (p1, p2). Either way, this proves the ⊆ inclusion.
Now suppose (x, y) ∈ R2 satisfies

(y − p2)v1 = (x− p1)v2.

If v1 and v2 are non-zero, then we can rewrite the equation as

y − p2
v2

=
x− p1
v1

.

Let t be the common value that is equal to both sides of the equation. Then

y = tv1 + p1,

y = tv2 + p2,

which puts
(x, y) = (tv1 + p1, tv2 + p2) = (p1, p2) + t(v1, v2) = p+ tv

in the desired form. Since (v1, v2) is assumed to not be the origin, we just need to take care
of the possibility that v1 = 0 and v2 ̸= 0, or v2 = 0 and v1 ̸= 0. If v1 = 0, then

(x− p1)v2 =⇒ x = p1

and y can be anything, making a vertical line (horizontal and vertical lines are defined in
Definition 1.12). Each point of the form (p1, y) can be put in the form

(p1 + t · 0, p2 + tv2) = (p1 + t · v1, p2 + tv2) = p+ tv

for t =
y − p2
v2

. The case of v2 = 0 involves a horizontal line and it may be handled symmet-

rically. This proves the ⊇ inclusion.
Since the two representations can be obtained from each other from the shown processes,
they are equivalent in representative power, in that they both capture all lines in R2 and
only lines in R2.

Corollary 1.10 (Point-point form of a line). A subset ℓ of the plane is a line if and only if
there exist distinct points p = (p1, p2) and q = (q1, q2) in the plane such that

ℓ = {(x, y) ∈ R2 : (y − p2)(q1 − p1) = (x− p1)(q2 − p2)}.

This is called the point-point form of a line because both points p, q satisfy the equation,
so this is a way of finding the equation of a line that goes through two distinct points.

Proof. By the definition of a line, a set ℓ is a line if and only if there exist distinct points
p = (p1, p2) and q = (q1, q2) such that

ℓ = {p+ t(q − p) : t ∈ R}.

By Theorem 1.9,

ℓ = {(x, y) ∈ R2 : (y − p2)(q1 − p1) = (x− p1)(q2 − p2)},

so we can go from one form to another, as desired.

© 2024 Samer Seraj. All rights reserved.



6 CHAPTER 1. LINES

Corollary 1.11 (Standard form of a line). A subset ℓ of the plane is a line if and only if
there exist real numbers A,B,C such that A2 +B2 ̸= 0 (so at least one of A,B is non-zero)
and

ℓ = {(x, y) ∈ R2 : Ax+By + C = 0}.
This is called the standard form of a line.

Proof. Let ℓ be a line. By Theorem 1.9, there exists a point p = (p1, p2) and a non-zero
point v = (v1, v2) in R2 such that

ℓ = {p+ tv : t ∈ R} = {(x, y) ∈ R2 : (y − p2)v1 = (x− p1)v2}.

The form on the right side can be written as

{(x, y) ∈ R2 : v2x+ (−v1)y + (p2v1 − p1v2) = 0}.

So we can take A = v2, B = −v1, C = p2v1 − p1v2, where it holds that

A2 +B2 = v22 + (−v1)2 = v21 + v22 ̸= 0.

In the other direction, we want to show that any set

ℓ = {(x, y) ∈ R2 : Ax+By + C = 0}

is a line if A2 + B2 ̸= 0. First we note that ℓ is non-empty: if one of A,B is zero, then we
can isolate the non-vanishing variable to produce infinitely many points; if neither of A,B
is zero, then we can substitute any value like 0 for one of the variables and isolate the other
one to produce a point. This is helpful because we can find a point (p1, p2) and substitute it
in to get

Ap1 +Bp2 + C = 0.

As a result,

{(x, y) ∈ R2 : Ax+By + C = 0} = {(x, y) ∈ R2 : Ax+By − (Ap1 +Bp2) = 0}
= {(x, y) ∈ R2 : A(x− p1) +B(y − p2) = 0}
= {(x, y) ∈ R2 : A(x− p1) = (−B)(y − p2)},

Since (A,B) is not the origin. this the equation of a line, according to Theorem 1.9.

Standard forms are not unique since we can multiply through the coefficients by any non-
zero factor without altering the underlying set of points. If A,B,C are rational, it is usually
good practice to clear the denominators, divide out by the greatest common divisor of the
new coefficients, and scale by −1, if needed, to avoid A from being negative.

Definition 1.12. A horizontal line is a set

{(x, y) ∈ R2 : y = c}

for some real constant c. A vertical line is a set

{(x, y) ∈ R2 : x = c}

for some real constant c. It is easy to verify that horizontal lines and vertical lines are in fact
lines, by taking A = 0 or B = 0 respectively in the standard form of a line Ax+By+C = 0.

© 2024 Samer Seraj. All rights reserved.



1.1. EQUATIONS OF LINES 7

Theorem 1.13. For any non-vertical line ℓ, there exists a constant m called the slope of
the line, such that for any two distinct points (x1, y1) and (x2, y2) on the line,

m =
y2 − y1
x2 − x1

.

Note that this idea does not work for vertical lines because the fact that x1 = x2 would lead
to division by 0.

x-axis

y-axis

run

rise

Proof. Let ℓ be a non-vertical line and let a standard form of its equation be

Ax+By + C = 0,

where A2 + B2 ̸= 0. Let (x1, y1) and (x2, y2) be two distinct points on the line (though it
does not matter here, these must exist since the original definition of a line shows that every
line has as many points as there are real numbers, meaning lines are in bijection with R).
Then

Ax1 +By1 + C = 0,

Ax2 +By2 + C = 0.

Subtracting the equations yields

A(x1 − x2) +B(y1 − y2) = 0

which implies that
y1 − y2
x1 − x2

= −A

B

is a constant. Note that this computation is possible because B ̸= 0 due to the line being
non-vertical.

© 2024 Samer Seraj. All rights reserved.



8 CHAPTER 1. LINES

Corollary 1.14 (Point-slope form of a line). A subset ℓ of the plane is a non-vertical line
with slope m and contains the point (p1, p2) if and only if

ℓ = {(x, y) ∈ R2 : y − p2 = m(x− p1)}

for real numbers m and a real pair of coordinates (p1, p2). This is called the point-slope
form of a non-vertical line.

Proof. In one direction, suppose ℓ is a line. Let a standard form of the line ℓ be

Ax+By + C = 0.

By the proof of Corollary 1.11,

ℓ = {(x, y) ∈ R2 : Ax+By + C = 0}
= {(x, y) ∈ R2 : A(x− p1) = (−B)(y − p2) = 0}

= {(x, y) ∈ R2 : y − p2 = −
A

B
(x− p1)}.

By the proof of Theorem 1.13, −A

B
= m, so

ℓ = {(x, y) ∈ R2 : y − p2 = m(x− p1)}.

In the other direction, let ℓ be a subset of the plane such that there exists a real number m
and a point (p1, p2) satisfying

ℓ = {(x, y) ∈ R2 : y − p2 = m(x− p1)}.

The defining equation is equivalent to

mx+ (−1)y + (−mp1 + p2) = 0,

which is in standard form, making ℓ a line. Moreover, it is non-vertical because we can find
two points that satisfy the equation with differing x-coordinates: (p1, p2) and (p1 + 1, p2 +
m).

Definition 1.15. The y-intercept of a non-vertical line is the unique y-axis point (0, y0)
that lies on the line. The x-intercept of a non-horizontal line is the unique y-axis point
(x0, 0) that lies on the line. The existence and uniqueness of these points follow from plugging
0 into the appropriate variable in a standard form of a line and solving for the other variable.

Corollary 1.16 (Slope-intercept form of a line). A subset ℓ of the plane is a non-vertical
line with slope m and y-intercept (0, b) if and only if

ℓ = {(x, y) ∈ R2 : y = mx+ b}

for real numbers m and b. This is called the slope-intercept form of a non-vertical line.
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Proof. Suppose ℓ is a line with slope m and y-intercept (0, b). Plugging (x, y) = (0, b) into
the point-slope form of a line (Corollary 1.14) yields

ℓ = {(x, y) ∈ R2 : y − b = m(x− 0)}
= {(x, y) ∈ R2 : y = mx+ b}.

Conversely, suppose
ℓ = {(x, y) ∈ R2 : y = mx+ b}

for some real numbers m and b. As above, since this is equivalent to

ℓ = {(x, y) ∈ R2 : y − b = m(x− 0)},
Corollary 1.14 tells us that ℓ is a non-vertical line with slope m and contains the point (0, b),
which must be the y-intercept since its x-coordinate is 0.

Definition 1.17. A univariate linear function is any function f : R→ R defined by

f(x) = ax+ b,

where a and b are real constants. Here, a is called the linear coefficient and b is the
constant term. If a = 0 then f is a constant function, and if a = 1 and b = 0 then f
is the identity function on the real numbers. It is easy to see that if a ̸= 0, then f has

exactly one root − b

a
; if a = 0, then either f has no roots in the case that b ̸= 0, or all real

numbers are roots of f in the case that b = 0.

Example. A vertical line cannot be the graph of a function, but non-vertical lines are the
graphs of linear functions f(x) = mx+ b for fixed real numbers m and b, and the graphs of
all linear functions are non-vertical lines, thanks to the slope-intercept form (Corollary 1.16).

x-axis

y-axis

Problem 1.18. For two linear equations of the form

ax+ by = c,

αx+ βy = γ,

show that there must be exactly zero, one or infinite solutions by proving that the existence
of two distinct solutions to such a system implies the existence of infinitely many solutions
for the same system. Here, the variables are (x, y), and a, b, c, α, β, γ are constants.
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1.2 Equipollence

While three-dimensional geometry will be covered in Chapter 14, let us briefly jump up to
investigate n dimensions. Unfortunately, the third dimension is the highest one that we can
visualize, and even there it is not feasible to visualize all cross sections simultaneously. So in
a sense, we can draw and visualize up to only two-dimensional objects (and surfaces in three
dimensions). This does not stop up from defining and studying higher dimensions, though
our intuition for them will have to come from our direct experience with lower dimensions.

Definition 1.19. For each positive integer n, the n-dimensional Euclidean space is
defined as Rn, which is the set of n-tuples of real numbers. We may call this n-space, and
each of its elements is called a point. For example, we extend the Cartesian coordinate
system of pairs of real numbers (Definition 1.1) to three dimensional Cartesian space, which
consists of triples of real numbers

R3 = {(x, y, z) : x ∈ R, y ∈ R, z ∈ R}.

As formalized below, a Euclidean vector in n-space is described as a directed line segment,
where “directed” means that we distinguish the starting “tail” endpoint of the segment and
the ending “arrow” endpoint of the segment. There is an important caveat, which is that
translating the segment does not change it, making vectors position-independent. This
caveat indicates that there is an equivalence relation at play, and we will precisely define it
momentarily. It is said that a Euclidean vector has magnitude (i.e. length) and direction
(e.g. its counterclockwise angle with the positive x-axis), but no particular location.

Definition 1.20. A directed line segment in Rn is an ordered pair of elements (p, q) ∈
Rn×Rn. Visually, p is the starting point called the tail and q is the ending point called the
arrowhead, and we draw the segment from p to q. The relation

(p, q) ∼ (x, y) ⇐⇒ q − p = y − x

(where the subtraction is done component-wise in Rn) is easily seen to be an equivalence
relation because it is reflexive, symmetric and transitive, as defined in Volume 1. This
relation is called equipollence and the resulting equivalence classes are called Euclidean
vectors or simply vectors. If

(p, q) ∼ (x, y),

then the two elements (p, q) and (x, y) are said to be equipollent to each other and the
relation may be specifically denoted by the bump equality symbol ≏ instead of the generic
∼ .

Definition 1.21. The element (0, p) of an equipollence class where the first component is
the zero vector is called the canonical representative or position vector of that class
(make sure you see that a every class has a unique such canonical element). An arbitrary
element (p, q) of an equipollence class is called a displacement vector from p to q. A
position vector (0, p) may be denoted by −→p or simply p if there is no chance of confusion,
say with Euclidean points or real numbers. A displacement vector (A,B) may be denoted
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by
−→
AB. To denote the equipollence class of a displacement vector u, we use the notation [u],

which is the standard notation of equivalence classes. If (0, p) is a position vector, we might
also denote its equipollence class by [p]. Sometimes we use just a letter like v to denote an
equipollence class, otherwise known as a vector.

O

P

A

B

Example. If p = q are elements of Rm, then the vector

[(p, q)] = [(p, p)] = [(0, 0)]

consists of all “points,” so to speak, which are directed line segments with zero length. We
call this the zero vector.

While equipollence classes are the formal route to Euclidean vectors, we will largely work with
displacement vectors, that is directed line segments, and equate them with other equipollent
segments, such as position vectors, as will be relevant or convenient.

Definition 1.22. Let (0, v) and (0, w) be position vectors in Rn, and let r be a real number.
There are two standard operations defined on vectors:

1. Vector addition: [v] + [w] = [v + w] where the addition v + w is done as the usual
component-addition in Rn. We will see a geometric interpretation of this momentarily
in what is called the parallelogram law (Theorem 1.39).

2. Scalar multiplication: r[v] = [rv], where rv is the usual component-wise scalar
multiplication in Rn. Intuitively, this scales (stretches or compresses) a vector, possibly
combined with reflecting the direction to its opposite.

The definitions of these two operations rely on (0, v) and (0, w) being position vectors, and
they cannot be replaced by arbitrary displacement vectors without adjusting the definitions.
If (p, q) and (x, y) are displacement vectors, then we find their equipollent position vectors
(0, q − p) and (0, y − x), and then apply addition or scalar multiplication and take the
equipollence class of the result.

Theorem 1.23 (Vector space axioms). It may be verified without difficulty that the eight
axioms of abstract vector spaces, as listed below, are fulfilled by the Euclidean vector space
of Rn × Rn under equipollence. Let (0, u), (0, v), (0, w) be arbitrary position vectors in Rn,
and let r, s be real numbers. Then:

1. After Rn × Rn is “modded out” by ≏, it is an abelian group under vector addition +.
This fancy language simply means that the following four conditions are met:
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12 CHAPTER 1. LINES

(a) Commutativity: [v] + [w] = [w] + [v]

(b) Associativity: ([u] + [v]) + [w] = [u] + ([v] + [w])

(c) Existence of identity: [0] satisfies [0] + [u] = [u]

(d) Existence of inverses: [u] + [−u] = [0]

A part of mathematical thinking is to correctly interpret the symbol 0, which appears
as many objects from numbers to vectors, other algebraic structures, functions, and
polynomials.

2. There are desirable regularities in scalar multiplication:

(a) 1[u] = [u]

(b) (rs)[u] = r(s[u])

(c) r([v] + [w]) = r[v] + r[w]

(d) (r + s)[v] = r[v] + s[v]

We leave it to the reader to verify that these properties are satisfied by unwrapping the
definitions of vector addition and scalar multiplication.

It maybe difficult to see at first why Euclidean vectors are a useful construct. One imme-
diately upcoming benefit is that they will help us to prove a fact that may have already
been suspected by the reader: the standard form of a line is unique up to multiplication by
a non-zero scalar (Theorem 1.33). In the long run, vectors show their utility like any other
equivalence relation, by allowing us to use more convenient representatives of an equipol-
lence class (this representative is usually a position vector or has a particular tail), while
preserving properties that are relevant in a given scenario.

Definition 1.24. A set of vectors {v1, v2, . . . , vm} in Rn is said to be linearly independent
when, for all t1, t2, . . . , tm ∈ R, if

t1v1 + t2v2 + · · ·+ tmvm = 0,

then
t1 = t2 = · · · = tm = 0.

(Do you see why linear independence implies that none of the vi are the 0 vector?) In the
negation, meaning there exist t1, t2, . . . , tm ∈ R (at least one of which is non-zero) such that

t1v1 + t2v2 + · · ·+ tmvm = 0,

we say that the set of vectors {v1, v2, . . . , vm} is linearly dependent. The expression

t1v1 + t2v2 + · · ·+ tmvm

is called a linear combination of the set of vectors {vi : i ∈ [m]}.

Lemma 1.25. The following conditions on two vectors v, w in Rn are equivalent:
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1. v = 0 or w = tv for some real t

2. v and w are linearly dependent

3. w = tv or v = tw for some real t

Note the similarity of the first condition with the equality condition for the Cauchy-Schwarz
inequality from Volume 1.

Proof. We will prove that

(1) =⇒ (2) =⇒ (3) =⇒ (1).

• (1) =⇒ (2): Suppose v = 0. Then, for t1 = 1 and t2 = 0, t1v + t2w = 0, proving
linear dependence. Separately, suppose w = tv for some real t. Then, for t1 = −t and
t2 = 1,

t1v + t2w = (−t)v + 1(tv) = (−t+ t)v = 0v = 0,

again proving linear dependence.

• (2) =⇒ (3): Suppose v and w are linearly dependent. Then there exist real t1 and t2,
at least one of which is non-zero, such that t1v + t2w = 0. If t1 ̸= 0, then we can let
t = −t1

t2
to get w = tv. If t2 ̸= 0, then we can let t = −t2

t1
to get v = tw.

• (3) =⇒ (1): Supposing w = tv for some real t immediately implies (1). So suppose
v = tw for some real t instead. If v = 0, then we are done again. So suppose instead
that v ̸= 0. Then it is not possible that t = 0 in v = tw. This allows us to divide by t

in v = tw to get w =
1

t
v, which completes the proof.

Definition 1.26. Recall from Volume 1 that an m × n matrix is a way of organizing mn
entries, indexed by [m]× [n], in a block as shown in the 2× 2 case below (here, [m] refer to
the set {1, 2, . . . ,m}, and similarly for [n]). The matrix multiplication of 2× 2 matrices
is defined by Å

a b
c d

ã
·
Å
p q
r s

ã
=

Å
ap+ br aq + bs
cp+ dr cq + ds

ã
Similarly, a 2× 2 matrix times a column vector is computed asÅ

a b
c d

ã
·
Å
p
q

ã
=

Å
ap+ bq
cp+ dq

ã
.

The multiplication of larger matrices follows a similar definition. Matrix multiplication is
associative, but not commutative in general. The multiplication of a matrix by a scalar α
(for us, a scalar is a real number but a more general definition involving field elements exists
in abstract algebra) is defined as

α ·
Å
a b
c d

ã
=

Å
αa αb
αc αd

ã
.
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We call
I =

Å
1 0
0 1

ã
the 2×2 identity matrix because IM = MI for every 2×2 matrix M, as the reader should
verify.

To foreshadow, we will need matrix multiplication in the proof of the barycentric shoelace
formula (Theorem 9.28). The multiplication of a matrix with a column vector will be useful
as well for succinctly expressing a system of equations in the proof of the uniqueness of
bivariate quadratic representations of conics (Theorem 12.14).

Definition 1.27. We will not define the determinant of an n × n matrix in general but
the following formulas show how to compute the determinants of 2× 2 and 3× 3 matrices:

• The determinant of a 2× 2 matrix is the real number

det

Å
a b
c d

ã
= ad− bc.

• The determinant of a 3× 3 matrix is the real number

det

Ñ
a b c
d e f
g h i

é
= aei+ bfg + cdh− ceg − bdi− afh.

We will need the following properties that hold for the determinants of all square matrices,
though we will need to apply them only to 2× 2 and 3× 3 matrices.

Theorem 1.28. The facts below about determinants may be verified using the algebraic
definitions (Definition 1.27), albeit the direct proofs are are tedious:

1. A scalar can be factored out of a single row or a single column of the determinant to
outside the determinant without altering the value of the determinant. Equivalently,
multiplying every element of one row or every element of one column by the same
number results in multiplying the determinant by the same number.

2. Adding or subtracting (a scalar multiple) of a row from another row preserves the
determinant. The same is true for the corresponding statement about columns.

3. Swapping two rows with each other or two columns with each other changes the sign
of the determinant.

4. The determinant is preserved under taking the transpose of the matrix, meaning the
element in each row i and column j is exchanged with the element in row j and column
i. This operation is equivalent to reflecting the matrix across the diagonal that runs
from the top-left to the bottom-right.

The following is a way of remembering how to compute the 3 × 3 determinant, called the
Rule of Sarrus:
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a b c a b

d e f d e

g h i g h

Lemma 1.29. In two dimensions, the position vectors (x1, x2) and (y1, y2) are linearly
independent if and only if

det

Å
x1 x2

y1 y2

ã
= x1y2 − x2y1

is non-zero.

Proof. We will prove the contrapositive, that (x1, x2) and (y1, y2) are linearly dependent if
and only if x1y2 = x2y1, since an equality is usually easier to manipulate than an inequation.
For one direction, suppose they are linearly dependent. Then there exist constants a, b, at
least one of which is non-zero, such that

(0, 0) = a(x1, y1) + b(x2, y2) = (ax1 + bx2, ay1 + by2).

There are two scenarios, depending on whether a ̸= 0 or b ̸= 0 and they lead to the same
conclusion (if both hold, then either argument applies):

a ̸= 0 =⇒ a(x1y2 − x2y1) = (ax1)y2 − x2(ay1) = (−bx2)y2 − x2(−by2) = 0,

b ̸= 0 =⇒ b(x1y2 − x2y1) = x1(by2)− (bx2)y1 = (−ay1)x1 − (−ax1)y1 = 0.

In either case, we can cancel a ̸= 0 or b ̸= 0 to get x1y2 − x2y1 = 0.
In the other direction, suppose x1y2 − x2y1 = 0. We will make use of Lemma 1.25 several
times to prove linear dependence. Ideally, we would be able to rewrite the equation as

y2
x2

=
y1
x1

.

In this case, we can set t equal to the common value so that y1 = tx1 and y2 = tx2, resulting
in the dependence relation

(y1, y2) = t · (x1, x2).

The problem is that we might have x1 = 0 or x2 = 0, in which case we cannot divide by one
or both. If x1 = 0, then x2 = 0 or y1 = 0. As a subcase, if x2 = 0 then (x1, x2) = 0 and we
have linear dependence. As another subcase, if y1 = 0 then (0, x2) and (0, y2) are linearly
dependent (work this out!). This takes care of the x1 = 0 case. The analysis for the x2 = 0
case is symmetrical, thereby completing the second direction of the proof.

Corollary 1.30. If the position vectors (x1, x2) and (y1, y2) are linearly independent, then
the matrix

M =
1

x1y2 − x2y1
·
Å

y2 −x2

−y1 x1

ã
can be defined and it is the unique inverse of N =

Å
x1 x2

y1 y2

ã
in the sense that M · N =

N ·M = I. Conversely, if (x1, x2) and (y1, y2) are linearly dependent, then the above-defined
matrix M has no inverse, meaning there does not exist a matrix N as described.
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Proof. It is straightforward to show by the definition of matrix multiplication thatï
1

x1y2 − x2y1
·
Å

y2 −x2

−y1 x1

ãò
·
Å
x1 x2

y1 y2

ã
=

Å
1 0
0 1

ã
=

Å
x1 x2

y1 y2

ã
·
ï

1

x1y2 − x2y1
·
Å

y2 −x2

−y1 x1

ãò
.

Recall from Volume 1 that inverses must be unique under an associative binary operation that
has an identity. In this case, proving that the multiplication of 2× 2 matrices is associative
is not difficult (though it is algebraically tedious), and we find that I is the identity matrix.
For the converse, suppose (x1, x2) and (y1, y2) are linearly dependent. By Lemma 1.25, one
of them must be a scalar multiple of the other. Since the argument will be symmetrical in
the two cases, suppose without loss of generality that there exists a real number t such that

(y1, y2) = t(x1, x2) = (tx1, tx2).

Now suppose, for the sake of contradiction, that there exists an inverse
Å
p q
r s

ã
so thatÅ

1 0
0 1

ã
=

Å
p q
r s

ã
·
Å
x1 x2

tx1 tx2

ã
=

Å
px1 + tqx1 px2 + tqx2

rx1 + tsx1 rx2 + tsx2

ã
=

Å
(p+ tq)x1 (p+ tq)x2

(r + ts)x1 (r + ts)x2

ã
.

But the determinant of the far left side is 1 and the determinant of the far right side is 0,
which is a contradiction. Therefore, an inverse does not exist for 2× 2 matrices whose rows
are linearly dependent.

Problem 1.31. Prove that, in two dimensions, the set of arrowheads of the position vectors
of linear combinations of two linearly independent position vectors generates the whole plane
R2. For example, the arrowheads of the two position vectors might be the standard basis,
(1, 0) and (0, 1), in which case

(a, b) = a(1, 0) + b(0, 1)

for every point (a, b) ∈ R2.

Problem 1.32. Let u, v, w be vectors in Rn such that v is non-zero. Prove that, if u, v
are linearly dependent and v, w are linearly dependent, then u,w are linearly dependent.
Intuitively, this means that linear dependence is partially transitive, specifically in the case
where the transition vector is non-zero.

Theorem 1.33 (Uniqueness of standard form through two points). If (x1, y1) and (x2, y2)
are distinct points in R2 that both lie on both of the lines

ℓ = {(x, y) ∈ R2 : Ax+By + C = 0},
ℓ′ = {(x, y) ∈ R2 : A′x+B′y + C ′ = 0},
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where (A,B,C) and (A′, B′, C ′) are triples of real constants such that A2 + B2 ̸= 0 and
A′2 +B′2 ̸= 0, then there exists a non-zero t ∈ R such that

(A,B,C) = t · (A′, B′, C ′).

This implies that, if two lines ℓ and ℓ′ in R2 have at least two distinct points in common,
then the lines “coincide” in the sense that they are the same set ℓ = ℓ′. The analogous result
for the uniqueness of bivariate quadratic representations of conics is Theorem 12.14.

Proof. By substitution, we obtain the equations

Ax1 +By1 + C = 0,

Ax2 +By2 + C = 0,

and subtracting them yields

A(x1 − x2)−B(y2 − y1) = 0.

By Lemma 1.29, (A,B) and (x1 − x2, y2 − y1) are linearly dependent. Similarly, by substi-
tution, we obtain the analogous second set of equations

A′x1 +B′y1 + C ′ = 0,

A′x2 +B′y2 + C ′ = 0,

and subtracting them yields

A′(x1 − x2)−B′(y2 − y1) = 0.

By Lemma 1.29, (x1−x2, y2− y1) and (A′, B′) are linearly dependent. Since (x1, y1), (x2, y2)
are distinct and so (x1−x2, y2−y1) ̸= (0, 0), Problem 1.32 tells us that (A,B) and (A′, B′) are
linearly dependent. Since (A′, B′) ̸= (0, 0), there exists t ∈ R such that (A,B) = t · (A′, B′)
by Lemma 1.25. Since (A,B) ̸= (0, 0), we also obtain that the scale factor t is non-zero.
Lastly,

C = −Ax1 −By1

= −tA′x1 − tB′x1

= −t(A′x1 +B′y1)

= −t(−C ′)

= tC ′.

Therefore, there exists a non-zero real t such that

(A,B,C) = t · (A′, B′, C ′).

Corollary 1.34. Two lines in R2 have only three possible options for their intersection:
there is exactly one point in common, there are no points in common, or they have all points
in common.
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Proof. Suppose the first two options are untrue, meaning there exists a point in common, but
there is not exactly one point in common. Then there exist at least two points in common.
By Theorem 1.33, the two lines are identical, meaning they have all points in common. In
other words, if the lines are ℓ and ℓ′, then

ℓ = ℓ ∩ ℓ′ = ℓ′.

This strengthens the infinitude of common solutions in Problem 1.18 to completely overlap-
ping.

Definition 1.35. If two lines in R2 have exactly zero intersections then we call the lines
parallel. If the two lines are the same set, then we call the lines coincident.

Theorem 1.36. Let p = (p1, p2) and q = (q1, q2) be points in R2, and v = (v1, v2) and
w = (w1, w2) be non-zero points in R2. Define the lines

ℓ1 = {(x, y) : (y − p2)v1 = (x− p1)v2} = {p+ tv : t ∈ R},
ℓ2 = {(x, y) : (y − q2)w1 = (x− q1)w2} = {q + sw : s ∈ R}.

Then the follow conditions are equivalent:

1. The lines ℓ1 and ℓ2 are parallel or coincident.

2. It holds that
det

Å
w1 w2

v1 v2

ã
= w1v2 − w2v1 = 0.

3. There exists a non-zero constant r ∈ R such that rv = w.

Proof. We will prove that

(1) =⇒ (2) =⇒ (3) =⇒ (1).

• (1) =⇒ (2): First we will prove that, if the lines ℓ1 and ℓ2 are parallel or coincident,
then w1v2 = w2v1 by proving the contrapositive: if w1v2 − w2v1 ̸= 0, then ℓ1 and ℓ2
have a unique point of intersection, meaning we want there to exist a unique pair (t, s)
of reals such that the follow equivalent equations hold:

p+ tv = q + sw

(p1, p2) + t(v1, v2) = (q1, q2) + s(w1, w2)

t(v1, v2)− s(w1, w2) = (q1, q2)− (p1, p2)

(tv1 − sw1, tv2 − sw2) = (q1 − p1, q2 − p2)Å
v1 −w1

v2 −w2

ãÅ
t
s

ã
=

Å
q1 − p1
q2 − p2

ã
Under the assumption that

det

Å
w1 w2

v1 v2

ã
= w1v2 − w2v1 ̸= 0,
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the determinant of the matrix on the left satisfies

det

Å
v1 −w1

v2 −w2

ã
= v1(−w2)− (−w1)v2 = w1v2 − w2v1 ̸= 0.

By Corollary 1.30, its inverse
Å
v1 −w1

v2 −w2

ã−1

exists and we can multiply both sides of

the equation by it to get the unique solution (t, s)Å
t
s

ã
=

Å
v1 −w1

v2 −w2

ã−1 Å
q1 − p1
q2 − p2

ã
.

• (2) =⇒ (3): Now we will show that, if w1v2 − w2v1 = 0, then there exists a real r
such that rv = w. By the fact that neither v nor w is the origin,

v1 = 0 ⇐⇒ w1 = 0,

v2 = 0 ⇐⇒ w2 = 0,

and at most one of these two biconditional statements can hold. In the first case
r =

w2

v2
works, and in the second case r =

w1

v1
works. If neither is true, then we may

write
w1

v1
=

w2

v2
.

Setting r equal to the common value, we get

rv = r(v1, v2) = (rv1, rv2) = (w1, w2) = w,

as desired. Note that r has to be non-zero, since w is non-zero.

• (3) =⇒ (1): Finally, we will prove that if there exists a non-zero real r such that
rv = w, then ℓ, ℓ′ are parallel or coincident. Assuming such an r exists,

ℓ2 = {q + sw : s ∈ R}
= {q + srv : s ∈ R}
= {q + tv : t ∈ R},

since scaling the set of all reals by a non-zero constant r does not alter the set R.
Suppose ℓ1, ℓ2 are not parallel. We will prove that they are coincident. Since we are
assuming they are not parallel, it means that there exists at least one point (x0, y0) of
intersection. Then

(x0, y0) ∈ ℓ1 =⇒ ∃c1 ∈ R : (x0, y0) = p+ c1v,

(x0, y0) ∈ ℓ2 =⇒ ∃c2 ∈ R : (x0, y0) = q + c2v.

Equating them, we get

p+ c1v = q + c2v

p = q + cv, c = c2 − c1.
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Then

ℓ1 = {p+ tv : t ∈ R}
= {q + cv + tv : t ∈ R}
= {q + (c+ t)v : t ∈ R}
= {q + sv : s ∈ R} = ℓ2,

since translating the set of all reals by a non-zero constant c does not alter the set R.
Therefore, ℓ1, ℓ2 are parallel or coincident.

Lemma 1.37 (Vector decomposition lemma). Let
−→
AB be a displacement vector in Rn and

let
−→
A and

−→
B be position vectors (they represent

−→
OA and

−−→
OB, respectively, where O is the

origin). Then
−→
AB ≏

−→
B −

−→
A.

Subsequently,
−→
AB ≏ −

−→
BA.

A further pair of consequences is that if A1, A2, . . . , Am are points in Rn, then

−−−→
A1A2 +

−−−→
A2A3 + · · ·+

−−−−−→
Am−1Am ≏

−−−→
A1Am,

−−−→
A1A2 +

−−−→
A2A3 + · · ·+

−−−−−→
Am−1Am +

−−−→
AmA1 ≏ 0.

Geometrically, this means that if we have finite sum of vectors, then we may place them in
a sequence where the arrowhead of each vector is touching the tail of the next one (after
translations under equipollence as necessary), and then the sum of the vectors is the same
as the vector from the first tail to the last arrow.

A1

A2

A3

A4

A5

−−−→
A1A2

−−−→
A2A3

−−−→
A3A4

−−−→
A4A5

−−−→
A1A5
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Proof. Let A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn). By the definition of vector addition
and equipollence,

−→
B −

−→
A = ((0, 0, . . . , 0)︸ ︷︷ ︸

n−tuple of 0’s

, (b1 − a1, b2 − a2, . . . , bn − an))

≏ ((a1, a2 . . . , an), (b1, b2 . . . , bn))

= (A,B)

=
−→
AB.

This decomposition leads to

−
−→
BA = −(

−→
A −

−→
B ) =

−→
B −

−→
A =

−→
AB.

The remaining two corollaries are true by using the same decomposition and telescoping.

Lemma 1.38. Let P1, Q1 and P2, Q2 be pairs of points such that
−−−→
P1Q1 ≏

−−−→
P2Q2. Then the

line
ℓ1 = {

−→
P1 + t

−−−→
P1Q1 : t ∈ R}

that runs through P1, Q1 is parallel to or coincident with the line

ℓ2 = {
−→
P2 + s

−−−→
P2Q2 : s ∈ R}

that runs through P2, Q2. Note that, since both lines are written in terms of vectors, our
way of obtaining a concrete line (as in, a collection of points), is to interpret this notation
as meaning the set of heads of the position representatives of all the included vectors.

Proof. Suppose the two lines are not parallel. We will show that the lines are equal as subsets
of space. Since

−−−→
P1Q1 ≏

−−−→
P2Q2, it means

P1 −Q1 = P2 −Q2.

In the case that P1 = P2, we would also get Q1 = Q2, which would make the lines coincide
with ease. So suppose P1 is not the same point as P2. Under the initial assumption that
the lines are not parallel, a point of intersection between the lines exist. So, there exist real
numbers α and β such that

−→
P1 + α

−−−→
P1Q1 =

−→
P2 + β

−−−→
P2Q2

=
−→
P2 + β

−−−→
P1Q1

−→
P2 −

−→
P1 = α

−−−→
P1Q1 − β

−−−→
P1Q1

−−→
P1P2 = (α− β)

−−−→
P1Q1 ≏ (α− β)

−−−→
P2Q2.
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Note that α− β ̸= 0, as, otherwise, P1 would be the same point as P2, which is a possibility
that we have already excluded. This allows us to rewrite the lines as

ℓ1 = {
−→
P1 + t

−−−→
P1Q1 : t ∈ R}

= {
−→
P1 + t(α− β)−1−−→P1P2 : t ∈ R}

= {
−→
P1 + t

−−→
P1P2 : t ∈ R}

= {
−→
P1 + t(

−→
P2 −

−→
P1) : t ∈ R}

= {(1− t)
−→
P1 + t

−→
P2 : t ∈ R}

and, similarly,

ℓ2 = {
−→
P2 + t

−−−→
P2Q2 : s ∈ R}

= {
−→
P2 + s(α− β)−1−−→P1P2 : s ∈ R}

= {
−→
P2 + s

−−→
P1P2 : s ∈ R}

= {
−→
P2 + s(

−→
P2 −

−→
P1) : s ∈ R}

= {(−s)
−→
P1 + (s+ 1)

−→
P2 : s ∈ R}.

Note that the factor (α− β)−1 was possible to make disappear because scaling the set of all
real numbers t or s by a constant does not change the set R. By the change of variables
t− s = 1, we get 1− t = −s and t = s+ 1, so ℓ1 = ℓ2.

Theorem 1.39 (Parallelogram law). If P,A,B are distinct points in Rn, then there is a
representative of

−→
PA+

−−→
PB that is a directed diagonal, with its tail at P , of a parallelogram

with adjacent sides PA and PB (a parallelogram is defined in Definition 7.19). Moreover,
according to the vector decomposition lemma (Lemma 1.37), the other directed diagonal of
the same parallelogram from A to B has a representative in

−→
AB =

−−→
PB −

−→
PA

and the directed diagonal from B to A has a representative in
−→
BA = −

−→
AB = −(

−−→
PB −

−→
PA) =

−→
PA−

−−→
PB.

P

A

B

Q

−→
PA

−−→
PB

−→
AQ

−−→
BQ−→

PQ
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Proof. Let P,A,B be three distinct points in Rn. Our two adjacent sides are representatives
of the vectors

−→
PA = (P,A) ≏ (0, A− P ),
−−→
PB = (P,B) ≏ (0, B − P ).

So their sum is
−→
PA+

−−→
PB ≏ (0, A− P ) + (0, B − P ) = (0, A+B − 2P ) ≏ (P,A+B − P ).

Let Q be the point A+B − P. We need to show that Q is the fourth vertex. Since we want
a parallelogram forged by the adjacent sides PA and PB, it suffices to prove that the lines
through

−→
PA and

−−→
BQ are parallel or coincident, and likewise for

−−→
PB and

−→
AQ. Note that

−→
PA = (P,A) ≏ (0, A− P ) ≏ (B,A+B − P ) = (B,Q) =

−−→
BQ,

−−→
PB = (P,B) ≏ (0, B − P ) ≏ (A,A+B − P ) = (A,Q) =

−→
AQ.

By Lemma 1.38, the lines through any two representatives of the same vector are parallel or
coincident, so we are done.
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Chapter 2

Angles

“You must not attempt this approach to parallels. I know
this way to the very end. I have traversed this bottomless
night, which extinguished all light and joy in my life. I
entreat you, leave the science of parallels alone... Learn
from my example.”

– Farkas Bolyai

We will describe angles, and their types and properties. This will allow us to prove some basic
angle theorems about triangles. Afterwards, we will provide an exposition of parallel and
perpendicular lines using slope-intercept form and the geometric interpretation of complex
numbers. We conclude with an elementary proof of the formula for the perpendicular distance
between a point and a line.

2.1 Basic Notions

Theorem 2.1 (Distance formula). The distance between two points (x1, y1) and (x2, y2) on
the Cartesian plane is »

(x1 − x2)2 + (y1 − y2)2.

Subsequently, this means the distance between two complex numbers z1 and z2 is |z1 − z2|.

Proof. If the two points are the same, then the distance between them is 0, which matches
the formula. So we may assume that the two points are distinct. Then we can construct a
right triangle with the segment between (x1, y1) and (x2, y2) as its hypotenuse and legs of
length |x1−x2| and |y1−y2| that are parallel to the coordinate axes. This is done by drawing
a line parallel to the x-axis through one point, and a line parallel to the y-axis through the
other point.

(x1, y1)

(x2, y2)

|x2 − x1|

|y2 − y1|

24
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The formula then follows from the Pythagorean theorem. However, it is sensible to take
this distance formula as a definition in analytic geometry, since we have not yet proven the
Pythagorean theorem.
Regarding the relation to complex numbers, if we take z1 = (x1, y1) and z2 = (x2, y2) then
the formula for the complex modulus yields

|z1 − z2| =
»

(x1 − x2)2 + (y1 − y2)2.

Definition 2.2. A circle is the collection of all points in the plane at a fixed distance from
a fixed point.

O
r

There are several ensuing concepts:

1. The fixed point is called the center of the circle.

2. The fixed distance is called the radius of the circle. A radius of a circle also refers
to a line segment with one endpoint on the circle and one endpoint at the center of
the circle. The plural of radius is radii. By the definition of a circle, all radii have the
same length.

3. A diameter of a circle is a segment that goes through the center and has both end-
points on the circle, though the word can also refer to the length of such a segment.

4. The circumference of a circle is its perimeter. The term can also refer to the boundary
of a closed disk (see Definition 5.1). We define the ratio of the circumference of a circle
divided by its diameter to be the constant π, which has the same value for all circles.

5. The unit circle in the Cartesian plane is the circle of radius 1 and center at the origin.

Corollary 2.3. If a circle is the collection of all points at a fixed distance r from a fixed
point (a, b) in the Cartesian plane, then the equation of all points (x, y) on the circle is given
by

(x− a)2 + (y − b)2 = r2.
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Proof. By definition, (x, y) lies on the circle if and only if the distance from (x, y) to (a, b) is
r. By the distance formula (Theorem 2.1), this means (x, y) lies on the circle if and only if»

(x− a)2 + (y − b)2 = r,

which is equivalent to the proposed equation.
As a side note, the equation of a circle could be provided in the form

x2 + Ax+ y2 +By + C = 0,

in which case we would have to complete the square in each variable (see the proof of the
quadratic formula in Volume 1 for a general method of completing the square) in order to
determine the radius and the coordinates of the center. Not all equations of this form lead
to a circle, though. For example, upon completing the square in each variable, we might
discover that the square of the “radius” is non-positive. Related comments for conics and
bivariate quadratics are written under Definition 12.4.

We need a way to measure how far we have rotated from one point to another points, relative
to a central point that is equidistant from the origin and destination. Angles do this job.

Definition 2.4. Given two rays
−→
BA and

−−→
BC with the common origin B, the angle between

them refers to one of the two regions in between the rays, with the choice being made clearly
at the time of writing. Whether the rays themselves are included depends on the context,
but the interior of an angle is the same region excluding the rays. The common point of
the rays is called the vertex of the angle and rays

−→
BA and

−−→
BC are called the legs. The

angle is denoted by ∠ABC.

C

B
A

Note that we must clearly choose the angle from among the two regions that the plane is
cut into by the two rays, otherwise the angle is not well-defined.

We will often conflate an angle, which is a region, with its measure, which is a non-negative
real number. The measure of an angle is defined as follows.

Definition 2.5. Let ∠ABC be an angle. After drawing a circle of radius 1 with the vertex
of the angle as its center, the radian measure ϕ of the angle is the the arc length of the unit
circle inside the angle. Note that π is defined to satisfy 2π being the circumference of the
unit circle. Since radian measure can be uncomfortable for geometry, we can define degree
measure to satisfy 2π = 360◦. Then the degree measure θ of the same angle is given by

θ

360◦
=

ϕ

2π
=⇒ θ = ϕ · 180

◦

π
.
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C

B
A

θ

ϕ

Theorem 2.6. Angles are additive in the sense that placing two angles beside each other
with a common ray means the measure of the new angle is the sum of the measures of the
original two angles.

O
A

B

C

αβ

γ = α + β

Definition 2.7. There are several categories into which we will classify angles:

1. A zero angle represents no rotation and so has measure 0◦.

2. A right angle is a fourth of a full rotation and so has measure 90◦. One may use a
square mark to indicate a right angle.

C

B
A

θ = 90◦

3. An acute angle is a positive angle that is smaller than a right angle.
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4. A straight angle is half of a full rotation and so has measure 180◦. The union of two
rays that make a straight angle is a line. For example, a diameter of a circle splits into
two radii that form two straight angles.

5. An obtuse angle is larger than a right angle but smaller than a straight angle.

6. A complete angle represents one full rotation and so has measure 360◦.

7. A reflex angle is larger than a straight angle but smaller than a complete angle.

Definition 2.8. There are three important relationships between pairs of angles:

1. A pair of non-negative angles is called complementary if their measures sum to 90◦.

2. A pair of non-negative angles is called supplementary if their measures sum to 180◦.

3. A pair of non-negative angles is called explementary if their measures sum to 360◦.

Definition 2.9. We introduce negative angles by making counterclockwise angles the
positive ones and clockwise angles the negative ones. In classical geometry, angles do not
have such an orientation, but analytic or complex geometry can be imbued with oriented
angles.

C

B
A

counterclockwise

C

B
A

clockwise

Definition 2.10. If two lines intersect, then they produces four angles. If the angles are
a, b, c, d in counterclockwise order, then a, c are called vertical or opposite angles, as are
b, d.

a

b

c

d
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Theorem 2.11 (V-angle theorem). If there are two intersecting lines, then the angles in
each pair of vertical angles are equal.

Proof. Let the angles be a, b, c, d in clockwise order. Then

a+ b = 180◦,

b+ c = 180◦.

Equating them yields
a+ b = b+ c =⇒ a = c.

Symmetrically, b = d.

Definition 2.12. Two lines are said to be perpendicular if the four angles created by their

intersection are equal. Equivalently, the four angles all have measure
360◦

4
= 90◦. In fact, by

vertical angles and supplementary angles we can show that if one angle of the intersection
is 90◦, so are the other three (try it!).

Definition 2.13. A transversal ℓ is a line that cuts through two lines m,n which are
usually parallel for our purposes. This produces eight angles. Any two angles on the same
side of the transversal are called same-side angles and any two angles on opposite sides
of the transversal are called alternate angles. Angles in between the two parallel lines
are called interior angles and the other four are called exterior angles. This terminology
produces 2 · 2 = 4 types of pairs of angles in the figure:

• Alternate interior angles

• Alternate exterior angles

• Same-side interior angles

• Same-side exterior angles

Moreover, two same-side angles, one of which is an interior angle and one of which is an
exterior angle, are called corresponding angles.

m

n

ℓ
a

d

e

h

b

c

f

g
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Theorem 2.14. Suppose there are two lines m,n and a transversal ℓ cutting through them.
It is standard to assume that corresponding angles are equal if and only if m,n are parallel;
this configuration is known as the F-angle theorem. Using supplementary angles, we get
several other statements equivalent to m,n being parallel:

1. Alternate interior angles are equal (Z-angle theorem)

2. Alternate exterior angles are equal

3. Same-side interior angles are supplementary

4. Same-side exterior angles are supplementary

So a pair of parallel lines and a transversal creates two classes of four equal angles each, such
that one angle from one class and one angle from another class are supplementary. In terms
of the labels of the above diagram, the two classes are

a = d = e = h,

b = c = f = g.

Lemma 2.15. Let ℓ be a line, and m,n be two more lines.

1. If m,n are both perpendicular to ℓ, then m,n are parallel.

2. If m, ℓ are parallel and ℓ, n are parallel, then then m,n are parallel. This makes being
parallel a transitive property.

Proof. We will use the setup of two parallel lines and a transversal for both proofs:

1. Suppose m,n are both perpendicular to ℓ. Then eight right angles are produced at
the two points of intersection. By the equality of corresponding angles, m,n must be
parallel.

2. Suppose m,n are both parallel to ℓ. First we draw a line t through ℓ such that t and ℓ are
perpendicular. Since ℓ,m are parallel, alternate interior angles tell us that t intersects
m perpendicularly (there must be a point of intersection, otherwise m would be parallel
to both ℓ, t which are perpendicular). Similarly, t intersects n perpendicularly. So t
is a perpendicular to both of m,n and equal alternate interior angles tell us that m,n
are parallel.

Definition 2.16. A half-plane is either side of a line and includes the line; this will be
extended to 3D geometry in Definition 14.1. A convex polygon is a finite region formed by
the intersection of half-planes, where we never include two half-planes whose union forms the
whole plane. The vertices of the convex polygon are the corners where the boundaries of
two such half-planes meet, and the edges or sides are the line segments between consecutive
vertices. The perimeter of a convex polygon is the sum of the lengths of the edges. The
interior angles of a convex polygon are the non-reflex angles created by pairs of edges at
the vertices.
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Example. A triangle (Definition 3.7) is a convex polygon, by taking the lines for the required
half-planes to be the lines that run through the edges of the triangle.

Definition 2.17. Given a set of three or more points, if there exists a line that runs through
all of the points, then the points are said to be collinear.

Theorem 2.18 (Interior angle theorem). The sum of the interior angles of any triangle is
180◦.

Proof. Let the triangle be △ABC. First we draw a line ℓ through C that is parallel to the
line through AB. Let D and E be points on ℓ, as shown. By alternate interior angles,

∠BAC = ∠ACD,

∠ABC = ∠BCE.

Then
∠ABC + ∠BAC + ∠ACB = ∠BCE + ∠ACD + ∠ACB = 180◦,

due to D,C,E being collinear.

A B

CD Eℓ

Corollary 2.19. If the interior angles of a triangle include a right or obtuse angle, then the
other two angles are both acute.

Proof. Suppose a, b, c are the interior angles and that a ≥ 90◦. Using that fact that

a+ b+ c = 180◦,

we find that
b+ c = 180◦ − a ≤ 180◦ − 90◦ = 90◦.

Since b, c are both positive, they must both be acute.
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Definition 2.20. We can classify triangles according to the measures of their interior angles:

• Acute triangle: three acute interior angles

• Right triangle: one right interior angle, which causes the other two to be acute); the
side opposite the right angle is called the hypotenuse and the other two sides are
called legs

• Obtuse triangle: one obtuse interior angle, which causes the other two to be acute

Definition 2.21. The exterior angle corresponding to an interior angle of a convex polygon
is the angle supplementary to the interior angle. Such an angle may be constructed by
extending either of the two rays of the angle in the other direction, so there are two ways of
doing this. By vertical angles, these two angles have the same measure, so the measure of
an exterior angle corresponding to an interior angle is well-defined.

A B

C

D

E

Corollary 2.22 (Triangle exterior angle theorem). Let △ABC be a triangle. Then the
measure of the exterior angle at C is equal to the sum of the measures of the interior angles
at A and B. As a consequence, the sum of the three exterior angles at A,B,C is 360◦. This
generalized to convex polygons in Problem 5.29.

Proof. Let the measures of the interior angles at A,B,C be α, β, γ, and let the exterior angle
at C measure γ′. We know that

α + β + γ = 180◦,

γ + γ′ = 180◦.

Equating the two yields

α + β + γ = γ + γ′ =⇒ α + β = γ′,

which is the desired result, which is known as Euclid’s first theorem. If the exterior angles
at A and B are α′ and γ′ respectively, then applying this result to them yields

α′ + β′ + γ′ = (β + γ) + (γ + α) + (α + β)

= 2(α + β + γ)

= 2 · 180◦ = 360◦.
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2.2 Parallel and Perpendicular

It is useful to be able to classify when two non-vertical lines are parallel or coincident accord-
ing to the slopes of their slope-intercept equations. A criterion for perpendicular lines would
also be helpful, for which we will need to invoke complex numbers, due to their friendliness
with rotations.

Theorem 2.23. Suppose two lines are non-vertical.

1. The two lines are parallel or coincident if and only if their slopes are equal.

2. The two lines are perpendicular if and only if their slopes are negative reciprocals of
each other.

Proof. Suppose there are two non-vertical lines. We prove the results in sequence, as the
first part plays a role in the proof of the second part.

1. By Corollary 1.34, the negation of the proposition that two lines are parallel or co-
incident is that the two lines have exactly one intersection point. Instead of showing
that if two lines are parallel or concident then their slopes are equal, we will show the
contrapositive, which says that if two lines have unequal slopes then they have exactly
one intersection point. Indeed, if the equations are

y = m1x+ b1,

y = m2x+ b2,

for m1 ̸= m2, then solving for intersection points yields the single solution

(x0, y0) =

Å
− b1 − b2
m1 −m2

,
b2m1 − b1m2

m1 −m2

ã
.

In the other direction, we will show that if the lines have equal slopes, then they are
parallel or concident. Suppose the lines have equal slope, so their equations are

y = mx+ b1,

y = mx+ b2.

Logically, the desired conclusion “they are parallel or concident” is equivalent to “if
they are not parallel then they coincide.” Since the negation of being parallel is that at
least one point of intersection exists, it suffices to show that if one point of intersection
exists then the lines coincide. Indeed, if (x0, y0) is a solution to both equations then
setting the equations equal to each other yields

mx1 + b1 = y = mx1 + b2 =⇒ b1 = b2.

Thus, the equations are the same and represent the same line.
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2. If two lines are perpendicular, then there must be a unique intersection point at which
the angle is created. On the other hand, if the slopes are negative reciprocals, then
the slopes cannot be equal and the previous part tells us that there exists a unique
intersection point. So in either direction, we can assume the existence of a unique
intersection point (x0, y0).

Let the lines be ℓ1 with slope m1 and ℓ2 with slope m2, and let (x1, y1) be a point
on ℓ1 other than (x0, y0). Using the fact that multiplication by i causes a

π

2
rotation

counterclockwise around the origin, we can rotate z1 = x1 + iy1 around z0 = x0 + iy0
counterclockwise by

π

2
radians to get the point

z2 = (z1 − z0)e
π
2
i + z0

= (x1 + iy1 − x0 − iy0)i+ (x0 + iy0)

= (ix1 − y1 − ix0 + y0) + (x0 + iy0)

= (−y1 + y0 + x0) + (x1 − x0 + y0)i.

Let z2 = x2 + iy2. Now we will tackle the two directions separately. If we assume that
ℓ1 and ℓ2 are perpendicular, then we know that z2 lies on ℓ2, which tells us that

m2 =
y2 − y0
x2 − x0

=
(x1 − x0 + y0)− y0
(−y1 + y0 + x0)− x0

=
x1 − x0

−y1 + y0
= −
Å
y1 − y0
x1 − x0

ã−1

= − 1

m1

.

So the slopes are negative reciprocals. In the other direction, we suppose that m2 =

− 1

m1

. Since z1 was an arbitrary point on ℓ1 other than z0, it suffices to show that z2

lies on ℓ2. Indeed,

y2 − y0
x2 − x0

=
(x1 − x0 + y0)− y0
(−y1 + y0 + x0)− x0

=
x1 − x0

−y1 + y0

= −
Å
y1 − y0
x1 − x0

ã−1

= − 1

m1

= m2,

y1 − y0 = m2(x1 − x0).

Thus, (x2, y2) lies on ℓ2, since it satisfies the point-slope form of the equation of ℓ2,
which is

y − y0 = m2(x− x0).
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Now we will use the slope criteria in Theorem 2.23 to formulate similar criteria in terms of
complex numbers. The new criteria will be universal in the sense that they will not require
the lines to be non-vertical.

Theorem 2.24. Let a and b be complex numbers that are distinct from each other, and let
c and d be complex numbers that are distinct from each other. Then:

1. The line through a, b is parallel to or coincident with the line through c, d if and only

if
d− c

b− a
is real. As a consequence, if a, b, c are distinct complex numbers, then they

are collinear if and only if
c− a

b− a
is real.

2. The line through a, b is perpendicular to the line through c, d if and only if
d− c

b− a
is

pure imaginary, meaning its real part is 0.

Proof. The propositions are easy to verify if either line is vertical, and we leave this to the
reader. So we may assume that the lines are not vertical, which will allow us to use the slope
criteria in Theorem 2.23. In order to calculate slopes in terms of the complex numbers, we
will use the fact that, for any complex number z,

2 · Re(z) = z + z,

2i · Im(z) = z − z.

1. The line through a, b is parallel to or coincident with with the line through c, d if and
only if their slopes are equal. Using the Cartesian slope formula, we can take some
reversible algebraic steps:

Im(d)− Im(c)

Re(d)− Re(c)
=

Im(b)− Im(a)

Re(b)− Re(a)
1
2i
(d− d)− 1

2i
(c− c)

1
2
(d+ d)− 1

2
(c+ c)

=
1
2i
(b− b)− 1

2i
(a− a)

1
2
(b+ b)− 1

2
(a+ a)

(d− c)− (d− c)

(d− c) + (d− c)
=

(b− a)− (b− a)

(b− a) + (b− a)

(d− c)(b− a) = (d− c)(b− a)

d− c

b− a
=

Å
d− c

b− a

ã
.

This is true if and only if
d− c

b− a
is a real number.

If a, b, c are distinct complex numbers, then they are collinear if and only if the line
through c, a is parallel to or coincides with the line through b, a (the loose criterion
of being parallel or coincident implies that they will necessarily coincide due to the
shared point a). By the criterion we just derived, this is true if and only if

c− a

b− a
is a

real number.
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2. The line through a, b is perpendicular to the line through c, d if and only if their slopes
are negative reciprocals. Using the Cartesian slope formula, we can take some reversible
algebraic steps:

Im(d)− Im(c)

Re(d)− Re(c)
= −Re(b)− Re(a)

Im(b)− Im(a)
1
2i
(d− d)− 1

2i
(c− c)

1
2
(d+ d)− 1

2
(c+ c)

= −
1
2
(b+ b)− 1

2
(a+ a)

1
2i
(b− b)− 1

2i
(a− a)

(d− c)− (d− c)

(d− c) + (d− c)
=

(b− a) + (b− a)

(b− a)− (b− a)

(d− c)(b− a) = −(d− c)(b− a)

d− c

b− a
= −
Å
d− c

b− a

ã
.

This is true if and only if
d− c

b− a
is a pure imaginary number.

Definition 2.25. Given a line ℓ and a point P = (x0, y0), it is clear that there exists a line
m that is perpendicular to ℓ and runs through P . The reason is that, if ℓ is vertical, then
m is horizontal, and otherwise m gets the slope that is the negative reciprocal of the slope
of ℓ. The intersection of ℓ and m is called the foot of the perpendicular F from P to ℓ.
The distance from P to F is called the perpendicular distance from P to ℓ.

P

F

ℓ

Theorem 2.26 (Point-line distance formula). Let ℓ be a line with equation ax+ by+ c = 0
and let P be a point in the plane with coordinates (x0, y0). Then the perpendicular distance
from P to ℓ is

|ax0 + by0 + c|√
a2 + b2

.

Proof. First we will deal with a few edge cases. If P lies on the ℓ, then ax0 + by0 + c = 0,
which makes the given expression be equal to 0, as expected.
So now we may assume that P does not lie on ℓ. It is not possible for both a and b to be
0 because then ℓ would not be a line. If a = 0 and b ̸= 0, then y = −c

b
and the line is
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horizontal. The distance from P to ℓ is∣∣∣y0 − (−c

b

)∣∣∣ = |by0 + c|
|b|

,

which agrees with the desired formula. Alternatively, if a ̸= 0 and b = 0, then x = − c

a
and

the line is vertical. The distance from P to ℓ is∣∣∣x0 −
(
− c

a

)∣∣∣ = |ax0 + c|
|a|

,

which again agrees with the desired formula. Now we may safely assume that neither a nor
b is 0.
Let the foot of the perpendicular segment from (x0, y0) to ℓ be (x1, y1). By the distance
formula, we want to find an expression for»

(x0 − x1)2 + (y0 − y1)2

in terms of a, b, c and x0, y0. The slope of ℓ is −a

b
, so the slope of the perpendicular segment

is its negative reciprocal, which is
b

a
. Then

y0 − y1
x0 − x1

=
b

a
or

a(y0 − y1)− b(x0 − x1) = 0.

Since we want to work with (x0− x1)
2 and (y0− y1)

2, we square the equation and rearrange
the result to get

a2(y0 − y1)
2 + b2(x0 − x1)

2 = 2ab(y0 − y1)(x0 − x1).

Inspired by the desired formula, we decide to work with the expression (ax0+by0+c)2, which
miraculously yields

(ax0 + by0 + c)2 = (ax0 + by0 − ax1 − by1)
2

= (a(x0 − x1) + b(y0 − y1))
2

= a2(x0 − x1)
2 + b2(y0 − y1)

2 + 2ab(x0 − x1)(y0 − y1)

= a2(x0 − x1)
2 + b2(y0 − y1)

2 + a2(y0 − y1)
2 + b2(x0 − x1)

2

= (a2 + b2)((x0 − x1)
2 + (y0 − y1)

2).

This leads to »
(x0 − x1)2 + (y0 − y1)2 =

|ax0 + by0 + c|√
a2 + b2

.

The point-line perpendicular distance formula will be proven more cleanly (and without
reverse-engineering the expected formula) using vectors in Theorem 4.17.

Problem 2.27. Let f ∈ C be the foot of the perpendicular from z ∈ C to the line through
a, b ∈ C. Then

f =
z(a− b) + z(a− b) + ab− ab

2(a− b)
.

This formula works even if z lies on the line through a and b.
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Chapter 3

Transformations

“And that square root of minus one means that nature
works with complex numbers and not with real numbers.”

– Freeman Dyson, Birds and Frogs

Complex numbers are essentially Cartesian coordinates with an extra multiplicative struc-
ture, which we will see has a geometric interpretation that involves rotation. This is what
allows us, in some scenarios, to do two-dimensional geometry more conveniently using com-
plex numbers than with other tools. First, we will describe all standard transformations
using complex numbers. Secondly, we will look at preservation and alteration effects of these
transformations. As a fruit of all this labour, we will use transformations to prove the cosine
law and to prove the triangle inequality (for actual triangles). The triangle inequality will
allow us to obtain “betweenness” results.

3.1 Formulas for Effects

Definition 3.1. There are four major transformations in plane geometry, which are defined
in terms of complex numbers as follows. Each of these maps can be expressed in terms of
Cartesian coordinates, but we have preferred to use complex numbers as it allows for more
concise notation.

1. The translation by w ∈ C is the function t : C→ C, defined as

t(z) = z + w.

2. The rotation around w ∈ C by ϕ radians is the function r : C→ C, defined as

r(z) = (z − w)eiϕ + w.

The rotation is counterclockwise for positive ϕ, and the rotation is clockwise for nega-
tive ϕ.

3. The reflection across the line ax+ by + c = 0 is the function f : C→ C, defined as

f(z) =
−2ci+ (b− ai)z

b+ ai
.

If this function seems unnatural, see its natural decomposition using conjugation in
Theorem 3.3.
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4. The homothety from w ∈ C by a non-zero factor of k ∈ R is the function h : C→ C,
defined as

h(z) = (z − w)k + w.

This is also called a dilation. If k > 0 we call it a positive homothety or dilation,
and if k < 0 we call it a negative homothety or dilation. Either way, k is the dilation
factor.

Translations, rotations, reflections, and compositions of any or all of them are called Eu-
clidean isometries. Compositions of any or all of the four maps are called similarity
transformations.

Example. A homothety from w by a factor of −1 is equivalent to a rotation around w by
π radians because eiπ = −1. This transformation is also called a point reflection across
w. Keep in mind that there is a difference between a reflection across a line and a reflection
across a point.

Theorem 3.2. Translations, rotations, reflections and homotheties are bijective from C to
C, and the inverse map of any function of each type is a transformation of the same type.

Proof. Recall from Volume 1 that a function is bijective if and only if it has an inverse.
Using this fact, the existence of an inverse implies bijectivity, so it suffices to prove that any
function of each type has an inverse of the same type. In the notation of Definition 3.1, it
can be readily verified that the functions

t−1(z) = z − w,

r−1(z) = (z − w)ei(−ϕ) + w,

f−1(z) =
−2ci+ (b− ai)z

b+ ai
,

h−1(z) = (z − w)
1

k
+ w.

are the respective inverses. In particular, note that every reflection is its own inverse, which
makes each reflection an involution.

Theorem 3.3. The transformations in Definition 3.1 may be decomposed as follows:

1. Every rotation is a translation, followed by a rotation around the origin, followed by
the inverse translation.

2. Every homothety by a factor of k is a translation, followed by a homothety by a factor
of k from the origin, followed by the inverse translation.

3. A conjugation is defined as a reflection across the x-axis, which matches the definition
of the conjugate of a complex number. Then every reflection is a translation, followed
by a rotation, followed by a conjugation, and then the inverse rotation, and finally the
inverse translation.
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Since Euclidean isometries are compositions of translations, rotations, and reflections, this
result implies that Euclidean isometries are compositions of translations, rotations around
the origin, and conjugations. In the same way, similarity transformations are compositions
of translations, rotations around the origin, conjugations, and homotheties from the origin.

Proof. The first two properties are immediately found to be true using the definitions of
rotation and homothety, so we will only prove the last one. Let the line of reflection be
ax+ by + c = 0 and let the point being reflected be the complex number z. The formula

−2ci+ (b− ai)z

b+ ai
= − 2ci

b− ai
+

b− ai

b+ ai
· z,

tells us that we apply a conjugation, followed by multiplying by
b− ai

b+ ai
which is a rotation

because its modulus is 1, followed by adding − 2ci

b− ai
which is a translation. It technically

satisfies the description of the sought decomposition, but it is not quite what we want
morally. It is also not entirely satisfying because the formula for reflection across a line is
unnatural and unjustified compared to those for translation, rotation, and homothety. We
will intuitively derive the formula, and we will prove the desired result along the way.
The x-intercept of the line is at y = 0 which gives x = − c

a
. So we subtract − c

a
from the

x-coordinates of the line and the point to produce the line ax+ by = 0, which goes through
the origin, and get the point z +

c

a
. It is not possible for both a and b to be 0 because then

ax+by+c = 0 would not be a line, so (b,−a) is a non-origin point on the new line. Applying
a clockwise rotation by arg(b−ai) around the origin sends the line to the x-axis and z+

c

a
to

z + c
a

ei arg(b−ai)
. Now we apply conjugation as it is equivalent to reflection across the x-axis, and

apply the inverse rotation and then the inverse translation to get the final reflected point

ei arg(b−ai)

Å
z + c

a

ei arg(b−ai)

ã
− c

a
=

ei arg(b−ai)

ei(− arg(b−ai))
·
(
z +

c

a

)
− c

a

=
ei arg(b−ai)

ei arg(b+ai)
·
(
z +

c

a

)
− c

a

=
|b− ai| · ei arg(b−ai)

|b+ ai| · ei arg(b+ai)
·
(
z +

c

a

)
− c

a

=
b− ai

b+ ai
·
(
z +

c

a

)
− c

a
,

which is equivalent to the reflection formula. The top-left expression in the above array of
expressions shows that a reflection is a conjugation that is nested inside a pair of inverse
rotations and, outside that, a pair of inverse translations.

Problem 3.4. If f : X → Y is a bijective function where X and Y are subsets of R, show
that the graph of the inverse f−1 is the reflection of the graph of f across the line x = y.

Lemma 3.5. Let k : R× R→ R be a function.
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1. If the translation (x, y) 7→ (x + u, y + v) is applied to the graph of k(x, y) = 0, then
the resulting set is the graph of k(x− u, y − v) = 0.

2. If the counterclockwise rotation (x, y) 7→ (x cos θ− y sin θ, x sin θ+ y cos θ) by θ around
the origin is applied to the graph of k(x, y) = 0, then the resulting set is the graph of

k(x cos θ + y sin θ, y cos θ − x sin θ) = 0.

3. If the conjugation (x, y) 7→ (x,−y) is applied to the graph of k(x, y) = 0, then the
resulting set is the graph of k(x,−y).

Proof. We will prove the result about rotation and leave the proofs for translation and
conjugation to the reader. The latter two can be done using the same technique as the
former and are easier, so they should be doable. As a preliminary note, we will justify the
assumption in the assertion that the map

(x, y) 7→ (x cos θ − y sin θ, x sin θ + y cos θ)

applies a counterclockwise rotation to (x, y) by θ around the origin. We can do this using
complex numbers by letting z = x+ iy and expanding its product with eiθ = cos θ + i sin θ:

z · eiθ = (x+ iy)(cos θ + i sin θ)

= x cos θ + ix sin θ + iy cos θ + i2y sin θ

= x cos θ + ix sin θ + iy cos θ − y sin θ

= (x cos θ − y sin θ) + +i(x sin θ + y cos θ).

So, we are looking at the set

S =
{
(x cos θ − y sin θ, x sin θ + y cos θ) ∈ R2 : k(x, y) = 0

}
.

To cause a change of variables, we let

x′ = x cos θ − y sin θ,

y′ = x sin θ + y cos θ.

By multiplying these equations by cos θ and sin θ and then using elimination, along with the
Pythagorean identity, it can be shown that

x = x′ cos θ + y′ sin θ,

y = y′ cos θ − x′ sin θ.

The reader is encouraged to write out the details. By a similar process, this step can be
reversed. Thus, we can apply a change of variables to show that

S =
{
(x′, y′) ∈ R2 : k(x′ cos θ + y′ sin θ, y′ cos θ − x′ sin θ)

}
.

Finally, we can replace the symbols x′ and y′ with x and y, respectively, in this definition of
S, as the choice of symbols is irrelevant.
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3.2 Preservation of Properties

Theorem 3.6. Translations, rotations, reflections and homotheties have certain effects on
the lengths of line segments and on the measures and orientations of counterclockwise angles:

1. A translation t maps a line segment from z1 to z2 to a line segment from t(z1) to t(z2) of
the same length, and preserves the measure and orientation of counterclockwise angles
in [0, 2π).

2. A rotation r maps a line segment from z1 to z2 to a line segment from r(z1) to r(z2) of
the same length, and preserves the measure and orientation of counterclockwise angles
in [0, 2π).

3. A reflection f across a line maps a line segment from z1 to z2 to a line segment from
f(z1) to f(z2) of the same length, and maps a counterclockwise angle in [0, 2π) to a
clockwise angle with the same measure.

4. A homothety h by a factor of k maps a line segment of length l from z1 to z2 to a line
segment of length |k| · l from h(z1) to h(z2), and preserves the measure and orientation
of counterclockwise angles [0, 2π).

Proof. Certainly, the distance between two same points is 0, which is the same as the distance
between the two same points to which they are mapped by a function. So we can assume that
z1 and z2 are distinct. By Definition 1.7, the line segment between two complex numbers z1
and z2 is given by

ℓ(x) = (1− x)z1 + xz2

for x ∈ [0, 1]. When handling angles, there will be a third point z3 distinct from z2 so that
we can measure the counterclockwise rotation of z1 around z2 that, along with a positive

dilation from z2, causes z1 to coincide with z3. Let arg
Å
z3 − z2
z1 − z2

ã
= θ and let

∣∣∣∣z3 − z2
z1 − z2

∣∣∣∣ = s.

1. Let t(z) = z + w be a translation. Then

t((1− x)z1 + xz2) = (1− x)z1 + xz2 + w

= (1− x)(z1 + w) + x(z2 + w)

= (1− x) · t(z1) + x · t(z2).

So the line segment from z1 to z2 gets mapped to the line segment from t(z1) to t(z2).
The length of the new segment is

|t(z2)− t(z1)| = |(z2 + w)− (z1 + w)| = |z2 − z1|,

so distances are preserved. Counterclockwise angles in [0, 2π) are preserved as well
because

t(z3)− t(z2)

t(z1)− t(z2)
=

z3 + w − z2 − w

z1 + w − z2 − w
=

z3 − z2
z1 − z2

= seiθ.
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2. In Theorem 3.3, we found that a rotation is a translation, followed by a rotation around
the origin, followed by the inverse translation. Since a translation has the preservation
properties previously proven, it suffices to prove the results for only rotations around
the origin. Let r(z) = zeiϕ be a rotation around the origin. Then

r((1− x)z1 + xz2) = ((1− x)z1 + xz2)e
iϕ

= (1− x)z1e
iϕ + xz2e

iϕ

= (1− x) · r(z1) + x · r(z2).

So the line segment from z1 to z2 gets mapped to the line segment from r(z1) to r(z2).
The length of the new segment is

|r(z2)− r(z1)| = |z2eiϕ − z1e
iϕ| = |z2 − z1| · |eiϕ| = |z2 − z1|,

so distances are preserved. Counterclockwise angles in [0, 2π) are preserved as well
because

r(z3)− r(z2)

r(z1)− r(z2)
=

z3e
iϕ − z2e

iϕ

z1eiϕ − z2eiϕ
=

z3 − z2
z1 − z2

= seiθ.

3. According to Theorem 3.3, a reflection is a conjugation enveloped by a rotation and
its inverse, followed by being sandwiched between a translation and its inverse. Since
rotations and translations have the preservation properties proven in the previous parts,
it suffices to prove the result for only conjugation. Indeed, using properties of complex
conjugates from Volume 1,

(1− x)z1 + xz2 = (1− x) · z1 + x · z2.

So the line segment from z1 to z2 gets mapped to the line segment from z1 to z2. The
length of the new segment is

|z2 − z1| = |z2 − z1| = |z2 − z1|,

so distances are preserved. Each counterclockwise angle in [0, 2π) is turned into the
explementary counterclockwise angle because

z3 − z2
z1 − z2

=

Å
z3 − z2
z1 − z2

ã
= seiθ = sei(−θ),

which is a clockwise rotation with the same absolute measure.

4. By Theorem 3.3. a homothety is a translation, followed by a homothety around the
origin, followed by the inverse translation. Since a translation has the preservation
properties that were previously proven, it suffices to work with only homotheties from
the origin. Let h(z) = zk be a homothety from the origin by a factor of k. Then

h((1− x)z1 + xz2) = ((1− x)z1 + xz2)k

= (1− x)z1k + xz2k

= (1− x) · h(z1) + x · h(z2).
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So the line segment from z1 to z2 gets mapped to the line segment from h(z1) to h(z2).
The length of the new segment is

|h(z2)− h(z1)| = |z2k − z1k| = |k| · |z2 − z1|,

so lengths are multiplied by a factor of |k|. Counterclockwise angles in [0, 2π) are
preserved because

h(z3)− h(z2)

h(z1)− h(z2)
=

z3k − z2k

z1k − z2k
=

z3 − z2
z1 − z2

= seiθ.

Definition 3.7. A triangle is produced by pairwise connecting three non-collinear distinct
points, called vertices, with three line segments, called edges. A degenerate triangle is
created by the three segments between three points that are collinear. For our purposes, a
degenerate triangle is technically not a triangle, though we might clarify occasionally that a
particular triangle is non-degenerate.

Theorem 3.8 (Law of cosines). If △ABC has sides a, b, c opposite to vertices A,B,C,
respectively, and the interior angle at C measures θ, then

c2 = a2 + b2 − 2ab cos θ.

This contains the Pythagorean theorem as a special case (Theorem 9.12).

Proof. We will use Cartesian coordinates. We translate the triangle so that C lies at the
origin, then rotate the triangle around the origin until B lies on the positive x-axis, and then
(if necessary) reflect the triangle across the x-axis so that the y-coordinate of A is positive.
According to Theorem 3.6, all side lengths and absolute measures of interior angles of the
triangle are preserved. This setup provides a concrete configuration on which we can perform
computations.

C = (0, 0) B = (a, 0)

A = (b cos θ, b sin θ)

b

a

c

We already know that the coordinates of C are (0, 0). Since CB = a and B lies on the positive
x-axis, the coordinates of B are (a, 0). Finally, CA = b and ∠BCA = θ, so the polar coor-
dinates of A are (b, θ), which can be converted to the Cartesian coordinates (b cos θ, b sin θ).
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This technique of placing points on the origin or axes is a common simplifying reduction in
analytic geometry.
By applying the distance formula to A and B, we derive

c =
»

(a− b cos θ)2 + (0− b sin θ)2,

c2 = (a− b cos θ)2 + (0− b sin θ)2

= a2 + b2(cos2 θ + sin2 θ)− 2ab cos θ

= a2 + b2 − 2ab cos θ.

Note that the Pythagorean theorem is the special case of θ = 90◦ since cos 90◦ = 0 annihilates
the 2ab cos θ term, leaving

a2 + b2 = c2.

Corollary 3.9. In △ABC, let the sides opposite to A,B,C be a, b, c respectively, and let
the interior angle at C measure θ. Then

sgn(a2 + b2 − c2) =


1 if θ is acute
0 if θ is right
−1 if θ is obtuse

.

Proof. By the cosine law, a2 + b2 − c2 = 2ab cos θ. Since 2ab is positive,

sgn(a2 + b2 − c2) = sgn(cos θ).

By observing the unit circle, we can see that cos θ has the signs prescribed in each case.
As the reader may have noticed, this contains the Pythagorean theorem as a special case.

Theorem 3.10 (Triangle inequality). If three positive real numbers a, b, c satisfy the tri-
angle inequalities

a+ b > c,

b+ c > a,

c+ a > b,

then they are the sides of a non-degenerate triangle. Conversely (or rather, the contrapositive
of the converse), if at least one of the inequalities is broken, then a degenerate triangle is
produced. In this case, one of these strict inequalities is replaced by the corresponding
equality and the other two inequalities remain strict.

Proof. Let the triangle be △ABC with sides a = BC, b = CA, c = AB. Suppose the three
triangle inequalities hold. We wish to show that the three vertices are non-collinear, which
will prove that △ABC is non-degenerate. By utilizing the same Euclidean isometries as
those described in the proof of the cosine law (Theorem 3.8), we let A = (0, 0) be the origin,
B = (c, 0) be on the positive x-axis (so, c > 0), and C = (x, y) with y ≥ 0. It suffices to
prove that y > 0 so that is does not lie on the x-axis, which is the line that runs through
AB.
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A = (0, 0) B = (c, 0)

C = (x, y)

b

c

a

We first aim to find explicit coordinates for C = (x, y). By the distance formula, we get the
two equations

x2 + y2 = b2,

(x− c)2 + y2 = a2.

Subtracting the bottom from the top and rearranging yields

2cx− c2 = b2 − a2

x =
b2 + c2 − a2

2c
.

Since y ≥ 0, we can isolate it as

y =
√
b2 − x2

=
»

(b− x)(b+ x)

=

 Å
b− b2 + c2 − a2

2c

ãÅ
b+

b2 + c2 − a2

2c

ã
=

 ï
c2 − (a− b)2

2a

ò
·
ï
(a+ b)2 − c2

2a

ò
=

1

2a
·
»

(b+ c− a)(c+ a− b)(a+ b− c)(a+ b+ c).

The argument inside the square root exists and is positive due to the triangle inequalities,
so y > 0. Therefore, △ABC exists as a non-degenerate triangle, as desired.
Conversely, suppose at least one of the following “broken” triangle inequalities is true:

a+ b ≤ c,

b+ c ≤ a,

c+ a ≤ b.

Without loss of generality, pick c + a ≤ b. By the triangle inequality for Euclidean vectors
(Corollary 4.9),

|
−→
AB|+ |

−−→
BC| ≥ |

−→
AB +

−−→
BC| = |

−→
AC|,
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which is equivalent to c+a ≥ b. By antisymmetry, equality holds. By the equality condition
for the Euclidean vector triangle inequality, this means

−→
AB and

−−→
BC are scalar multiples of

each other, which means the points A,B,C are collinear, implying degeneracy of the triangle.
Further, for the sake of contradiction, suppose a + b ≤ c or b + c ≤ a. Using c + a = b, we
get a ≤ 0 or c ≤ 0, respectively, which are contradictions. So, exactly one of the triangle
inequalities is broken in this case and it becomes an equality.

Problem 3.11. Given distinct collinear points A,B,C, Euclidean geometry says that B
lies strictly between A and C if and only if AB + BC = AC. This will be our definition
of B being strictly between A and C. Prove that it suffices to show that AB < AC and
BC < AC in order to prove that B lies strictly between A and C.

Theorem 3.12. Let z, w be distinct complex numbers. A complex number p lies on the line
through z and w if and only if there exists some x ∈ R such that

p = (1− x)z + xw.

More specifically, 

z lies strictly between p and w if x < 0

p coincides with z if x = 0

p lies strictly between z and w if 0 < x < 1

p coincides with w if x = 1

w lies strictly between z and p if x > 1

.

Proof. Suppose
p = (1− x)z + xw

for some real x. Isolating x yields the equivalent equation

x =
p− z

w − z
,

which is true if and only if z, p, w are collinear in some order by the preceding theorem. Now
we need to classify when they are in what order. If x = 0 then p = z, and if x = 1 then
p = w. These are the easy cases. For the three “between” cases, we will apply Problem 3.11:

• Suppose x < 0. Then 1 < 1− x, so

1 < |1− x| =
∣∣∣∣w − p

w − z

∣∣∣∣ =⇒ |w − z| < |w − p|.

Moreover, x < 0 implies that
1

x
< 0. Then 1 < 1− 1

x
. so

1 <

∣∣∣∣1− 1

x

∣∣∣∣ = ∣∣∣∣p− w

p− z

∣∣∣∣ =⇒ |p− z| < |p− w|.

Thus, z must lie strictly in between p and w.
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• Suppose 0 < x < 1. Then

1 > x = |x| =
∣∣∣∣ p− z

w − z

∣∣∣∣ =⇒ |p− z| < |w − z|.

Moreover, 1 > x > 0 leads to 1 > 1− x > 0, which means

1 > |1− x| =
∣∣∣∣w − p

w − z

∣∣∣∣ =⇒ |w − p| < |w − z|

as well, so p must be strictly in between z and w.

• Suppose x > 1. Then 1 < |x| =
∣∣∣∣ p− z

w − z

∣∣∣∣ or |w − z| < |p− z|. Moreover,

x > 1 =⇒ 0 <
1

x
< 1 =⇒ 0 < 1− 1

x
< 1

=⇒ 1 <
1

1− 1
x

=

∣∣∣∣∣ 1

1− 1
x

∣∣∣∣∣ =
∣∣∣∣ p− z

p− w

∣∣∣∣ .
Then |p− w| < |p− z|. Thus, w must lie strictly in between z and p.

Theorem 3.13. If k is a Euclidean isometry, then k maps the line through a, b ∈ C to the
line through k(a), k(b). Moreover, if z is some point in the plane, then the perpendicular
distance from z to the line through a, b is equal to the distance from k(z) to the line through
k(a), k(b).

Proof. By Theorem 3.3, every Euclidean isometry may be decomposed into translations,
rotations around the origin, and conjugations. So, it suffices to prove the two assertions
for each of these three specific types of transformations. Recall that the translation of a
point amounts to adding some w ∈ C to the point, rotation of a point around the origin is
multiplication of the point by eiθ for some real 0 ≤ θ < 2π, and conjugation applies complex
conjugation to the point.
We know that the line through a, b is the collection of all points (1− x)a+ xb for x ∈ R. It
is easy to show that, for any of the three types of transformations k stated,

k((1− x)a+ xb) = (1− x)k(a) + xk(b),

which shows that k maps the line through a, b to the line through k(a), k(b).
Let z be a point in the point. By the complex foot formula (Problem 2.27), we want to show
that the distance∣∣∣∣∣z − z(a− b) + z(a− b) + ab− ab

2(a− b)

∣∣∣∣∣ =
∣∣∣∣∣z(a− b)− z(a− b) + ab− ab

2(a− b)

∣∣∣∣∣
is invariant under translations, rotations around the origin, and conjugations. This is a
computational exercise that we leave to the reader; it is not as intensive as it looks.
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Definition 3.14. A point P is said to be equidistant from two points Q and R if PQ = PR.
We denote that two line segments have equal length using the same number of tick marks.

P

Q

R

Problem 3.15. Prove that the midpoint of the segment between two complex numbers z1
and z2 is

z3 =
z1 + z2

2
.

Problem 3.16. It can be shown that the reflection of a point P across a line ℓ is the unique
point Q such that ℓ is the perpendicular bisector of PQ, assuming P does not lie on ℓ. Taking
this property for granted, find a formula for the reflection of z ∈ C across the line through
a, b ∈ C, in terms of z, a, b.
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Chapter 4

Dot Product

“It is difficult to give an idea of the vast extent of modern
mathematics. The word “extent” is not the right one: I
mean extent crowded with beautiful detail - not an extent
of mere uniformity such as an objectless plain, but of a
tract of beautiful country seen at first in the distance, but
which will bear to be rambled through and studied in
every detail of hillside and valley, stream, rock, wood, and
flower.”

– Arthur Cayley

Having been introduced to Euclidean vectors through equipollence, we now dive deeper into
geometric properties of vectors, specifically angles between vectors. To that end, the dot
product of Euclidean vectors that we will study will be helpful for handling angles between
vectors. Throughout, we will see the Cauchy-Schwarz inequality, orthogonal projections, and
a more sophisticated proof of the point-line perpendicular distance formula.

4.1 Algebraic Generalities

We begin with a question that motivates the definition of the dot product: In two dimensions,
given two vectors with a common tail, how does one obtain the angle between the tails? The
answer is to use the cosine law, as done below.

Definition 4.1. The Euclidean norm or magnitude of a position vector

v = (v1, v2, . . . , vn)

in Rn is denoted by and defined as

∥v∥ =
»

v21 + v22 + · · ·+ v2n.

As the Pythagorean theorem (Theorem 9.12) and its 3D box analogue for space diagonals
(Problem 14.9) inspire, this is the “length” of the position vector, which is the same as the
distance from the origin to the point (v1, v2, . . . , vn). A unit vector is a vector whose norm
is 1. To divide a non-zero vector v by the scalar ∥v∥ in order to produce a unit vector in the
same direction is called normalization; the reader should verify that a normalized vector
is indeed a unit vector.
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Theorem 4.2. If v = (x1, y1), w = (x2, y2) are two-dimensional vectors, then the angle θ
between their tails is given by

cos θ =
x1x2 + y1y2√

x2
1 + y21 ·

√
x2
2 + y22

.

Note that the explementary angles θ and 2π − θ have the same cosine, so we can choose to
solve for the non-reflex angle.

Proof. The two vectors v and w are like the sides of a triangle that has the interior angle θ
between them. By the parallelogram law (Theorem 1.39), the length of the third side is the
magnitude of the vector

v − w = (x1 − x2, y1 − y2).

By the cosine law (Theorem 3.8),

2 · ∥v∥ · ∥w∥ · cos θ = ∥v∥2 + ∥w∥2 − ∥v − w∥2

= (x2
1 + y21) + (x2

2 + y22)− [(x1 − x2)
2 + (y1 − y22)]

= x2
1 + y21 + x2

2 + y22 − (x2
1 + x2

2 − 2x1x2 + y21 + y22 − 2y1y2)

= 2x1x2 + 2y1y2

∥v∥ · ∥w∥ · cos θ = x1x2 + y1y2,

which is equivalent to what we wished to prove.

v

w

v − w

θ

This leads to the more general concept in n-dimensional Euclidean space below.

Definition 4.3. The Euclidean dot product of two position vectors

v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn)

in Rn is a real number (in particular, not a vector) that is denoted by and defined as

v • w = v1w1 + v2w2 + · · ·+ vnwn.

In more abstract scenarios, the dot product is called an inner product of vectors and it
is denoted by ⟨v, w⟩. We will occasionally prefer this notation to distinguish the dot product
from real multiplication or scalar multiplication of vectors.
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To find dot products or norms of displacement vectors instead of position vectors, we can
replace the displacement vectors with their equipollent position vectors, and then apply
the dot product or norm. So, the norms of vectors in the same equipollence class are
equal. Intuitively, this makes sense because, thanks to the usual Euclidean distance formula
(Theorem 2.1) »

(v1 − w1)2 + (v2 − w2)2 + · · ·+ (vn − wn)2

defined on Rn, the tail-to-arrowhead distances of equipollent vectors are the same. On
the other hand, the dot product is close to representing “the angle” between two vectors,
independent of the chosen displacement vectors. Informally, such an angle always exists
because we can always extend the tail ends of linearly independent vectors until they meet
to form an angle. See if you can justify that the angle is well-defined on vectors in the
sense that its measure is independent of the choice of displacement representatives of the
two vectors.

v

w
θ

Theorem 4.4. The dot product ⟨·, ·⟩ is a “symmetric bilinear form,” which is fancy language
for meaning that the following properties hold for all vectors u, v, w in Rn and all real α:

1. Commutative: ⟨v, w⟩ = ⟨w, v⟩

2. Distributive: ⟨u+ v, w⟩ = ⟨u,w⟩+ ⟨v, w⟩

3. Homogeneous: ⟨αv, w⟩ = α⟨v, w⟩

As a consequence of commutativity, we can deduce the further properties corresponding to
the second and third properties:

⟨w, u+ v⟩ = ⟨w, u⟩+ ⟨w, v⟩
⟨w, αv⟩ = α⟨w, v⟩.

Moreover, ⟨v, 0⟩ = 0.

We leave the proofs of these properties to the reader as they are involve simple algebraic
manipulations. As a side note, associativity is impossible for the dot product because its
domain and range are in conflict. Do you see how?

Theorem 4.5 (Weak cancellation rule). If u, v, w are vectors such that u • v = u • w, then
it is not necessarily true that v = w, so we cannot generally cancel u from the left sides. For
example, it might be true that u is the zero vector in Rn. However, if v, w are vectors in Rn

such that ⟨u, v⟩ = ⟨u,w⟩ for all vectors u in Rn, then it holds that v = w.
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Proof. Note that ⟨u, v⟩ = ⟨u,w⟩ if and only if ⟨u, v − w⟩ = 0, and that v = w if and only if
v − w = 0. So it suffices to prove that if ⟨u, z⟩ = 0 for all vectors u, then z = 0. Let

z = (z1, z2, . . . , zn).

The idea is to take u to be each of the n vectors such that the arrowhead has exactly one
component equal to 1 and the rest of the components are 0; these are called the standard
basis vectors of Rn. So by taking

u = (1, 0, 0, . . . , 0, 0),

u = (0, 1, 0, . . . , 0, 0),

u = (0, 0, 1, . . . , 0, 0),

...

u = (0, 0, 0, . . . , 1, 0),

u = (0, 0, 0, . . . , 0, 1),

we successively find that

0 = z1 = z2 = z3 = · · · = zn−1 = zn.

Therefore, z is the 0 vector.

Theorem 4.6 (Algebraic properties of Euclidean norm). Let v be a vector in Rn and let α
be a real number. Then:

1. Relation between norm and dot product: ∥v∥ =
»
⟨v, v⟩

2. Trivial inequality: ∥v∥ ≥ 0 and equality holds if and only if v is the zero vector

3. ∥αv∥ = |α| · ∥v∥

These are all easy and instructive to verify. We encourage the reader to do so.

Problem 4.7. Prove that the sum of the squares of the lengths of the diagonals of any
parallelogram is equal to the sum of the squares of the lengths of the four sides. Complete
this proof in a way that it holds regardless of the dimension of the Euclidean space in which
we are working (so, the two-dimensional definition of a parallelogram should be irrelevant).

Theorem 4.8 (Euclidean Cauchy-Schwarz inequality). For any two position vectors v and
w in Rn, it holds that

∥v∥ · ∥w∥ ≥ |⟨v, w⟩|.

Equality holds if and only if v and w are linearly dependent.
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Proof. First, we provide the abstract proof, which is a bit out of the blue. If w = 0, then
it may immediately be checked that the inequality holds, and, in fact, equality holds with
both sides being 0. So suppose w ̸= 0. For any c ∈ R, we can manipulate

0 ≤ ∥v − cw∥2

= ⟨v − cw, v − cw⟩
= ⟨v, v⟩+ ⟨v,−cw⟩+ ⟨−cw, v⟩+ ⟨−cw,−cw⟩
= ∥v∥2 − 2c⟨v, w⟩+ c2⟨w,w⟩.

The step that is difficult to motivate is that we let c =
⟨v, w⟩
⟨w,w⟩

. This leads to

∥v∥2 − 2c⟨v, w⟩+ c2⟨w,w⟩ = ∥v∥2 − 2
⟨v, w⟩
⟨w,w⟩

· ⟨v, w⟩+ ⟨v, w⟩
2

⟨w,w⟩2
⟨w,w⟩

= ∥v∥2 − ⟨v, w⟩
2

⟨w,w⟩

= ∥v∥2 − |⟨v, w⟩|
2

∥w∥2
.

Since we started by saying 0 ≤ ∥v − cw∥2, this means

∥v∥2 − |⟨v, w⟩|
2

∥w∥2
≥ 0,

∥v∥2 · ∥w∥2 ≥ |⟨v, w⟩|2

∥v∥ · ∥w∥ ≥ |⟨v, w⟩|.

Now we will prove the equality criterion using Lemma 1.25. If equality holds, then v = cw,
which proves linear dependence. On the other hand, if we are assuming linear dependence,
and since we are working in the w ̸= 0 case, there must exist r ∈ R such that v = rw. It is
straightforward to then check that equality holds with

∥v∥ · ∥w∥ = |r| · ∥w∥2 = |⟨v, w⟩|.

As an alternate justification that is more concrete, both sides of the inequality are non-
negative, so we may square it to product the equivalent inequality

∥v∥2 · ∥w∥2 ≥ ⟨v, w⟩2.

Letting v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn) be position vectors, the inequality may
be written as

(v21 + v22 + · · ·+ v2n)(w
2
1 + w2

2 + · · ·+ w2
n) ≥ (v1w1 + v2w2 + · · ·+ vnwn)

2.

This is the standard Cauchy-Schwarz inequality on real numbers that we proved using the
quadratic discriminant in Volume 1. The equality condition that we derived there is that
v = 0 or w = tv for some real t, which is equivalent to linear dependence of v and w,
according to Lemma 1.25.
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Corollary 4.9 (Euclidean triangle inequality). Let v1, v2, . . . , vm be vectors in Rn. Then

∥v1∥+ ∥v2∥+ · · ·+ ∥vm∥ ≥ ∥v1 + v2 + · · ·+ vm∥.

Equality holds if and only if all of the vi are 0, or they are all equal to non-negative real
numbers times one particular non-zero vi; in other words, they all point in the same direction
(not even opposite directions suffice).

Proof. We will start with m = 2 as the base case and proceed by induction on integers
m ≥ 2. By the Cauchy-Schwarz inequality,

∥v + w∥2 = ⟨v + w, v + w⟩
= ∥v∥2 + ∥w∥2 + 2⟨v, w⟩
≤ ∥v∥2 + ∥w∥2 + 2|⟨v, w⟩|
≤ ∥v∥2 + ∥w∥2 + 2∥v∥ · ∥w∥
= (∥v∥+ ∥w∥)2,

so taking square roots yields
∥v + w∥ ≤ ∥v∥+ ∥w∥.

Equality holds if and only if

⟨v, w⟩ = |⟨v, w⟩| = ∥v∥ · ∥w∥.

We want to show this equality condition is equivalent to: v = w = 0, or v = tw for some
non-negative real t if w ̸= 0, or w = tv for some non-negative real t if v ̸= 0. For one
direction, suppose it holds that

⟨v, w⟩ = |⟨v, w⟩| = ∥v∥ · ∥w∥.

By the Cauchy-Schwarz equality criterion, v, w are linearly dependent. By Lemma 1.25, this
is equivalent to v = tw or w = tv for some real t. If v = 0 and w = 0, then we are done. If
v = 0 and w ̸= 0, then we may take t = 0 in v = tw. Similarly, if v ̸= 0 and w = 0, then
we may take t = 0 in w = tv. So now we may assume that v ̸= 0 and w ̸= 0. Substituting
either of v = tw or w = tv (whichever holds) into ⟨v, w⟩ = |⟨v, w⟩| leads to t = |t|, meaning
t is non-negative. This proves one direction of the equivalence.
Conversely, suppose: v = w = 0, or v = tw for some non-negative real t if w ̸= 0, or w = tv
for some non-negative real t if v ̸= 0. We get what we want if v = w = 0, so that case is
easy. Otherwise, the fact that v = tw or w = tv implies that |⟨v, w⟩| = ∥v∥ · ∥w∥. The fact
that t is non-negative implies that ⟨v, w⟩ = |⟨v, w⟩|. This establishes the base case.
Suppose the result holds for some integer m ≥ 2. Let v1, v2, . . . , vm, vm+1 be vectors in Rn,
which we may assume are all non-zero vectors because otherwise the inequality reduces to a
lower induction case (we can use strong induction). By the induction hypothesis,

∥v1∥+ ∥v2∥+ · · ·+ ∥vm−1∥+ ∥vm + vm+1∥ ≥ ∥v1 + v2 + · · ·+ vm + vm+1∥,

with equality holding if and only if v1, v2, . . . , vm−1, and vm + vm+1 all point in the same
direction. Since they are all assumed to be non-zero, we may say that v2, . . . , vm−1, and
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vm + vm+1 are all positive multiples of v1. The desired inequality follows from transitivity
because the base case tells us that

∥vm∥+ ∥vm+1∥ ≥ ∥vm + vm+1∥,

with equality holding if and only if tvm = vm+1 for some positive real t. Recall that there
exists a positive real s such that

sv1 = vm + vm+1 = vm + tvm = (t+ 1)vm.

This implies that

vm =
s

t+ 1
v1,

vm+1 = tvm =
st

t+ 1
v1,

which makes all of the vi positive multiples of v1. The converse holds as well because for
positive ti,

∥v1∥+ ∥v2∥+ · · ·+ ∥vm∥+ ∥vm+1∥ = ∥v1∥+ ∥t2v1∥+ · · ·+ ∥tmv1∥+ ∥tm+1v1∥
= (1 + |t2|+ · · ·+ |tm|+ |tm+1|)∥v1∥
= (1 + t2 + · · ·+ tm + tm+1)∥v1∥
= |1 + t2 + · · ·+ tm + tm+1| · ∥v1∥
= ∥v1 + t2v1 + · · ·+ tmv1 + tm+1v1∥
= ∥v1 + v2 + · · ·+ vm + vm+1∥,

so equality holds under this condition.

4.2 Angles and Projections

Theorem 4.10 (Trigonometric dot product). In two or three dimensions, there is a well-
defined non-reflex angle θ and its explementary angle 2π − θ between two given non-zero
vectors v, w. We claim that

v • w = ∥v∥ · ∥w∥ · cos θ.
Note that

cos θ = cos(2π − θ),

so θ can refer to either angle here.

Proof. Let v, w be non-zero vectors in two dimensions or in three dimensions. By the cosine
law (Theorem 3.8),

∥v∥2 + ∥w∥2 − 2∥v∥ · ∥w∥ · cos θ = ∥v − w∥2

= ⟨v − w, v − w⟩
= ⟨v, v⟩+ ⟨v,−w⟩+ ⟨−w, v⟩+ ⟨w,w⟩
= ∥v∥2 + ∥w∥2 − 2⟨v, w⟩,
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which simplifies to
⟨v, w⟩ = ∥v∥ · ∥w∥ · cos θ,

as desired. This argument works as long as we have the cosine law, which we proved in
two dimensions. It also holds in three dimensions because every pair of linearly independent
displacement vectors with a shared tail in 3D has a copy of the 2D plane running through it
(see the definition of the plane in Definition 13.3). Even though we have not proven it, what
this means is that 3D rigid motions can be used to rotate the (x, y)-plane into any plane,
and rigid motions preserve angles and lengths.

This proves the relationship between the dot product and angles. In dimensions higher than
three, we have no geometric intuition, but we can use this θ as the definition of the “angle”
between two non-zero vectors.

Definition 4.11. According to Theorem 4.10, two non-zero vectors in two dimensions or
three dimensions are perpendicular to each other if and only if their dot product is 0, since

cos θ = 0 ⇐⇒ θ ≡ π

2
,
3π

2
(mod 2π).

Thus, we define that two vectors in Rn are orthogonal (meaning perpendicular) if their dot
product is 0. Note that this means that if one of the two vectors is 0, then the two vectors
are automatically orthogonal, even though there is no angle between them of which we can
speak.

Problem 4.12. Prove the following variation of the difference of squares factorization for
the dot product. If v and w are vectors, then

(v − w) • (v + w) = ∥v∥2 − ∥w∥2.

Theorem 4.13 (Orthogonal projection). Let v and w be vectors in Rn where w is non-zero.
Then there exist unique vectors u and z such that u is parallel to (as in, a scalar multiple
of) w, and z is orthogonal to w and v = u + z. Here, u is called the projection of v to w
and we denote it by u = projwv, and z is called the rejection of v from w and we denote it
by z = oprojwv. In a sense, we are uniquely decomposing v into the shadow u that v casts
on w and what is left out, z.

w
v

z

u
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Proof. Suppose such vectors u and x exist. Then there exists a real number t such that
u = tw. This allows us to compute

0 = ⟨z, w⟩ = ⟨v − u,w⟩ = ⟨v − tw, w⟩ = ⟨v, w⟩ − t⟨w,w⟩,

t =
⟨v, w⟩
⟨w,w⟩

,

where the division by ⟨w,w⟩ is permissible because w ̸= 0. It is automatically true that
u = tw is parallel to w, and trying out this particular t shows that

z = v − u = v − tw = v − ⟨v, w⟩
⟨w,w⟩

w

satisfies z ⊥ w. We leave this last computation to the reader. Thus, u and z exist, and they
are unique because we initially uniquely isolated t and uniquely isolated z = v − u.

Theorem 4.14 (Vector Pythagorean theorem). Let v and w vector with w non-zero. Let
the projection of v to w be u = projwv and let the rejection of v from w be z = oprojwv.
Then

∥u∥2 + ∥z∥2 = ∥v∥2.

Proof. Based on the definitions of u and z, we know that

v = u+ z,

u • z = 0.

Dotting each side of the first equation with itself yields

∥v∥2 = v • v
= (u+ z) • (u+ z)

= u • u+ u • z + z • u+ z • z
= ∥u∥2 + 2 · 0 + ∥z∥2.

Lemma 4.15. In two dimensions, if a vector v is orthogonal to a vector w, then v is
orthogonal to tw for every real t. In this case, if v is also orthogonal to another vector that
cannot be written in the form tw (meaning a vector that is linearly independent with w),
then v is the 0 vector. Note that this means that if v is non-zero and orthogonal to w, then
v orthogonal to each tw and nothing else.

Proof. If ⟨v, w⟩ = 0, then it is clear that

0 = ⟨v, tw⟩ = t⟨v, w⟩ = t · 0 = 0.

Now suppose that u is a vector that is linearly independent with w and such that ⟨u, v⟩ = 0.
Then ⟨v, au+bw⟩ = 0 for all real a, b. But u,w are linearly independent, so they generate the
whole plane by Problem 1.31. Thus, we may use the weak cancellation rule (Theorem 4.5)
to get v = 0.
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Definition 4.16. A vector v is orthogonal or a normal vector to a line ℓ = {p+tw : t ∈ R}
if v is orthogonal to w, since being orthogonal to one direction vector of the line means being
orthogonal to all direction vectors of the line, according to Lemma 4.15.

Theorem 4.17. In two dimensions, let ℓ be a line defined in standard form by Ax+By+C =
0, where at least one of A,B is non-zero. Let (x1, y1) and (x2, y2) be distinct points on ℓ,
and (x0, y0) be an arbitrary point in the plane. Let

v = ((x1, x1), (x0, y0))

be a displacement vector so that its tail is on ℓ, and let w = ((x1, y1), (x2, y2)) be a vector
that lies on ℓ. Then the perpendicular distance from (x0, y0) to ℓ is

∥oprojwv∥ = ∥projzv∥ =
|Ax0 +By0 + C|√

A2 +B2
,

where z = ((0, 0), (A,B)), which turns out to be a normal vector to ℓ.

Proof. Firstly, letting p = oprojwv we are seeking ∥p∥ since the enclosed vector is perpendic-
ular to every direction vector of the line. As an intermediate step, we will show that (A,B)
is a normal vector of the line. Since (x1, y1) and (x2, y2) are on ℓ they satisfy®

Ax1 +By1 + C = 0,

Ax2 +By2 + C = 0
=⇒ A(x2 − x1) +B(y2 − y1) = 0.

Equivalently, the dot product of the position vector (A,B) and the displacement vector w is
0, so (A,B) is indeed normal to ℓ.
Due to the following diagram of the parallelogram law in the rectangular case, we see that
that

∥oprojwv∥ = ∥v − projwv∥ = ∥projzv∥.

w

z

v
p = oprojwv

u = projwv

© 2024 Samer Seraj. All rights reserved.



60 CHAPTER 4. DOT PRODUCT

By Theorem 4.13,

∥projzv∥ =
∥∥∥∥⟨(x0 − x1, y0 − y1), (A,B)⟩

⟨(A,B), (A,B)⟩
(A,B)

∥∥∥∥
=
|⟨(x0 − x1, y0 − y1), (A,B)⟩|

∥(A,B)∥

=
|Ax0 − Ax1 +By0 −By1|√

A2 +B2

=
|Ax0 +By0 + C|√

A2 +B2
,

where we have used to the fact that Ax1 +By1 + C = 0 in the final step.
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Chapter 5

Polygons

“Emptiness is everywhere and it can be calculated, which
gives us a great opportunity. I know how to control the
universe. So tell me, why should I run for a million
[dollars]?”

– Grigori Perelman (apocryphal)

Our preliminary material on polygons will be technical, but necessary. We will state and use
the Jordan curve theorem from topology. We will also show that the two-ears theorem is a
useful tool for dealing with polygons that are not necessarily convex because it allows for the
technique of ear-clipping. We will end with general definitions and results about congruent
and similar polygons.

5.1 Interior, Boundary, and Exterior

In order to handle polygons in general, there are a few definitions that we will need from
an area of higher mathematics, called topology, but we will keep these concepts at a bare
minimum.

Definition 5.1. There are several concepts related to circles:

1. The interior or inside of a circle is the collection of points whose distance from the
center of the circle is less than the radius.

2. The exterior or outside of a circle is the collection of points whose distance from the
center of the circle is greater than the radius.

3. An open disk is only the interior of a circle but without the circle itself, and a closed
disk is the union of a circle and its interior.
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Definition 5.2. A path in the plane is a continuous curve, where continuous informally
means that it can be drawn without lifting the writing instrument from the surface. For our
purposes, there are two important classes of curves:

• A closed path is a path such that, when it is drawn, the two endpoints are equal, so
it forms a loop.

• A simple path is a path that does not intersect itself, with the exception of the two
endpoints being equal in the case of a closed path.

A simple, closed path is called a Jordan curve.

Definition 5.3. A set of points S in the plane is said to be open if for every point P in S,
there exists an open disk around P that is contained in S.

S

P

Definition 5.4. A set of points S in the plane is said to be connected if there is a path
between any two points in the set such that every point in the path is contained in S.

Definition 5.5. Given a set S of points in the plane, its boundary consists of all points
P in the plane such that, for every open disk centered at P , the open disk contains a point
that is in S and a point that is not in S.
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S

P

Theorem 5.6 (Jordan curve theorem). For any Jordan curve in the plane, its complement is
the union of two non-intersecting regions that are each a connected set: a bounded interior
and an unbounded exterior. Moreover, the boundary of each of the two regions is precisely
the Jordan curve. There are two consequences of the theorem that we will use:

1. The interior is an open set, and the exterior is an open set.

2. Any path with one endpoint in the interior and one endpoint in the exterior must
intersect with the Jordan curve.

Proof. Elementary proofs of this simple-sounding theorem are technical enough that the
mathematician Tverberg wrote “there are many, even among professional mathematicians,
who have never read a proof of it.” As such, we do not provide a proof, but we encourage the
reader to draw some simple, closed paths that are a little convoluted and verify the theorem
for them.

Lemma 5.7. An open disk centered at a point on a Jordan curve must contain both an
exterior point and an interior point of the Jordan curve.

Proof. According to the Jordan curve theorem, a Jordan curve is the boundary of its interior
and the boundary of its exterior. By the definition of the boundary of the interior, every
open disk centered at every boundary point must contain a point in the interior and a point
not in the interior. Similarly, by the definition of the boundary of the exterior, every open
disk centered at every boundary point must contain a point in the exterior and a point not
in the interior. Thus, every open disk centered at a point on a Jordan curve contains an
interior point and an exterior point.

The following is a technique that we will use several times.

Lemma 5.8. Let J be a Jordan curve and let C be a connected subset of the plane such
that C does not contain any points of J. Then C consists of only interior points of J or only
exterior points of J . Thus, knowing that C contains one point of the interior of J is enough
to conclude that all points of C are in the interior of J ; similarly, knowing that C contains
one point of the exterior of J is enough to conclude that all points of C are in the exterior
of J .
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Proof. Suppose C does not contain any points of J. Suppose, for contradiction, that C
contains both an interior point and an exterior point of J . Since C is connected, there exists
a path with these two points as its endpoints such that the path is consists of only points in
C. By the Jordan curve theorem, there should be a point of J on this path, which contradicts
the fact that C contains no points of J . Thus, C cannot contain both an interior point and
an exterior points of J . The other two conclusions follow immediately.

Definition 5.9. For our purposes, a generalized polygon is a Jordan curve consisting of
line segments, along with the interior region of the Jordan curve. To be precise, the boundary
of the generalized polygon A0A1 . . . An−1 consists of n distinct points {A0, A1, . . . , An−1}
called vertices (the singular form is vertex), and n line segments {A0A1, A1A2, . . . , An−1A0}
called edges or sides. A generalized polygon has at least 3 vertices and 3 edges; an n-sided
generalized polygon is called a generalized n-gon. The neighbouring edges of a particular
vertex in a generalized polygon are the two edges that emanate from the vertex, whereas its
neighbouring vertices are the two vertices to which the vertex is attached by an edge.

If we do not allow consecutive edges in a generalized polygon to lie on the same line, so
that no three consecutive vertices can be collinear (and so that it is not possible to add a
vertex by splitting an edge into two pieces), then the generalized polygon is simply called a
polygon. A polygon with n edges is called an n-gon. Note that the set of polygons are a
subset of the set of generalized polygons.

Example. In order from the least number of sides to the most number of sides, the names
of n-gons for 3 ≤ n ≤ 12 are: triangle, quadrilateral, pentagon, hexagon, heptagon, oc-
tagon, nonagon, decagon, hendecagon, dodecagon. Non-examples of generalized polygons
are those that fail to be simple, or are not closed, or do not consist of line segments. An-
other non-example of a generalized polygon are degenerate triangles, since that the vertices
of a generalized polygon cannot all be collinear due to the “simple” criterion of a Jordan
curve.

Theorem 5.10 (Polygon inequality). If P = A1A2 . . . An−1An is a path consisting of line
segments (some of which possibly intersect others), then

A1A2 + A2A3 + · · ·+ An−2An−1 + An−1An ≥ A1An.

Equality holds if and only if the points A1, A2, . . . , An are collinear in that order. In partic-
ular, in the case of generalized n-gons A1A2 . . . An−1An (note that An connects to A1), the
inequality is strict.
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Proof. We proceed by induction on the number of sides n ≥ 3 of the generalized polygon.
In the base case n = 3, Theorem 3.10 says that A1A2 + A2A3 ≥ A1A3 for any three points
A1, A2, A3 with equality holding if and only if A1, A2, A2 are collinear in that order (since
any other order would cause the inequality to be strict). Now suppose the result holds for
all generalized n-gons some n ≥ 3. Let P = A1A2 . . . An−1AnAn+1 be a path consisting of
n+ 1 vertices. By the induction hypothesis,

A1A2 + A2A3 + · · ·+ An−2An−1 + An−1An ≥ A1An,

with equality holding if and only if A1, A2, . . . , An are collinear in that order. Adding AnAn+1

to both sides yields

A1A2 + A2A3 + · · ·+ An−2An−1 + An−1An + AnAn+1 ≥ A1An + AnAn+1 ≥ A1An+1,

where we reused the base base in the final step. Equality holds in

A1An + AnAn+1 ≥ A1An+1

if and only if A1, An, An+1 are collinear in that order, implying the overall desired equality
criterion.
In the case of a generalized polygon, the base case is a non-degenerate triangle, so the
inequality is strict from the beginning onward due to the triangle inequalities being strict
for non-degenerate triangles in the plane (Theorem 3.10).

Definition 5.11. It is clear what we mean by saying that a point (or a set of points, like a
line segment) lies on the boundary of a generalized polygon. When we say a point lies
on a generalized polygon, we will mean that it lies either on its boundary in the interior of
the path formed by the boundary. However, when we say a point lies in the interior of
a generalized polygon, we will mean that it lies in the interior of the path formed by the
boundary but not on the boundary itself.

Lemma 5.12. For every point P on the boundary of a generalized polygon, there exists an
open disk centered around P such that excluding the one or two edges on which P lies from
the disk results in two sectors: one sector that lies entirely in the interior and one sector
that lies entirely in the exterior of the generalized polygon. Of course, once we find such an
open disk, all open disks of smaller radius satisfy the same property. (See Definition 6.1 for
the definition of a sector.)

Proof. Let P be a point on the boundary of the generalized polygon. Note that if P is a
vertex then it has two neighbouring edges, and otherwise P lies in the interior of an edge.
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First we show that we can find an open disk centered at P which does not include any
boundary points other than parts of the one or two edges on which P lies. We just need
a small enough open disk that additional edges do not intersect the disk; as a result, no
additional vertices will intersect the disk either because each vertex is includes in an edge.
There are finitely many edges on which P does not already lie, so we find the shortest
distances from P to the line though each of those other edges, and let the radius of the disk
be a positive real number smaller than all of those distances. Thus, there exists a disk that
is centered at P and does not contain any new boundary points. So each sector (where the
two sectors exclude the edges through P ) can contain only interior and exterior points of the
generalized polygon. It is easy to see that each sector is a connected set. By Lemma 5.8,
each sector consists of only interior points or only exterior points. By Lemma 5.7, an open
disk centered at a boundary point must contain both an exterior point and interior point.
Therefore, one sector consists of only interior points and the other sector consists of only
exterior points.

Definition 5.13. In a generalized polygon, each vertex has two neighbouring edges. This
creates two explementary angles. The interior angle at that vertex is chosen out of those
two angles such that the intersection of the interior of the angle (recall that we do not include
the rays of the angle in its interior) with a sufficiently small open disk around the vertex
produces a sector that lies in the interior of the generalized polygon. Lemma 5.12 guarantees
that exactly one of the two explementary angles allows for this.

Theorem 5.14. Given a generalized n-gon A0A1 . . . An−1, it is clear that for each index
0 ≤ i ≤ n − 1, there exists a counterclockwise rotation around Ai, along with a positive
dilation from Ai, that sends Ai−1Ai to Ai+1Ai, where indices are reduced modulo n. Each
of these counterclockwise rotations is either on the side of the interior of the generalized
polygon (meaning it coincides with the interior angle at Ai) or is on the side of the exterior
of the generalized polygon (meaning it coincides with the explementary angle of the interior
angle at Ai). We assert that either all or none of the n counterclockwise rotations are on the
side of the interior.

Proof. If none of the counterclockwise rotations lie on the side of the interior, then we are
done. So suppose at least one of the counterclockwise rotations lies on the side of the interior.
It suffices to show that all of the counterclockwise rotations lie on the side of the interior.
By the principle of induction, it is enough to show that if this property is satisfied by the
rotation around Ai then this property is satisfied by the rotation around Ai+1. Suppose for
contradiction that the counterclockwise rotation around Ai lies on the side of the interior,
but the counterclockwise rotation around Ai+1 lies on the side of the exterior. We know
that there exists an open disk centered at each of Ai and Ai+1 such that excluding the
neighbouring edges of these vertices from their respective disks results in two sectors for
each disk: one sector that lies in the interior and one sector that lies in the exterior. Then
the counterclockwise rotation around Ai runs through the interior sector at Ai, and the
counterclockwise rotation around Ai+1 runs through the exterior sector at Ai+1. We will
show that there exists a path from inside the interior sector at Ai to inside the exterior
sector at Ai+1 without crossing any boundary points, which contradicts the Jordan curve
theorem.
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Let P ̸= Ai be a point on AiAi+1 that is inside the disk at Ai and let Q ̸= Ai+1 be a point
on AiAi+1 that is inside the disk at Ai+1. We will show that there exists an ϵ > 0 such that,
for each point X on the line segment PQ, excluding AiAi+1 from the open disk of radius
ϵ centered at X yields two half-disks that do not contain any boundary points. Finding ϵ
is a matter of finding the shortest distance from PQ to each edge that is not AiAi+1, and
then choosing ϵ to be smaller than all of those distances. This allows us to travel from inside
the interior sector at Ai to inside the exterior sector at Ai+1 through half-disks that do not
contain any boundary points, producing the desired contradiction. Specifically, we go from
Ai to P to Q to Ai+1.

Definition 5.15. Given a generalized n-gon A0A1 . . . An−1, for each index 0 ≤ i ≤ n − 1,
there is a clockwise or counterclockwise rotation of Ai−1 around Ai, along with a positive
dilation from Ai, that causes Ai−1Ai to coincide with Ai+1Ai, where the angle of the rotation
is on the side of the interior angle ∠Ai−1AiAi+1. By Theorem 5.14, all of these rotations are
in the same direction, clockwise or counterclockwise. Contrary to intuition, we say that the
ordering A0, A1, . . . , An−1 of consecutive vertices is a clockwise orientation if the rotations
are counterclockwise, and a counterclockwise orientation if the rotations are clockwise.

Example. By observing the direction in which vertices are labelled in convex polygon, like
the non-degenerate triangles below, it becomes clear why the direction in which the vertices
are ordered is the opposite of the direction of the aforementioned rotations.

A0

A1

A2

A0

A1

A2
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Definition 5.16. A diagonal of a generalized polygon is a line segment that connects two
non-consecutive vertices.

Theorem 5.17. Recall that a convex polygon was defined in Definition 2.16. Equivalently,
a convex polygon is a polygon that fulfils any one of the following conditions:

• The polygon forms a convex set, meaning the line segment between any two points on
the polygon lies on the polygon.

• All interior angles of the polygon are strictly less than 180◦. (Note that this implies
that all non-degenerate triangles are convex polygons.)

• The interiors of all diagonals of the polygon lie in the interior polygon.

• For each edge, the polygon lies entirely on a half-plane defined by the line running
through the edge. Moreover, a convex polygon is the region formed by the intersection
of half-planes defined by the lines running through its edges.

• The polygon lies on the rays and interior of each of its interior angles (where we extend
the rays of the angle infinitely). More specifically, a convex polygon is the region formed
by the intersection of its (indefinitely extended) interior angles.

As a non-example, a generalized polygon with a straight interior angle is not convex. A
polygon that is not convex is called concave.

Definition 5.18. A cevian of a triangle is a line segment that has one endpoint on a vertex
of the triangle, and the other endpoint, called the foot of the cevian, on the interior of the
edge opposite to that vertex. A generalized cevian of a triangle is a line segment that still
has one endpoint on a vertex of a triangle, but the other endpoint can be anywhere on the
line running through the opposite edge. If A is the vertex from which the cevian emanates,
then we may call the cevian an A-cevian.

A

B C

Theorem 5.19. Suppose we have a triangle △ABC and a generalized cevian emanating
from vertex A with foot F. Then the interior of AF lies entirely in:

1. The boundary of △ABC if F coincides with B or C. In this case, the interior of AF
is the interior of AB or the interior of AC.
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2. The interior of △ABC if F lies in the interior of BC.

3. The exterior of △ABC if F lies outside BC.

As a consequence, the interior of every cevian lies in the interior of the triangle.

Proof. It is clear that if F coincides with B or C, then the interior of AF lies is the interior of
AB or AC, respectively. So suppose F lies on the line through BC but not at the endpoints
of BC.
Note that AF intersects the line through each edge once, in particular at A and F. So
removing the endpoints of AF produces the interior of a line segment that does not contain
any boundary points of the triangle, as two distinct lines cannot intersect at more than one
point. By Lemma 5.8, the interior of AF can contain only interior points or only exterior
points of the triangle since the interior of AF is connected. Now we will specialize this result
to each of the two remaining cases.

A

B CFF

If F lies in the interior of BC, then there is an open disk around F such that excluding
BC from the disk results in two half-disks, one of which is contained in the interior of the
triangle and intersects with AF. So there is an interior point of the triangle in the interior
of AF, causing the interior of AF to be fully composed of interior points of the triangle. If
F does not lie in the interior of BC, then it lies in the exterior of the triangle, and so there
is an open disk around F that contains only exterior points. So there is an exterior point of
the triangle in the interior of AF, causing the interior of AF to be fully composed of exterior
points of the triangle.

Corollary 5.20 (Crossbar theorem). For each vertex of a triangle and each point in the
interior of the triangle, there is a cevian emanating from the vertex that includes the point.

Proof. Suppose we have a triangle △ABC and that P is a point in its interior. Without loss
of generality, it suffices to show that there exists a cevian emanating from A that includes P.
We can certainly draw a generalized cevian emanating from A through the point P, so it is
a matter of showing that the foot F of this cevian lies in the interior of BC. First, suppose
for contradiction that F lies outside segment BC and so in the exterior of △ABC. Since P
is an interior point, the interior of PF must contain a boundary point of the triangle, which
also falls in the interior of AF. By Theorem 5.19, this contradicts the fact that the interior
of a generalized cevian cannot contain both a boundary point and an interior point P of the
triangle. Thus, F lies on BC. Moreover, we can say that F does not coincide with B or C,
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because that would cause P to lie on AB or AC instead of the interior of the triangle. So F
lies in the interior of BC.

Theorem 5.21. Let A,B,C be distinct points in the plane that are not all collinear. Then
the foot F of the perpendicular segment from A to the line through BC lies on:

1. B or C if one of the interior angles ∠ABC or ∠ACB of △ABC is right, respectively.

A

B = F C

A

B C = F

2. The interior of the segment BC if both of the interior angles ∠ABC and ∠ACB of
△ABC are acute.

A

B CF

3. Outside the segment BC if one of the interior angles ∠ABC and ∠ACB of △ABC is
obtuse.

A

B CF

A

B C F

Proof. We treat the cases separately:

1. If the interior angle ∠ABC of△ABC is right, then AF and AB are both perpendicular
to BC, which means they are parallel or they coincide. Since they share the point A,
they lie on the same line and F = B. If the interior angle ∠ACB of △ABC is right,
then the proof of F = C is analogous.
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2. Suppose the interior angles ∠ABC and ∠ACB of △ABC are acute. Suppose for
contradiction that F does not lie in the interior of the segment BC. Clearly, F cannot
lie on B or C because then AF would not form a right angle with the line through BC.
So F must lie outside the segment BC. Then the interior of AF lies in the exterior
of △ABC. Let D be the vertex out of B and C to which F is closer and let E be
the other vertex out of B and C. Then △AFD is a right triangle, so its interior angle
∠ADF is acute. Subsequently, the supplementary angle ∠ADE is an obtuse interior
angle of △ABC, which is a contradiction. Thus, F lies in the interior of BC.

3. Suppose one of the interior angles ∠ABC and ∠ACB of △ABC is obtuse. Suppose
for contradiction that F does not lie outside the segment BC. As in the last part, F
cannot lie on B or C because then AF would not form a right angle with the line
through BC. So F must lie in the interior of the segment BC. Then the interior of AF
lies in the interior of △ABC. This causes △ABC to split into right triangles △AFB
and △AFC, implying that that interior angles ∠ABC = ∠ABF and ∠ACB = ∠ACF
are both acute. This contradicts the hypothesis, so F lies outside segment BC.

Problem 5.22. Let △ABC be isosceles with CA = CB. Show that the foot F of the
perpendicular from C to the line through AB lies in the interior of AB.

To generalize several results about triangles to generalized polygons, we will use the concept
of polygonal ears, as defined below.

Definition 5.23. An ear of a generalized n-gon for n ≥ 4 is a vertex A such that the interior
of the diagonal connecting its neighbouring vertices lies in the interior of the generalized
polygon.

Example. Every vertex of a convex polygon is an ear, since the interior of every diagonal lies
in the interior of the polygon.

Lemma 5.24. If a vertex A is an ear of a generalized polygon P then the interior of the
triangle that it forms with its neighbouring vertices B and C lies in the interior of P . We
call △ABC the triangle induced by A.
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Proof. Suppose A is an ear of a generalized polygon P with neighbouring vertices B and C.
Then the open segment BC lies in the interior of P. We want to show that every point Z
in the interior of △ABC lies in the interior of P. The two snags that we might run into are
that the interior of △ABC contains a point on the boundary or exterior of P. We will show
that both are impossible, in that order.
Suppose, for contradiction, that the interior of △ABC contains a boundary point X. If all
boundary points of P other than those on AB and AC are in the interior of △ABC, then P
is bounded by △ABC and so none of the interior points of P would be on the side of the line
through BC not containing A. This would contradict the fact that the interior of segment
BC consists of interior points of P , as every interior point of P has a sufficiently small open
disk around it that is contained in the interior of P , which would produce interior points on
the side of BC not containing A. So there must exist a boundary point Y of P that is in
the exterior of △ABC. There are two simple paths that lie on the boundary of P between
the distinct points X and Y , where the two paths are disjoint except at their endpoints. We
want to show that one of these paths must cross the interior of BC, which will contradict
the fact that the interior of BC cannot include boundary points. Since X is in the interior
of △ABC and Y is in the exterior of △ABC, each path must cross the boundary of △ABC
at some point Q. Since the boundary of P cannot intersect itself and since the interior of
BC cannot contain any boundary points, the only possibilities for Q are B and C. If we
travel from X to B without going to C first then the same path must continue to A and
then C; similarly, if we travel from X to C without going to B first then the same path
must continue to A and then B. Thus, one of the two aforementioned paths between X and
Y uses up both B and C, forcing the other to pass through the interior of BC. Thus, the
interior of △ABC cannot include boundary points.

A

B

C

X

Y

A

B

C

X

Y

However, this means that the interior of △ABC consists of only interior and exterior points
of P. By the crossbar theorem (Corollary 5.20), for every point Z in the interior of △ABC,
there is a cevian AF emanating from A with its foot F in in the interior of BC such that
the cevian includes Z. This shows that every such point Z can be attached to a point F in
the interior of BC by a line segment ZF that does not intersect AB or AC. As the only
boundary points of P on △ABC lie on AB and AC, the segment ZF has only interior and
exterior points of P. If it has both an interior and an exterior point, that would force there
to be a boundary point in the interior of ZF, which is a contradiction. So ZF consists of
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only interior points or only exterior points of P ; as F is an interior point, Z must be an
interior point as well, which completes the proof.

Definition 5.25. Two ears of a generalized polygon are said to be non-overlapping if
the interiors of the two induced triangles do not overlap. Note that it is acceptable for the
induced triangles to overlap at their vertices or edges.

Theorem 5.26 (Two ears theorem). Every polygon with more than three vertices has at
least two non-overlapping ears. This implies the same result for generalized polygons.

Proof. Proving the two ears theorem for polygons would be too much of a detour, but we
will show that it implies the same result for generalized polygons; for a true proof, see [7].
Instead, we will prove that the result for polygons implies the result for generalized polygons.
Suppose we have a generalized polygon P. For each maximal sequence of consecutive edges
that lie on the same line, we collapse it into one line segment so that we can interpret P as
a (non-generalized) polygon Q. We now treat the case where Q is a triangle separately from
when it is not.
If Q is not a triangle, then the two ears theorem tells us Q has two non-overlapping ears X
and Y . This means the interiors of the two triangles induced by the ears are non-overlapping,
and moreover, both interiors are contained in the interior of Q (which is the same as the
interior of P ). Then X and Y are also ears of P by the following line of reasoning. Let A,B
be the neighbouring vertices of X in Q, and let A′, B′ be the neighbouring vertices of X in
P. Then XA′ ≤ XA and XB′ ≤ XB. So the interior of A′B′ lies in the interior of △AXB
which lies in the interior of P. The argument for Y is analogous.

X

B

A

B′

A′

Z

V YX

Now suppose Q is a triangle. At least one of its edges has a vertex V of P in the interior
of the edge, so label the vertices of Q as X, Y, Z in order that V lies in the interior of XY.
We claim that X and Y are ears of P. Certainly, connecting the neighbouring vertices of
X in P creates a diagonal whose interior lies in the interior of Q and so the interior of P,
since a triangle is a convex set; the analogous result holds for Y. So X and Y are ears and
it remains to be shown that they are non-overlapping. This is true because △XV Z and
△Y V Z have non-overlapping interiors, and the interior of triangle created by X and its
neighbouring vertices in P lies in the interior of △XV Z, and the interior of the triangle
created by Y and its neighbouring vertices in P lies in the interior of △Y V Z. Thus, X and
Y are non-overlapping ears.
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Definition 5.27. A technique that we will use several times is the ear-clipping of a gener-
alized (n+1)-gon, where the triangle induced by an ear is removed and the diagonal between
the neighbouring vertices of the former ear is replaced by a boundary line segment to produce
a new generalized n-gon.

As can be imagined, concave polygons can appear quite strange and it can be difficult
to establish theorems about them, so people usually focus on convex polygons. In our
experience, it it can even be assumed by laypeople that a polygon refers to a convex polygon.
The upcoming results are easier to establish for convex polygons because all of the vertices of
a convex polygon are ears. We encourage the reader to develop those proofs independently.

Theorem 5.28 (Sum of interior angles). The sum of the interior angles of a generalized
n-gon is 180◦(n − 2). In an argument within the proof, we will prove that if an ear Vn of a
generalized (n + 1)-gon P = V0V1 . . . Vn is clipped, then the induced triangle T = V0Vn−1Vn

and the generalized n-gon Q = V0V1 . . . Vn−1 have the same orientation as P.

Proof. We proceed by induction on the number of sides of the generalized polygon. In the
base case n = 3, we already know that the result holds for triangles (Theorem 2.18). Suppose
the result holds for all generalized n-gons for some n ≥ 3. Let P be a generalized (n+1)-gon.
Then clipping an ear of P results in a generalized n-gon Q, the interior angles of which we
know to sum to 180◦(n− 2) by the induction hypothesis.
Label P as V0V1 . . . Vn so that the ear that we clipped is Vn. First we will show that the
induced triangle T = V0Vn−1Vn and Q = V0V1 . . . Vn−1 have the same orientation as P. In
order to have clear notation, we need to label all of the angles involved. Let τ0, τn−1, τn
be the interior angles of T at vertices V0, Vn−1, Vn, respectively. Let ϕ0, ϕ1, . . . , ϕn−1 be the
interior angles of Q at vertices V0, V1, . . . , Vn−1, respectively. Let θ0, θ1, . . . , θn be the interior
angles of P at vertices V0, V1, . . . , Vn, respectively. Since Vn is an ear, the interior of T is
contained in the interior of P. This means the interiors of angles τn = θn coincide, and so T
has the same orientation as P. Now suppose for contradiction that Q and P have opposite
orientations. Then

ϕi − τi = 360◦ − θi for i = 0, n− 1,

ϕi = 360◦ − θi for 1 ≤ i ≤ n− 2.

In this case, the “exterior” of Q is a subset of the interior of P. This is a contradiction because
the exterior is supposed to be an unbounded region whereas the interior of P is bounded.
Thus, Q and P have the same orientation. Then

ϕi + τi = θi for i = 0, n− 1,

ϕi = θi for 1 ≤ i ≤ n− 2.

By the induction hypothesis,

180◦(n− 2) = ϕ0 + ϕ1 + · · ·+ ϕn−2 + ϕn−1

= (θ0 − τ0) + θ1 + · · ·+ θn−2 + (θn−1 − τn−1)

= (θ0 + · · ·+ θn−1)− τ0 − τn−1

= (θ0 + · · ·+ θn−1) + τn − 180◦

= (θ0 + · · ·+ θn−1 + θn)− 180◦.
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Therefore, the sum of the interior angles of P is

θ0 + · · ·+ θn−1 + θn = 180◦(n− 2) + 180◦ = 180◦(n− 1).

This completes the induction.

V1

V0

Vn

Vn−1

Vn−2

ϕ0

τ0

ϕn−1

τn−1

τn = θn

Problem 5.29. Recall from Definition 2.21 that an exterior angle in a convex polygon
is an angle supplementary to an interior angle. Find the sum of the exterior angles of any
convex polygon is 360◦, where we take the sum of one exterior angle corresponding to each
interior angle.

Definition 5.30. A polygon is called equilateral if its side lengths are all equal. A polygon
is called equiangular if all of its interior angles are equal. A regular polygon is one that
is both equilateral and equiangular.

Problem 5.31. Find the measure of an individual interior angle and an individual exterior
angle in an equiangular n-gon, where n ≥ 3 is an integer. What does each approach as
n→∞?

Problem 5.32 (Pick’s theorem). A lattice point on the Cartesian plane is a point whose
coordinates are both integers. A generalized lattice polygon is a generalized polygon
on the Cartesian plane whose vertices are all lattice points. Let P be a generalized lattice
polygon. If B is the number of lattice points on the boundary of P , including its vertices,
and I is the number of lattice points in the interior of P , then area of P is given by

[P ] = I +
B

2
− 1.

Assuming that this works for triangles, prove it for P with more than 3 sides.

Definition 5.33. A triangulation of a generalized polygon P is a collection of triangles such
that their interiors are non-intersecting and the union of the triangles is P. A triangulation
of P is said to have no extra vertices if the vertices of the triangles in the triangulation
are chosen from only the vertices of P.
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Proofs based on clipping an ear and then invoking an induction hypothesis are essentially
using a triangulation of a generalized polygon.

Theorem 5.34. Every generalized polygon has a triangulation that has no extra vertices.

Proof. The proof is straightforward using induction and ear-clipping, as follows. In the base
case, every triangle is a triangulation of itself. For the induction hypothesis, we assume that
every generalized n-gon has a triangulation. Suppose we have a generalized (n + 1)-gon.
Then we clip an ear to produce a generalized n-gon. A triangulation of the generalized
(n + 1)-gon is the combination of the triangulation of the generalized n-gon, given by the
induction hypothesis, and the triangle induced by the ear.

In Volume 2, we determined the number of triangulations of a convex n-gon in terms of n
when studying the Catalan numbers.

5.2 Congruence and Similarity

We can extend the notion of congruence from triangles to generalized polygons as follows.

Definition 5.35. Two generalized n-gons A0A1 . . . An−1 and B0B1 . . . Bn−1 are said to be
congruent if corresponding sides AiAi+1 and BiBi+1 are equal for 0 ≤ i ≤ n − 1, and
corresponding interior angles Ai−1AiAi+1 and Bi−1BiBi+1 are equal for 0 ≤ i ≤ n− 1, where
indices are reduced modulo n.

Theorem 5.36. Applying any Euclidean isometry to a generalized polygon produces a con-
gruent generalized polygon; translations and rotations preserve the orientation of a polygon,
whereas a reflection alters it. Conversely, if there are two congruent generalized polygons in
the plane, then one can be transformed into the other by a Euclidean isometry.

Proof. Let P = V0V1 . . . Vn−1 be a generalized polygon labeled in clockwise orientation,
which is without loss of generality because congruence does not depend on the orientation
in which vertices are labelled. By Theorem 3.6, we know that if g is a translation, rotation
or reflection, then g maps a line segment from z1 to z2 to a line segment from g(z1) to g(z2)
of the same length. Thus, the same is true for all Euclidean isometries, which are their
compositions. Moreover, Euclidean isometries are bijections, so the n distinct vertices are
mapped to n distinct points, and since the interiors of the n edges of P are pairwise disjoint,
the same holds for the n line segments in the image. So every Euclidean isometry does take
the generalized polygon P, which is a simple, closed path consisting of line segments along
with the interior of the path, to a generalized polygon P ′ = V ′

0V
′
1 . . . V

′
n−1 with the same

number of vertices.
Now we need to show that P and P ′ are congruent. We already know that Euclidean
isometries map line segments to line segments of equal length, so we only need to establish
that the interior angles at corresponding vertices are of equal measure. For any generalized
polygon A0A1 . . . An−1, and for each index 0 ≤ i ≤ n− 1, there exists a rotation around Ai

that, along with a positive dilation from Ai, causes Ai−1Ai to coincide with Ai+1Ai, where
indices are reduced modulo n, and where the rotation has the measure of the interior angle
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∠Ai−1AiAi+1. We have previously established that all of these rotations can be chosen to be
in the same direction, clockwise or counterclockwise. Since P is oriented clockwise, these
rotations are all counterclockwise in it. By Theorem 3.6, translations and rotations map
each counterclockwise angle in [0, 360◦) to a counterclockwise angle of the same measure,
and reflections map each counterclockwise angle in [0, 360◦) to a counterclockwise angle of
explementary measure. Then, to prove that the interior angle at V ′

i has the same measure
as the interior angle at Vi, it suffices to show that any translation or rotation of P is oriented
clockwise and that any reflection of P is oriented counterclockwise. Let the measures of the
interior angles at V0, V1, . . . , Vn−1 be θ0, θ1, . . . , θn−1 respectively, so that

θ0 + θ1 + · · ·+ θn−1 = 180◦(n− 2),

by Theorem 5.28.
Suppose, for contradiction, that a translation or rotation P ′ of P is oriented counterclockwise,
or a reflection P ′ of P is oriented clockwise. In any of these cases, the sum of the interior
angles of P ′ would be the sum of the explementary angles of the interior angles of P, which
yields the contradictory sum

(360◦ − θ0) + (360◦ − θ1) + · · ·+ (360◦ − θn−1) = 360◦n− 180◦(n− 2)

= 180◦(n+ 2)

̸= 180◦(n− 2).

Conversely, suppose there are two congruent generalized polygons P = V0V1 . . . Vn−1 and
P ′ = V ′

0V
′
1 . . . V

′
n−1 in the plane. We want to show that a Euclidean isometry maps P to

P ′. Since we have established that Euclidean isometries map any generalized polygon to a
congruent generalized polygon, and that each Euclidean isometry has an inverse that is a
Euclidean isometry, it suffices to apply Euclidean isometries to both P and P ′ until their
corresponding vertices coincide. First we translate P and P ′ so that V0 and V ′

0 are at the
origin, and then rotate each generalized polygon around the origin until V1 and V ′

1 are at
the origin. By the previous part of the proof, the reflection of a generalized polygon with
clockwise orientation is a congruent generalized polygon with counterclockwise orientation;
by the same proof technique of summing the interior angles to derive a contradiction, we
can show that reflections turn counterclockwise orientations into clockwise orientations (and
that translations and rotations preserve counterclockwise orientations). So, by reflecting
across the x-axis if necessary, we can also assume that P and P ′ are both oriented clockwise.
Note that, despite having applied transformations to P and P ′, we have continued to use the
names P and P ′ along with their vertices Vi and V ′

i for the sake of not introducing excessive
new notation.
For each index 0 ≤ i ≤ n − 1, let the complex number corresponding to Vi be vi, and let
the complex number corresponding to V ′

i be v′i. Now we will show by strong induction that
v′i = vi for each i. In the base case, v′0 = 0 = v0. Then, since v′1 and v1 both lie on the positive
x-axis and congruence implies V ′

0V
′
1 = V0V1, we also know that v′1 = v1. Now suppose v′j = vj

for all indices 0 ≤ j ≤ i for some index 1 ≤ i. We will show that v′i+1 = vi+1, where indices
are reduced modulo n. Let the interior angles at each of Vi and V ′

i be θi. Since P and P ′ are
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oriented clockwise, we compute

vi+1 − vi
vi−1 − vi

=
|vi+1 − vi|
|vi−1 − vi|

eiθi =
Vi+1Vi

Vi−1Vi

eiθi ,

v′i+1 − v′i
v′i−1 − v′i

=
|v′i+1 − v′i|
|v′i−1 − v′i|

eiθi =
V ′
i+1V

′
i

V ′
i−1V

′
i

eiθi ,

where there is a distinction between the imaginary number i and the index i. By congruence,
Vi+1Vi = V ′

i+1V
′
i and Vi−1Vi = V ′

i−1V
′
i , so

v′i+1 − v′i
v′i−1 − v′i

=
vi+1 − vi
vi−1 − vi

.

By invoking the induction hypothesis on the previous two instances,

v′i+1 =
vi+1 − vi
vi−1 − vi

(v′i−1 − v′i) + v′i

=
vi+1 − vi
vi−1 − vi

(vi−1 − vi) + vi

= vi+1.

This completes the induction, showing that all corresponding vertices can be made to coin-
cide.

Like congruence, we can extend the notion of similarity from triangles to generalized poly-
gons.

Definition 5.37. Two generalized n-gons are said to be similar if the ratio of any pair of

corresponding sides
AiAi+1

BiBi+1

equal to the same similarity ratio k for 0 ≤ i ≤ n − 1, and

corresponding interior angles Ai−1AiAi+1 and Bi−1BiBi+1 are equal for 0 ≤ i ≤ n− 1, where
indices are reduced modulo n. Note that congruence is a special case of similarity when we
take k = 1 as the similarity ratio.

Theorem 5.38. Applying any similarity transformation to a generalized polygon P produces
a similar generalized polygon P ′. In particular, applying only a homothety of factor k results
in the similarity ratio |k| of the lengths of P ′ to the lengths of P. Moreover, a homothety
(positive or negative) preserves the orientation of the generalized polygon. Conversely, if
there are two similar generalized polygons P and P ′ in the plane, then P can be transformed
into P ′ by a similarity transformation. Specifically, if the similarity ratio of the lengths
of P ′ to the lengths of P is k, then we can choose a similarity transformation of P to P ′

that consists of exactly one homothety of factor k from the origin, followed by a Euclidean
isometry. Thus, the term “similarity transformation” is justified.

Proof. For the first direction, since we already know that Euclidean isometries map each
generalized polygons to a congruent generalized polygon, it suffices to prove the assertion for
only homotheties. Moreover, every homothety is a homothety from the origin sandwiched
between inverse translations, so it suffices to work with only homotheties from the origin.
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Let P = V0V1 . . . Vn−1 be a generalized polygon labeled in clockwise orientation without loss
of generality, and let h be a homothety of factor k. We know that h maps a line segment
of length l from z1 to z2 to a line segment of length |k| · l from h(z1) to h(z2). Moreover,
homotheties are bijections, so the n distinct vertices are mapped to n distinct points, and
since the interiors of the n edges of P are pairwise disjoint, the same holds for the n line
segments in the image. So h does take the generalized polygon P to a generalized polygon
P ′ = V ′

0V
′
1 . . . V

′
n−1 with the same number of vertices.

Now we need to show that P and P ′ are similar with a similarity ratio |k| of the lengths of P ′

to the lengths of P. We have already stated that h maps a line segment of length l to a line
segment of length |k| · l, so we only need to show that the interior angles at corresponding
vertices are of equal measure. By Theorem 3.6, homotheties map each counterclockwise angle
in [0, 360◦) to a counterclockwise angle of the same measure. Then, to prove that the interior
angle at V ′

i has the same measure as the interior angle at Vi, it suffices to show that P ′ is
oriented clockwise. Supposing for contradiction that P ′ is oriented counterclockwise, the
proof is then the same as for Euclidean isometries, where this assumption leads to showing
that the sum of the interior angles of P ′ is 180◦(n + 2), which is not 180◦(n− 2). Likewise,
we can prove that a homothety takes a counterclockwise oriented generalized polygon to the
same.
Conversely, suppose there are two similar generalized polygon

P = V0V1 . . . Vn−1,

P ′ = V ′
0V

′
1 . . . V

′
n−1

in the plane such that the similarity ratio of the lengths of P ′ to the lengths of P is k. First
we apply a homothety to P from the origin by a factor of k to produce a generalized polygon
P ∗ that is congruent to P ′. Then we know that there exists a Euclidean isometry that maps
P ∗ to P ′ by the preceding theorem.

Example 5.39. For any non-zero complex number w, the function sw : C→ C, defined by
sw(z) = zw, is called a spiral similarity. Show that this name is sensible.

Solution. Let arg(w) = θ. Then

sw(z) = zw = z · |w| · eiθ.

This means sw is the composition of a homothety from the origin by a factor of |w| and a
counterclockwise rotation around the origin by θ. We call this a “spiral similarity” because
the rotation is a spiral that maps a generalized polygon to a congruent generalized polygon
and the homothety maps a generalized polygon to a similar generalized polygon.
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Chapter 6

Circles I

“Noli turbare circulos meos! (Do not disturb my circles!)”
(in response to invading soldiers)

– Archimedes

Circles are easy to define, yet the geometry involved with circles can easily become compli-
cated. We will first study the inscribed angle theorem. Then, we will study theorems about
tangents, secants, and chords in circles, specifically their interactions with angles.

6.1 Inscribed Angles

Definition 6.1. If an angle ∠AOB is drawn such that O is the center of a circle and AO
and BO are radii of the circle, then ∠AOB is called a central angle. Several further pieces
of terminology come into play:

O

A

B

C

• The part of the circle that lies inside the central angle, including endpoints, is called
an arc, and is denoted by ÃB.

• Every pair of points A and B on the circle defines two arcs between them, which we
call opposite arcs. If it is clear to which of the two arcs we are referring, we call the
arc well-defined. To make it clear to which arc we are referring, we can pick a point
C on the arc and denote the arc as ĂCB.

80
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• If it is ambiguous whether we are working with a non-flat central angle or its exple-
mentary angle, the minor arc is the arc induced by the non-reflex central angle and
the major arc is the arc induced by the reflex central angle.

• A sector AOB is the part of the closed disk that lies inside ∠AOB and includes the
two boundary radii OA and OB. The corresponding circular segment is the sector
AOB without △AOB but including the segment AB.

• The measure of the arc ÃB or the sector AOB is the measure of the central angle
∠AOB within which the arc or sector lies. If the measure of a central angle is m in
radians, then the fraction of the circle it encompasses is

m

2π
in radians. So the length

a of the corresponding arc is found by the proportion

a

2πr
=

m

2π
=⇒ a = rm

and the area A of the corresponding sector is found by the proportion

A

πr2
=

m

2π
=⇒ A =

r2m

2
.

Both of these formulas are for angles m in radian measure, which can be converted to
degrees, as necessary.

Theorem 6.2 (Thales’s theorem). Let A,B,C be distinct points on a circle. Then ∠ACB
is a right angle if and only if AB is a diameter.

Proof. First, we make some preliminary remarks. Let O be the center of the circle. Then
AO = BO = CO, which implies that△AOC and△BOC are isosceles with the vertex angles
of both triangles at O. Below, all angles mentioned are interior angles of their respective
triangles.

OA B

C

For one direction, suppose AB is a diameter. Then the midpoint of AB is O, so

∠AOC + ∠BOC = 180◦.
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This allows us to calculate

∠ACB = ∠ACO + ∠BCO

=
180◦ − ∠AOC

2
+

180◦ − ∠BOC

2

= 180◦ − ∠AOC + ∠BOC

2
= 90◦.

Conversely, suppose ∠ACB = 90◦. Then

∠ACO + ∠BCO = ∠ACB

= 90◦.

This allows us to compute that

∠AOC + ∠BOC = (180◦ − 2∠ACO) + (180◦ − 2∠BCO)

= 360◦ − 2(∠ACO + ∠BCO)

= 180◦.

Thus, A,O,B are collinear, making AB a diameter.

Problem 6.3. Prove the following two results:

1. Suppose ABC is a triangle. Let M be the midpoint of AB. Then ∠ACB = 90◦ if and

only if MC =
AB

2
.

2. Suppose UV is a diameter of a circle Γ and W is a point on the plane that is distinct
from U and V. Then ∠UWV = 90◦ if and only if W lies on Γ.

Definition 6.4. Given some criteria to be satisfied by points in the plane, the set of all
points that fulfil the criteria is called their locus. Proving that a set is the desired locus
typically involves proving two set inclusions: showing that every point in the set fulfils the
criteria, and showing that every point that fulfils the criteria lives in the set.

The second part of the preceding problem is generalized by the next result, which is called
the inscribed angle theorem. In one direction, the inscribed angle theorem establishes an
equality of angles, and the converse shows that a point lies a circle. Together, they form a
locus result.

Definition 6.5. If the points A,P,B lie on a circle, then the inscribed angle ∠APB is
the one chosen between the two explementary angles at P so that the ∠APB lies on the
side of the interior of the circle. Letting ÃB be the arc between A and B on which P does
not lie, we say that ÃB subtends ∠APB, or that ∠APB is subtended by ÃB; in the other
direction, we say that ∠APB intercepts ÃB, or that ÃB is intercepted by ∠APB. In other
words, arcs subtend angles and angles intercept arcs.
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O

A

B

P

O

A

B

P

Note that all inscribed angles are non-reflex as the angle lies entirely on one side of the
tangent through its vertex.

Theorem 6.6 (Inscribed angle theorem). Let A and B be distinct points on a circle, and
P be a point in the plane distinct from A and B, and let ÃB be a well-defined arc between
A and B. Then P lies on the opposite arc between A and B if and only if the non-reflex
∠APB has half the measure of ÃB and P lies on the side of the line through AB that does
not include ÃB. This holds regardless of whether ÃB is a minor arc, a semicircle, or a major
arc.

Proof. The usual synthetic proof breaks the argument up, based on the configurations and
uses triangle geometry to tackle each configuration of each direction. The thorniest configu-
ration is drawn below for illustrative purposes. We provide a unified proof of all cases of the
inscribed angle theorem and its converse using complex numbers. The reader is encouraged
to develop the standard proofs independently.

O

A

B
P

First we will set up an equation that will be used for proving both directions. In both the
theorem and its converse, P is a point that lies on the side of the line through AB that does
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not include ÃB, as this is explicitly assumed in one direction and is implicit in the other
direction due to P lying on the opposite arc. Without loss of generality, we assume that
the center of the circle is the origin 0 and that A,B, P lie in counterclockwise, in that order
(the clockwise order leads to the same result). Let the complex numbers corresponding to
A,B, P be a, b, p respectively. If the radius of the circle is r then a = reiα and b = reiβ where
the angles α and β are the arguments of a and b respectively. Let p = seiγ where s is the
distance of p from the origin and γ is its argument. We want to investigate the non-reflex

angle ∠APB, which is the argument θ of
b− p

a− p
. Letting t be the modulus of

b− p

a− p
, we get

the equation

teiθ =
b− p

a− p
=

reiβ − seiγ

reiα − seiγ
.

Taking the conjugate of both sides of this equation yields

tei(−θ) =
rei(−β) − sei(−γ)

rei(−α) − sei(−γ)
=

eiα(seiβ − reiγ)

eiβ(seiα − reiγ)
.

To get a grasp on 2θ, we divide the original equation by the conjugate equation to get

ei(2θ) = ei(β−α) · (se
iα − reiγ)(reiβ − seiγ)

(seiβ − reiγ)(reiα − seiγ)
.

Now we approach each direction separately.

1. In proving the inscribed angle theorem, we are assuming that P lies on the circle, so
s = r, which reduces the above equation to ei(2θ) = ei(β−α). This implies 2θ ≡ β − α.

Since β − α is the measure of ÃB, all we need is for this congruence to be an actual
equality. Since θ is an inscribed angle, it is non-reflex, and we also know that β − α is
a central angle. Thus, 2θ and β − α both lie in (0, 2π), which makes the congruence
an equation.

2. For the converse, we are assuming that 2θ = β − α. As a result, ei(2θ) = ei(β−α), which
reduces our equation in the preamble to

(seiα − reiγ)(reiβ − seiγ) = (seiβ − reiγ)(reiα − seiγ).

Taking everything to one side, expanding and factoring yields

0 = (seiα − reiγ)(reiβ − seiγ)− (seiβ − reiγ)(reiα − seiγ)

= (r2 − s2)eiγ(eiα − eiβ).

It is not possible for eiγ to be 0, and since a ̸= b we also know that eiα ̸= eiβ. Thus, the
only possibility is that r = s, which puts P on the circle. Moreover, P lies on the arc
opposite to ÃB because we have assumed that P lies on the side of the line through
AB that does not include ÃB.

In practical usage, it is common to come across two inscribed angles that intercept the same
arc. As a result, they have a shared central angle, and therefore the inscribed angles have
the same measure.
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Theorem 6.7 (Extended law of sines). Given △ABC with edges a, b, c opposite to vertices
A,B,C respectively and circumradius R,

a

sinA
=

b

sinB
=

c

sinC
= 2R.

This is called the “extended” law of lines because the ordinary version does not state the
final equality with 2R. For ease of notation, we have dropped the angle signs and instead
referred to each interior angle by its vertex.

Proof. We will show that sinA =
a

2R
and the other equations will follow because the argu-

ment will not rest on any special property of A or a. Let A′ be the other endpoint of the
diameter through B of the circumcircle. Then there are three possible configurations:

1. If A′ does not coincide with C and lies on the arc B̆AC, then △BA′C is right with its
right angle at C since BA′ is a diameter, and ∠BAC = ∠BA′C by the inscribed angle
theorem. Then

sinA = sin∠BA′C =
BC

BA′ =
a

2R
.

2. If A′ coincides with C, then BC is a diameter and △BAC is a right triangle with its
right angle at A. Then

sinA = sin
π

2
= 1 =

BC

BC
=

a

2R
.

3. If A′ does not coincide with C and lies on the arc B̃C that does not contain A, then
△BA′C is right with its right angle at C since BA′ is a diameter, and ∠BAC =
π − ∠BA′C by the inscribed angle theorem. Then

sinA = sin(π − ∠BA′C) = sin∠BA′C =
BC

BA′ =
a

2R
.

O

C

B

A

A′

a

O

C

B

A

A′

a
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Problem 6.8 (Law of tangents). Given △ABC with edges a, b opposite to vertices A,B
respectively, show that

tan
(
A−B
2

)
tan
(
A+B
2

) =
a− b

a+ b
.

Although this “law” is not as useful as the cosine law or sine law, it is a fun problem.

6.2 Tangents, Secants, and Chords

Definition 6.9. There are two notions of tangency that we will need:

• A tangent line, which is also just called a tangent, to a circle is a line in the plane
that intersects the circle at exactly one point.

• Two circles are said to be tangent if they intersect at precisely one point. Two circles
are externally tangent if the interior of each circle is in the exterior of the other, or
they are internally tangent if the interior of one circle is contained in the interior of
the other.

Theorem 6.10. If ℓ is a tangent to a circle then, other than the point of tangency, it lies
in the exterior of the circle.

Proof. Let the point of tangency be A. Suppose, for contradiction, that P is a point on
ℓ that is inside the circle. If ℓ runs through the center O of the circle, then A is a part
of a diameter, and the existence of the other endpoint of the diameter would imply that ℓ
intersects the circle at two distinct points. So we can assume that ℓ does not run through
O. Let B be the foot of the perpendicular from O to ℓ. If B = P, then relabel P as B for an
upcoming step in the argument. Otherwise, △OPB is a right triangle that is not degenerate
with a right angle at B and hypotenuse OP ; then

OP =
√
OB2 +BP 2 >

√
OB2 = OB

and so OB also lies inside the circle. In either case, extend AB from A through B to C,
where C is defined to satisfy AB = BC. By the Pythagorean theorem,

OC =
√
OB2 +BC2 =

√
OB2 + AB2 = OA.
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So OC = OA is a radius, showing that C is a point on ℓ that is distinct from A yet lies on
the circle. This contradicts the fact that ℓ touches the circle only once.

O

A

B

C

ℓ

Theorem 6.11. If a line is tangent to a circle, then the line is perpendicular to the radius
that touches the point of tangency. Conversely, if a line intersects a circle at some point and
the radius that touches that point of intersection is perpendicular to the line, then the line
is tangent to the circle.

Proof. Suppose ℓ is a line that is tangent to a circle with center O. Let A be the point of
tangency. The radius OA has the endpoint A on ℓ. Now suppose, for the sake of contradiction,
that OA is not perpendicular to ℓ. Then let the foot of the perpendicular from O to ℓ be B.
Then B is on the tangent line, so it is outside the circle, by Theorem 6.10. So △OBA is a
right triangle with a right angle at B. Then the hypotenuse OA is greater than OB, which
contradicts the fact that OB should be larger than the radius OA, since B is outside the
circle. Thus, ℓ is perpendicular to OA.
In the other direction, suppose ℓ is a line that intersects a circle at A and that the radius OA
is perpendicular to ℓ. Let P be any point on ℓ other than A. Then OPA is a right triangle
with a right angle at A. By the Pythagorean theorem,

OP =
√
OA2 + AP 2 >

√
OA2 = OA,

meaning P lies outside the circle. Thus, ℓ intersects the circle only at A, and so ℓ is a
tangent.

Theorem 6.12. Suppose we are given a circle Γ and a point P in the plane outside Γ. For
each tangent from P to Γ, the length of the segment from P to the point of tangency is equal
to the others. Subsequently, there are exactly two lines that can be drawn through P that
are tangent to Γ.

Proof. Let P be any point outside Γ, let O be the center of Γ, and let A be a point on Γ
such that the line running through PA is tangent to Γ. Then OA is perpendicular to PA.
Since PO has a fixed length and AO is a radius which also has a constant length across all
radii, the Pythagorean theorem tells us that

PA =
√
PO2 −OA2

© 2024 Samer Seraj. All rights reserved.



88 CHAPTER 6. CIRCLES I

has a fixed length, which proves the first claim.

O
P

For the second claim, a process similar to the one in Theorem 6.14 may be used to solve for
precisely two tangents. We encourage the reader to follow through with a derivation.

Problem 6.13. Prove the following:

1. For two internally or externally tangent circles, the point of tangency of the circles and
the centers of the two circles are collinear.

2. For two internally or externally tangent circles, the common tangent line through the
point of tangency of the circles is perpendicular to the line through the centers of the
circles.

Theorem 6.14. Two circles are said to be in general position if they are external to
each other and do not intersect. Given any two circles in general position, there exist four
tangents that are common to both circles. These are called bitangents.

Proof. Let the circle with radius r1 have center (x1, y1) and the circle with radius r2 have
center (x2, y2). Let a bitangent ℓ be given by

ax+ by + c = 0.

Since a and b cannot simultaneously be 0, we can divide both sides by the non-zero number√
a2 + b2, which allows us to assume that a2 + b2 = 1 without loss of generality. The

perpendicular distance between ℓ and (x1, y1) is r1 and the perpendicular distance between
ℓ and (x2, y2) is r2. By the point-line distance formula (Theorem 2.26),

|ax1 + by1 + c| = r1,

|ax2 + by2 + c| = r2,
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since a2+b2 = 1. Opening up the absolute values result in ± signs on the r1 and r2, where the
two ± signs are independent of each other. Given a triple (a, b, c) such that ax+ by + c = 0
represents ℓ and a2 + b2 = 1, the triple (−a,−b,−c) works as well. So we engineer (a, b, c)
to ensure that

ax2 + by2 + c = r2.

The other equation is
ax1 + by1 + c = ±r1.

We wish to show that exactly four distinct such triples (a, b, c) exist. Subtracting the second
equation from the first yields

a(x2 − x1) + b(y2 − y1) = r2 ± r1.

Letting

d =
»
(x2 − x1)2 + (y2 − y1)2,

(x0, y + 0, r0) =
(x2 − x1

d
,
y2 − y1

d
,
r2 ± r1

d

)
,

and dividing both sides of the equation by d, we get

ax0 + by0 = r0,

where it is true that

a2 + b2 = 1,

x2
0 + y20 = 1.

Our job is to solve for a and b in terms of x0, y0, and r0. We do this as follows:

ax0 + by0 = r0

by0 = r0 − ax0

b2y20 = (r0 − ax0)
2

= r20 − 2r0ax0 + a2x2
0

(1− a2)y20 = r20 − 2r0ax0 + a2x2
0

a2(x2
0 + y20)− 2r0x0a+ (r20 − y20) = 0

a2 − 2r0x0a+ (r20 − y20) = 0.

By the quadratic formula,

a =
2r0x0 ±

√
(2r0x0)2 − 4(r20 − y20)

2

= r0x0 ±
»

r20x
2
0 − r20 + y20

= r0x0 ±
»

r20(x
2
0 − 1) + y20

= r0x0 ±
»
−r20y20 + y20

= r0x0 ± y0
»

1− r20.
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Then

b =
r0 − ax0

y0

=
r0 − (r0x0 ± y0

√
1− r20)x0

y0

=
r0 − r0x

2
0 ∓ x0y0

√
1− r20

y0

=
r0(1− x2

0)∓ x0y0
√

1− r20
y0

=
r0y

2
0 ∓ x0y0

√
1− r20

y0

= r0y0 ∓ x0

»
1− r20.

Therefore, we obtain

a = r0x0 ± y0
»

1− r20,

b = r0y0 ∓ x0

»
1− r20,

c = r2 − (ax2 + by2),

where there ± and ∓ signs are opposites, and the ± sign in r0 =
r2 ± r1

d
is independent of

the other two signs. Thus, there are four 2 · 2 solutions, due to there being two independent
signs. Finally, these four solutions all exist, regardless of which of the two possibilities for r0
is taken, since

»
1− r20 exists if and only if

1− r20 > 0

1 >
(r2 ± r1

d

)2
d > |r2 ± r1|.

This is true because the circles are purely external to each other, leading to

d > r2 + r1 > |r2 − r1|.

Definition 6.15. A chord of a circle is a line segment with both endpoints on the circle.
In particular, every diameter is a chord. Note that the interior of a chord lies entirely in the
interior of the circle. This leads to more definitions:

• Since two radii can be drawn to the endpoints of a chord, we call the arc intercepted by
the resulting central angle that contains the chord (which is necessarily non-reflex) the
intercepted arc of the chord. In the case that the chord is a diameter, the intercepted
arc could be either semicircle.
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• A secant of a circle is a line in the plane that intersects the circle at exactly two points.
In other words, a secant is like a chord that extends infinitely in both directions.

We need the following lemma as a precursor to the multi-part result that is Theorem 6.18,
which expand the inscribed angle theorem, though the lemma could be considered to be a
part of that set of results.

Lemma 6.16 (Chord-tangent angle theorem). Suppose a chord of a circle meets a tangent
line to the circle at a non-right angle at one of the endpoints of the chord. Then the
acute angle between them is equal to half the measure of the intercepted arc of the chord.
Consequently, the obtuse angle between the chord and the tangent line is equal to half the
measure of the arc opposite to the intercepted arc of the chord. Alternatively, if the chord
and the tangent line meet at a right angle, then the chord is a diameter and both arcs that
are cut off by the chord are semicircles. In general, either angle created by the chord and
tangent is equal to half the measure of the arc on its side.

ϕ

θ
x

x

Proof. Let the acute angle between the chord and the tangent line passing through the chord
measure θ. Let the measure of the intercepted arc of the chord be ϕ. Drawing the radii to
the endpoints of the chord creates an isosceles triangle with base angles x. Then

ϕ+ 2x = 180◦ = 2 · 90◦ = 2 · (x+ θ).
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It follows that ϕ = 2θ. The second part of the lemma is true because ϕ = 2θ implies

360◦ − ϕ = 2 · (180◦ − θ).

In the other case, suppose the chord and tangent meet at a right angle. Since a radius goes
through the point of tangency at a right angle as well, the same line runs through the chord
and the radius. Thus, the chord is the diameter resulting from extending the radius. Since
a diameter cuts off two arcs that are both semicircles, we are done.

Problem 6.17. Suppose a chord AB of a circle meets a tangent line to the circle at A at a
non-right angle. Show that if an inscribed angle ∠APB has P lying on the major arc ÃB
then the measure of ∠APB is the same as the measure of the acute angle between the chord
and the tangent. Analogously, show that if an inscribed angle ∠APB has P lying on the
minor arc ÃB then the measure of ∠APB is the same as the measure of the obtuse angle
between the chord and the tangent.

2θ

θ

θ

O

A

B

P

2ϕ

ϕ

ϕ

O

A

B

P

The inscribed angle theorem can be thought of as providing a relationship between an angle
between two lines emanating from a point P on a circle and the measure of the arc inside
the angle. The inscribed angle theorem can be used to extend itself to points P inside and
outside the circle as follows.

Theorem 6.18. In addition Lemma 6.16, which is a chord-tangent arc theorem, there are
four more angle theorems about intersecting chords, secants and tangents:

1. Chord-chord: Two chords that intersect inside the circle create two pairs of vertical
angles and cut off four arcs. Picking one pair of vertical angles, the measure of either
of those angles is the average of the measures of the two arcs that they contain.

2. Secant-secant: Two secants that intersect outside the circle form an angle that cuts off
four arcs, two of which are contained in the angle. The measure of the angle created
by the two secants is half the positive difference of the measures of the two arcs that
lie inside this angle.

© 2024 Samer Seraj. All rights reserved.



6.2. TANGENTS, SECANTS, AND CHORDS 93

3. Secant-tangent: A secant and a tangent that intersect outside the circle form an angle
that cuts off three arcs, two of which are contained in the angle. The measure of
the angle created by the secant and the tangent is half the positive difference of the
measures of the two arcs that lie inside this angle.

4. Tangent-tangent: Two tangents that intersect outside the circle form an angle that
cuts off two arcs, both of which are contained in the angle. The measure of the angle
created by the two tangents is half the positive difference of the measures of the two
arcs.

Note that there is no similar chord-secant theorem that is meaningfully different from the
scenarios that have already been mentioned.

Proof. Let the angles and arc measures be labelled as above.

1. By the inscribed angle theorem, α = 2γ and β = 2δ. Since θ is an exterior angle to
the triangle drawn, θ = δ + γ. As a result,

θ = γ + δ =
α + β

2
.

C

A

B

D

E
θ

γ

δ

β
α

2. Since γ is an exterior angle to the triangle drawn, γ = θ + δ. Then

θ = γ − δ =
β − α

2
.

A

B

C
D

E
θ

γ

δ

β

α
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3. By Lemma 6.16,

γ =
360◦ − β

2
.

By the inscribed angle theorem, δ =
α

2
. Then

θ = 180◦ − δ − γ = 180◦ − α

2
− 360◦ − β

2
=

β − α

2
.

E
O

A

B

C

θ

δ

γ
α

β

4. In quadrilateral OAEB, the angles add up 360◦, so

θ = 360◦ − 2 · 90◦ − α = 180◦ − α.

The arcs α and β make a partition of the circle, so

θ = 180◦ − α =
(360◦ − α)− α

2
=

β − α

2
.

O E

A

B

θαβ

Problem 6.19. Suppose two parallel lines intersect a circle, each at one or two points. So
they are both secants, both tangents, or one is a secant while the other is a tangent. Show
that the arcs cut off in between them have equal measure.
Problem 6.20. Show that two chords of the same circle have equal length if and only if
their intercepted arcs have equal measure.

© 2024 Samer Seraj. All rights reserved.



Chapter 7

Classifications

“Give him a coin if he must profit from what he learns.”
(in response to a slave who asked what he would gain from
studying geometry)

– Euclid

Trigonometry is the study of turning incomplete information about a triangle’s side lengths
and angles into complete information. First we develop congruence criteria, which tell us
when this task of filling in the blank is feasible. Then we deal with the “ambiguous case,”
which showcases a particular scenario where the blanks are not always possible to fill in
uniquely. We also develop criteria for proving that two triangles are similar. In the second
section, we define and prove classification criteria for special classes of convex quadrilaterals,
specifically trapezoids, parallelograms, rhombi, rectangles, and kites.

7.1 Triangles

Intuitively, congruent shapes are shapes that have, well, the same shape.

Definition 7.1. Following the definition of congruent polygons (Definition 5.35), two trian-
gles are congruent, denoted by △ABC ∼= △DEF (the order of the vertices matters in this
notation), if corresponding sides are equal and corresponding angles are equal. More pre-
cisely, AB = DE,BC = EF,CA = FD and ∠ABC = ∠DEF,∠BCA = ∠EFD,∠CAB =
∠FDE. So congruence of triangles preserves lengths and interior angles.

A B

C

α β

γ

c

ab

D

E

F

α

β

γ

c

a

b

Theorem 7.2. To establish congruence, it is not necessary to show that all corresponding
sides are equal and corresponding angles are equal. There are criteria which allow us to get
away with less. Let S stand for “side” and A stand for “angle.” Then the following sets of data
each allow for one unique triangle to satisfy the data, proving four congruence theorems:
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1. SSS: the three side lengths are known

2. SAS: two side lengths and the angle between those two sides are known

3. ASA: two angle measures and the length of the side between those two angles is known

4. AAS: two angle measures and the length of a side not between those two angles is
known

Proof. We will use the cosine law and sine law to uniquely determine all missing angles and
side lengths, as denoted for △ABC in Definition 7.1.

1. The cosine law can be used to determine cosα, cos β, and cos γ. This leads to unique
angles α, β, γ because the cosine function is injective on the domain of interior angles
(0◦, 180◦).

A B

C

c

ab

2. The cosine law can be used to obtain c, from which the cosine law can again be used
as it was in SSS to obtain α and β.

A B

C

γ
ab

3. First we obtain γ = 180◦ − α− β. Then the sine law equations

a

sinα
=

c

sin γ
,

b

sin β
=

c

sin γ

can be used to isolate and solve for a and b.
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A B

C

βα
c

4. This reduces to ASA because the third angle can be deduced by computing β =
180◦ − α− γ.

A B

C

α

γ

c

We deliberately avoided using the sine law to determine any angles because the fact that

sin θ = sin(180◦ − θ)

makes sine non-injective on (0◦, 180◦). Using sine instead of cosine would thus increase our
verification work. This unfortunate reality is a reflection of the “ambiguous case,” which will
be studied momentarily.

Corollary 7.3. If two triangles are known to be right, then they are congruent if either of
the following criteria are fulfilled:

1. LL congruence: each pair of corresponding legs are (separately) of equal length

2. HL congruence: one pair of corresponding legs are of equal length and the hypotenuses
are of equal length

Proof. LL congruence follows from SAS congruence since the right angle is between the
legs. For HL congruence, we may obtain the remaining leg using the Pythagorean theorem
(Theorem 9.12), which reduces the problem to LL congruence.

Corollary 7.4. The following two criteria each separately establish congruence of two tri-
angles:

1. Two right triangles have an equal non-right angle and an equal leg.

2. Two right triangles have an equal non-right angle and equal hypotenuses.

Proof. We will not need the Pythagorean theorem for these results. In both cases, we can
deduce the third angle which is equal in both triangles using the sum of interior angles result
for triangles, and then use ASA congruence.
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Theorem 7.5. Given a radius and a chord of a circle that is not a diameter, the radius
bisects the chord if and only if the radius is perpendicular to the chord.

Proof. Let the center of the circle be O and let the chord be AB. Supposing the radius
bisects the chord, let the midpoint of the chord be M. Then AM = BM and AO = BO. By
SSS congruence, △AMO ∼= △BMO, and so

∠AMO + ∠BMO = 180◦ =⇒ ∠AMO = ∠BMO = 90◦.

In the other direction, suppose the radius is perpendicular to the chord. Let the intersection
of the chord with the radius be P. By HL congruence, △APO ∼= △BPO, and so AP = BP.

O

A

B

M
O

A

B

P

Problem 7.6. Show that, if two circles intersect at two distinct points, then the line through
the centers of the circles is the perpendicular bisector of the common chord drawn by con-
necting the two points of intersection of the circles.

Problem 7.7. Given△ABC with edges a, b, c opposite to vertices A,B,C respectively, show
that ∠A > ∠B if and only if a > b. As a consequence, the longest side of a triangle is always
opposite to the largest angle, and the shortest side of a triangle is always opposite to the
smallest angle.

Theorem 7.8 (Ambiguous case). SSA is not a congruence theorem in its most general form.
The number of solutions can be classified as follows. In △ABC, sides a, b, c lie opposite to
angles ∠A = α,∠B = β,∠C = γ, respectively. Suppose we have an SSA scenario, where

side lengths a and b are known and α is known. Since sinα =
h

b
, where h is the altitude

emanating from C, let h = b sinα, which is always less than or equal to b. Based on
considering the length a relative to h and h, the number of possible triples (c, β, γ) that
produce a non-degenerate triangle is:

1. If α is acute and a < h, then there are exactly 0 triangles.

2. If α is acute and a = h, then there is exactly 1 triangle.
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3. If α is acute and h < a < b, then there are exactly 2 triangles.

4. If α is acute and a ≥ b, there is exactly 1 triangle.

5. If α is right or obtuse and a ≤ b, then there are exactly 0 triangles.

6. If α is right or obtuse and a > b, then there is exactly 1 triangle.

A B

C

α β

γ

c

ab
h

Proof. We will find triples (c, β, γ) that satisfy the sine law

a

sinα
=

b

sin β
=

c

sin γ
= k,

where k > 0 just represents the common value, and α + β + γ = 180◦. We claim that this
is sufficient to construct a triangle by proving that the triangle inequalities (Theorem 3.10)
hold under these conditions. For example, we can use reversible steps to go backwards and
prove, using a compound angle identity, that

a+ b > c

k sinα + k sin β > k sin γ

sinα + sin β > sin γ

= sin(180◦ − α− β)

= sin(α + β)

= sinα cos β + sin β cosα

sinα(1− cos β) + sin β(1− cosα) > 0.

The inequality in the last line is true because sinα and sin β are positive and cosα and cos β
are strictly bounded above by 1. This proves that a+ b > c, and the other two inequalities
b+ c > a and c+ a > b are similarly proven.

1. Suppose α is acute and a < h. If △ABC exists, then the sine law gives

sin β =
b

a
· sinα =

b

a
· h
b
=

h

a
> 1.

Since it is impossible for sin β > 1 to have a solution, we get a contradiction and no
triangle exists.
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A B

C

a

b
h

α

2. Suppose α is acute and a = h. By the same sequence of equalities as in the first case,
sin β = 1, so β = 90◦. Then we obtain γ = 180◦−α−β. With all the angles obtained,
we can use the sine law to get

c = sin γ · a

sinα
.

So, exactly, one triangle exists.

A B

C

a = hb

α

3. Suppose α is acute and h < a < b. Then

sin β =
h

a
< 1

has two supplementary solutions for β (one acute β1 and one obtuse β2), due to the
reflection identity sin θ = sin(180◦ − θ) from Volume 1. The acute β1 leads to

γ1 = 180◦ − α− β1 > 0

and c as in the second case above. However, with the obtuse β2, we need to check that

γ2 = 180◦ − α− β2

will be positive, which is equivalent to

α < 180◦ − β2 = β1.

By Problem 7.7, the requirement α < β1 is equivalent to a > b, which is inherent to
this case. Thus, exactly two triangles exist.
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A B1 B2

C

a ab
h

α

4. Suppose α is acute and a ≥ b. Since sinα < 1, we get b =
h

sinα
> h, so a ≥ h. As in

the third case above, two supplementary β1, β2 are found, with β1 acute and β2 obtuse.
From β1, we can obtain

γ = 180◦ − α− β1 > 0.

However, the obtuse β2 leads to β2 > α, which is equivalent to b > a by Problem 7.7,
contradicting a ≥ b. So β2 is extraneous and there is exactly one triangle.

A B

C

ab
h

α

5. Suppose α is right or obtuse, and a > b. The first condition gives 0 < sinα ≤ 1 and

the second condition gives
b

a
< 1. Combining them with the sine law yields

sin β =
b

a
· sinα ≤ b

a
< 1,

so a solution to β that satisfies the sine law exists. In fact, two supplementary solutions
exist, which are an acute β1 and an obtuse β2. However, we can only pick β1 because
α is already obtuse, and we do not want two obtuse angles since they would add up to
more than 180◦. Picking β1, we can find γ and c as in previous cases.

A B

C

a

b

α

A B

C

a

b

α
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6. Suppose α is right or obtuse, and a ≤ b. The first condition gives 0 < sinα ≤ 1 and

the second condition gives
b

a
≥ 1 Suppose β exists. Then the sine law gives

sin β =
b

a
· sinα ≥ sinα = sin(180◦ − α),

where 180◦ − α is acute, due to α being obtuse. So

sin β ≥ sin(180◦ − α) =⇒ β ≥ 180◦ − α,

since the sine function is increasing in the first quadrant that consists of all acute
angles. Then we get the contradiction

γ = 180◦ − α− β ≤ 0.

Therefore, there is no triangle in this case.

A B

C
a

b

α

A B

C
a

b

α

This covers all cases of the SSA scenario.

Definition 7.9. Suppose △ABC has edges a, b opposite to vertices A,B respectively, such
that ∠A is known and acute, and a, b are known and they satisfy b sinA < a < b. Note
that b sinA is the length of the height emanating from C. By Theorem 7.8, there are two
configurations for △ABC that satisfy these conditions. This is called the ambiguous case.

Theorem 7.10. Two sides of a triangle are equal if and only if the angles opposite them
are equal.

Proof. Let the triangle be △ABC. For one direction, suppose AB = AC. The amazing trick
here is that △ABC ∼= △ACB because ∠BAC = ∠CAB so we can use SAS congruence.
Then ∠B = ∠C by the definition of congruence.
In the other direction, suppose ∠B = ∠C. A similar trick that we can pull out is that
BC = CB, so △ABC ∼= △ACB by ASA congruence. Then AB = AC by the definition of
congruence.

Definition 7.11. Using Theorem 7.10, we can classify triangles into three types, each of
which can be given two equivalent formulations, one using lengths of sides and one using
measures of interior angles:

• Equilateral triangle: three equal side lengths or three equal interior angles
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• Isosceles triangle: at least two equal side lengths or at least two equal interior angles.
In an isosceles triangle, the legs are the equal sides and the base is the remaining side.
The equal angles are called the base angles and the vertex angle is the remaining
angle. The vertex from which the vertex angle emanates is called the apex. Note that
equilateral triangles qualify as isosceles triangles.

• Scalene triangle: three different side lengths or three different interior angles

Intuitively, two shapes are similar if they are scaled versions of one another.

Definition 7.12. Following the definition of similar polygons (Definition 5.37), two trian-
gles are similar, denoted by △ABC ∼ △DEF (as with congruence, correctly ordering
the vertices in this notation is important), if corresponding angles are equal and the ra-
tios between corresponding sides are equal. More precisely, ∠ABC = ∠DEF,∠BCA =
∠EFD,∠CAB = ∠FDE and

DE

AB
=

EF

BC
=

FD

CA

where the common value k of the proportions is called the similarity ratio. So, similar-
ity preserves interior angles, but not lengths. Similar triangles are said to have the same
orientation if starting with matching angles and going through the other two angles coun-
terclockwise produces the same angles in the same order; otherwise, the similar triangles are
called oppositely oriented.

A B

C

α β

γ

c

ab

D

E

F

α

β

γ

f = kc

d = ka

e = kb

Theorem 7.13. As with congruence, there are similarity criteria which allow us to establish
similarity without showing that all of the conditions in the definition of similarity hold:

1. AA: two pairs of corresponding angles are separately equal (and equality of the third
angles can be deduced)

2. SSS: the three ratios of corresponding sides are equal

3. SAS: the ratios of two corresponding sides are equal, and the angles between them are
equal

Proof. As with the four congruence criteria, we will use the sine law and cosine law to prove
these three similarity criteria. Let the triangles be △ABC with sides a, b, c opposite angles
A,B,C, respectively, and △DEF with sides d, e, f opposite angles D,E, F , respectively.
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1. Suppose ∠A and ∠D have a common value of α, and that ∠B and ∠E have a common
value of β. Then ∠C and ∠F have a common value of

γ = 180◦ − α− β.

By the sine law,

a

sinα
=

b

sin β
=

c

sin γ
,

d

sinα
=

e

sin β
=

f

sin γ
.

Dividing the top equation by the bottom one causes cancellations, yielding

a

d
=

b

e
=

c

f
,

which are the similarity proportions that we seek.

A B

C

α β

D

E

F

α

β

2. Suppose
d

a
=

e

b
=

f

c
= k

for some common value k. Then d = ka, e = kb, and f = kc. Then

cosB =
c2 + a2 − b2

2ca

=
(kc)2 + (ka)2 − (kb)2

2(kc)(ka)

=
f 2 + d2 − e2

2fd

= cosE,

which gives ∠B = ∠E, due to the injectivity of the cosine function on (0◦, 180◦).
Similarly, ∠A = ∠D and ∠C = ∠F .
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A B

C

c

ab

D

E

F

f = kc

d = ka

e = kb

3. Suppose
d

a
=

e

b
= k for some common value k and that ∠C = ∠F have a common

value of γ. Then d = ak and e = bk. So,

f

c
=

√
d2 + e2 − 2de cos γ√
a2 + b2 − 2ab cos γ

=

√
(ka)2 + (kb)2 − 2(ka)(kb) cos γ√

a2 + b2 − 2ab cos γ

= k =
d

a
=

e

b
,

which proves the similarity proportions. This reduces the problem to SSS similarity,
which was addressed above.

A B

C

γ

ab

D

E

Fγ

d = ka

e = kb

Problem 7.14. Prove that △ABC is equilateral if and only if △ABC ∼ △BCA.

Theorem 7.15. A common setup is when there are two triangles with an equal angle and
one triangle is wedged inside the other, which we will call nested triangles. The triangles
are similar and have the same orientation if and only if the sides opposite the nested angles
are parallel. (Note that, in a different scenario, the nested triangles could be similar yet
oppositely oriented.)
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Proof. Let the triangles be △ABC and △A′B′C ′ with ∠A = ∠A′, and A,A′ coinciding.
By corresponding angles, BC and B′C ′ are parallel if and only if ∠ABC = ∠A′B′C ′ and
∠ACB = ∠A′C ′B′. By AA similarity, this is true if and only if △ABC ∼ △A′B′C ′ and the
two triangles have the same orientation.

Problem 7.16. Show that connecting the midpoints of two sides of a triangle creates a
line segment that has half the length of the third side and that is parallel to the third side.
Use this to prove that connecting the midpoints of all three sides to each other creates four
congruent triangles. The central one is called the medial triangle.

7.2 Quadrilaterals

Lemma 7.17. “The” shortest distance between two parallel lines in the plane is a well-
defined concept because:

1. Suppose we are given a line and a point in the plane that does not lie on the line. Then
there exists a unique line segment of shortest length with one endpoint on the point
and the other endpoint on the line. The segment is perpendicular to any direction
vectors on the line.

2. The distance from a point on one line to the closest point on a parallel plane is a
constant, regardless of the first point.

3. The shortest distance from any point on the first line to the second line is the same as
the shortest distance from any point on the second line to the first line.

Proof. In essence, the concepts of perpendicular distance and shortest distance converge.

1. Let the point be P and the line be ℓ. Following Theorem 4.17, let v be a vector with
its tail on the line and its head on P , and let w be a direction vector of the line. Let
u = projwv and z = oprojwv. Then ∥z∥ is the perpendicular distance from P to ℓ. We
claim that this is also the shortest possible distance from P to anywhere on ℓ. Indeed,
by the vector Pythagorean theorem (Theorem 4.14),

∥v∥2 = ∥u∥2 + ∥z∥2 ≥ ∥z∥2 =⇒ ∥v∥ ≥ ∥z∥,

with equality holding if and only if u = 0. So, the point on ℓ at which the minimum
distance ∥z∥ from P occurs is unique, and this is also where the perpendicular distance
occurs.

2. Suppose parallel lines are given by

ax+ by + c = 0,

Ax+By + C = 0.
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Let (x0, y0) and (x1, y1) be distinct points on the first line. Using the formula for the
perpendicular distance between a point and a line in the plane (Theorem 4.17), we
work backwards:

|Ax0 +By0 + C|√
A2 +B2

=
|Ax1 +By1 + C|√

A2 +B2

(Ax0 +By0 + C)2 = (Ax1 +By1 + C)2

[A(x0 − x1) +B(y0 − y1)] · [A(x0 + x1) +B(y0 + y1) + 2C] = 0,

where we used the difference of squares factorization in the last step. This is true
because the first factor in the last line is equal to

(A,B) · (x0 − x1, y0 − y1),

which is zero because (x0 − x1, y0 − y1) is a direction vector of the line and (A,B) is a
normal vector to the line.

3. Since we have shown that the concepts of perpendicular distance and shortest distance
are the same, it suffices to prove that if P is a point on the first line and Q is a point
on the second line, and if w is a direction vector common to both lines (which exists
because they are parallel), then, for v =

−→
PQ,

∥oprojwv∥ = ∥oprojw(−v)∥.

Indeed, by the formula in Theorem 4.13, we get

∥oprojw(−v)∥ = ∥ − v − projw(−v)∥

= ∥ − v − ⟨−v, w⟩
⟨w,w⟩

w∥

= ∥ − v +
⟨v, w⟩
⟨w,w⟩

w∥

= ∥v − ⟨v, w⟩
⟨w,w⟩

w∥

= ∥v − projwv∥
= ∥oprojwv∥,

as desired.

This will allow us to refer to a well-defined concept of the shortest and perpendicular “dis-
tance” between parallel lines, particularly when working with special classes of quadrilater-
als.

Definition 7.18. A convex quadrilateral is a convex polygon with four vertices and four
edges. The diagonals of a convex quadrilateral ABCD are the line segments AC and BD
that connect non-adjacent vertices.
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A

B

C

D

There also exist non-convex (i.e. concave) quadrilaterals, such as darts, but we will not
study them.

Definition 7.19. There are several classes of convex quadrilaterals, defined by their impor-
tant regularities:

1. A trapezoid is a convex quadrilateral with at least one pair of parallel sides. If one
pair of parallel sides is distinguished then they are called bases and the other two sides
are called legs. The height of a trapezoid is the distance between the lines through
the bases, which is well-defined according to Lemma 7.17. The median of a trapezoid
is the line segment connecting the midpoints of the two legs.

A B

CD

2. A parallelogram is a convex quadrilateral such that each pair of opposite sides is
parallel. Note that every parallelogram is a trapezoid.

A B

CD

3. A rhombus is a convex quadrilateral such that all four edges have equal length. By
drawing a diagonal and using SSS congruence, we find that the two triangles are
congruent isosceles triangles; this causes the existence of alternate interior angles angles
twice, which shows that opposite sides of a rhombus are parallel. So, every rhombus a
parallelogram.
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A B

CD

4. A rectangle is a convex quadrilateral with all four interior angles having equal mea-
sure. By drawing a diagonal, we can split any convex quadrilateral into two triangles
and so the sum of the interior angles of a convex quadrilateral is 2 · 180◦ = 360◦.
Then, the interior angles of a rectangle all measure 90◦; this causes the existence of
alternate interior angles, which shows that each pair of opposite sides is parallel. So,
every rectangle a parallelogram.

A B

CD

5. A square is a convex quadrilateral with all four edges having equal length and all four
interior angles having equal measure, making it both a rhombus and a rectangle.

A B

CD

Therefore, we have the following inclusion hierarchy of convex quadrilaterals:

Squares ⊆ Rectangles and Rhombi
⊆ Parallelograms
⊆ Trapezoids
⊆ Convex Quadrilaterals.

All of the inclusions are actually proper but we will not belabour this obvious point.

Problem 7.20. Prove that, in any convex quadrilateral, a parallelogram is created by con-
necting the midpoints of consecutive sides.

Theorem 7.21. Given any trapezoid, the median is parallel to the bases and the length of
the median is the average of the lengths of the bases.
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Proof. Let trapezoid ABCD have bases AD and BC. Let M be the midpoint of AB and N
be the midpoint of CD. First we extend BN until it meets the line through AD at P. Since
∠CBP = ∠DPB and ∠BCD = ∠PDC and DN = CN, we get that △BCN ∼= △PDN
by AAS congruence. Looking at MN as connecting the midpoints of two sides of △ABP,
Problem 7.16 implies that MN is parallel to AD and

MN =
AP

2
=

AD +DP

2
=

AD +BC

2
,

since DP = BC. It is also true that MN is parallel to BC because MN is parallel to AP ,
and AD is parallel to BC.

A

B C

D P

M
N

Theorem 7.22. A convex quadrilateral is a parallelogram if and only if any one of the
following conditions hold for it:

1. Each pair of opposite sides consists of two sides of equal length.

2. Each pair of opposite interior angles consists of two equal angles.

3. The diagonals bisect each other.

4. There are two opposite sides that are parallel and equal in length.

A B

CD

Proof. Letting the original definition of a parallelogram be (0), we will prove that

(0) =⇒ (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (0).

1. Suppose ABCD is a parallelogram, meaning each pair of opposite sides is parallel. By
drawing the diagonal BD and using alternate interior angles to invoke ASA congruence,
we find that △ABD ∼= △CDB. Thus, AB = CD and AD = CB.
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2. Suppose AB = CD and AD = CB. Again, we draw the diagonal BD. This time,
we use SSS congruence to get that △ABD ∼= △CDB. Then ∠ABD = ∠CDB and
∠ADB = ∠CBD, so

∠ABC = ∠ABD + ∠DBC = ∠CDB + ∠BDA = ∠CDA.

By the same SSS congruence, we also get ∠BAD = ∠DCB.

3. Suppose ∠ABC = ∠CDA and ∠BAD = ∠DCB. Since the sum of the interior angles
of a quadrilateral is 360◦, we find that ∠DCB and ∠CDA and supplementary. Thus,
they are same-side interior angles in a setup where AD and BC have parallel lines
running through them and CD has a transversal running through it. Similarly, AB
and CD are parallel too. As in the first implication, AB = CD and AD = CB. Now
we draw the diagonals. By using the equality of alternate interior angles and ASA
congruence, we find that the diagonals bisect each other. The detail are left to the
reader.

4. Suppose the diagonals of ABCD bisect each other with the point of intersection being
E. By the equality of vertical angles and by SAS congruence, AD = BC. Then alternate
interior angles imply that AD and BC are parallel.

5. Suppose AD = BC and that AD and BC are parallel. First we draw the diagonal
BD and use alternate interior angles to get ∠ADB = ∠CBD. By SAS congruence,
△ADB ∼= △CBD. Then ∠ABD = ∠CDB. By alternate interior angles, AB and
CD are parallel too. Thus, the two pairs of opposite sides of ABCD each consists of
parallel sides, making it a parallelogram.

Therefore, we have five equivalent criteria for identifying a parallelogram.

Note that we drew auxiliary lines like diagonals to facilitate the proof of Theorem 7.22. One
way of thinking of drawing auxiliary lines is that we are not drawing a line, but rather the
line is already there as a subset of the plane. We have only noticed that it is there. The
geometer wishes to become competent at observing what is already there.

Problem 7.23. Prove that a convex quadrilateral is a rhombus if and only if diagonals are
perpendicular and bisect each other.

Problem 7.24. Prove that a convex quadrilateral is a rectangle if and only if the diagonals
are equal in length and bisect each other.

Since a convex quadrilateral is a square if and only if it is both a rectangle and a rhombus,
combining Problem 7.23 and Problem 7.24 yields that a convex quadrilateral is a square if
and only if the diagonals are perpendicular, equal, and bisect each other.

Definition 7.25. A kite is a convex quadrilateral with two disjoint pairs of sides such that
each pair consists of adjacent sides that are equal. For example, rhombuses are kites, as are
squares.
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Theorem 7.26. A convex quadrilateral is a kite if and only if any one of the following
conditions hold.

1. A diagonal cuts the quadrilateral into two congruent triangles (so, there is a line of
symmetry).

2. A diagonal bisects a pair of opposite interior angles.

3. A diagonal bisects the other diagonal, and the two diagonals are perpendicular to each
other.

A

B

C

D

Proof. Letting the original definition of a kite be (0), we will prove that

(0) =⇒ (1) =⇒ (2) =⇒ (3) =⇒ (0).

1. Suppose we have a kite ABCD such that AB = AD and CB = CD. By SSS congruence
△ABC ∼= △ADC. So the diagonal AC is the one we seek.

2. Suppose ABCD is a convex quadrilateral such that△ABC ∼= △ADC. Then ∠BAC =
∠DAC and ∠BCA = ∠DCA, so the diagonal AC bisects each of the interior angles
∠BAD and ∠BCD.

3. Suppose ABCD is a convex quadrilateral such that the diagonal AC bisects each of the
interior angles ∠BAD and ∠BCD. Let E be the foot of the height of △ABC from B
to AC, and F be the foot of the height of △ADC from D to AC. By AAS congruence,
△ABE ∼= △ADF, so AE = AF. So the diagonal BD intersects the diagonal AC at
E = F. Since E = F is the feet of two altitudes, the intersection forms right angles.
Moreover, the aforementioned congruence yields BE = DF, so BD is bisected by AC.

4. Suppose ABCD is a convex quadrilateral such that AC perpendicularly bisects BD
at E. By SAS congruence △AEB ∼= △AED and △CEB ∼= △CED. Thus, AB = AD
and CB = DC, making ABCD a kite.

Therefore, we have four equivalent criteria for identifying a kite.
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Chapter 8

Circles II

“Let no one untrained in geometry enter.”
– written over the entrance to Plato’s academy

We will start by studying the power of a point theorem and its converse. Then we will look
at several useful and interesting criteria for knowing when four points all lie on a circle, since
cyclic quadrilaterals are rich in structure. Afterwards, we will look into cyclic and tangential
polygons.

8.1 Cyclic Quadrilaterals

Definition 8.1. The power of a point P with respect to a circle Γ with center O and
radius r is

PowΓ(P ) = OP 2 − r2.

This is the same as (OP + r)(OP − r), so

sgn [PowΓ(P )] =


1 if P is in the exterior of Γ
0 if P is on Γ

−1 if P is in the interior of Γ
.

O

P

P

P
r

r

r

Theorem 8.2 (Power of a point theorem). Let P be a point, let Γ be a circle, and let ℓ be
a line through P. Then:

1. If P is in the exterior of Γ and ℓ intersects Γ at two distinct points X and Y, then

PX · PY = PowΓ(P ).
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2. If P is in the interior of Γ and ℓ intersects Γ at two distinct points X and Y, then

PX · PY = −PowΓ(P ).

3. If P is in the exterior of Γ and ℓ is tangent to Γ at Z then

PZ2 = PowΓ(P ).

O

X

Y

P

O

X

Y

P
OZ

P

Proof. Authors often prove the power of a point theorem for each configuration separately
using triangle geometry. Some go straight to proving the consequential configurations in
Corollary 8.3. We will tackle all three cases at once using complex numbers.
Let the center of Γ be the origin, without loss of generality, and let its radius be r, Then a
general point on Γ is z = reiθ. Let the point P be located at the complex number p, and let
the counterclockwise angle from the x-axis to ℓ be ϕ. Then a general point on ℓ is

z = p+ seiϕ,

where s is a directed length from p to z, where the sign of s depends on the of side p on ℓ
on which z lies. Letting z represent the points where ℓ intersects Γ, we can equate

p+ seiϕ = z = reiθ.

The conjugate of this equation is

p+ sei(−ϕ) = rei(−θ).

Multiplying the original equation by the conjugate equation yields

r2 = (reiθ) · (rei(−θ))

= (p+ seiϕ)(p+ sei(−ϕ))

= |p|2 + 2

Ç
pei(−ϕ) + peiϕ

2

å
s+ s2

= |p|2 +
î
2 · Re(pei(−ϕ))

ó
s+ s2.
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This provides a quadratic equation in the variable s with real coefficients, namely

s2 +
î
2 · Re(pei(−ϕ))

ó
s+ (|p|2 − r2) = 0.

If the two solutions to this quadratic are s1 and s2 then we are seeking |s1| · |s2|. By Vieta’s
formulas,

|s1| · |s2| = |s1 · s2| =
∣∣|p|2 − r2

∣∣ = |PowΓ(P )| .

Now we can specialize the formula to each case:

1. If P is in the exterior of Γ and ℓ intersects Γ at two distinct points X and Y, then

PX · PY = |s1| · |s2| = |PowΓ(P )| = PowΓ(P ).

2. If P is in the interior of Γ and ℓ intersects Γ at two distinct points X and Y, then

PX · PY = |s1| · |s2| = |PowΓ(P )| = −PowΓ(P ).

3. If P is in the exterior of Γ and ℓ is tangent to Γ at Z, then there is one distinct solution
to the quadratic and s1 = s2, which leads to

PZ2 = |s1|2 = |s1| · |s2| = |PowΓ(P )| = PowΓ(P ).

Corollary 8.3. In practice, the power of a point theorem comes in three configurations that
follow directly from Theorem 8.2. Let P be a point and let Γ be a circle.

1. Chord-chord: If P is in the interior of Γ, and AB and CD are two chords of the circle
that intersect at P, then

PA · PB = PC · PD.

2. Secant-secant: If P is in the exterior of Γ, and one secant through P intersects the
circle at two distinct points A and B, and another secant through P intersects the
circle at two distinct points C and D, then

PA · PB = PC · PD.

3. Secant-tangent: If P is in the exterior of Γ, and a secant through P intersects the circle
at two distinct points A and B, and a tangent through P intersects the circle at C,
then

PA · PB = PC2.

We could also develop a tangent-tangent case, but this would be equivalent to saying that
the two tangent segments from an exterior point have the same length, which was proven in
Theorem 6.12.
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Definition 8.4. If four points lie on a circle then they form a cyclic quadrilateral. To be
clear, to name it we would still write the vertices in clockwise or counterclockwise fashion,
starting with any vertex, as usual.

Theorem 8.5 (Cyclic quadrilateral criteria). Let ABCD be a convex quadrilateral. Then
the following conditions are equivalent:

1. ABCD is a cyclic quadrilateral

2. ∠ADB = ∠ACB

3. ∠ABC + ∠ADC = 180◦

We have assumed convexity in order for the angles in question to be well-defined angles
whose interiors lie in the interior of the quadrilateral. Otherwise, it would not be clear to
which of the two explementary angles we are referring in some cases where we refer to an
angle.

A

B

C

D

Proof. We will show that
(2) ⇐⇒ (1) ⇐⇒ (3)

follows from the inscribed angle theorem and its converse (Theorem 6.6). By naming con-
ventions, since ABCD is a convex quadrilateral, C and D lie on the same side of the line
through AB, and B and D lie on opposite sides of the line through AC. Thus:

• (1) =⇒ (2): We know that C and D lie on the same arc between A and B. By the
inscribed angle theorem, ∠ADB and ∠ACB are both equal to half the measure of
their intercepted arc ÃB.

• (2) =⇒ (1): First we draw the circumcircle of △ADB. Letting ÃB be the arc not
containing D, ∠ADB is equal to half the measure of ÃB. Since ∠ACB = ∠ADB and
C lies on the side of the line through AB not containing ÃB, this forces C to lie on arc
ĂDB as well by the converse of the inscribed angle theorem. Thus, ABCD is cyclic.
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• (1) =⇒ (3): We know that B and D lie on opposite sides of the line through AC,
so the inscribed angle theorem tells us that ∠ABC and ∠ADC are equal to half the
measures of ĂDC and ĂBC, respectively. Since the two arcs sum to a full rotation,
the sum of the inscribed angles is

∠ABC + ∠ADC =
ĂDC

2
+

ĂBC

2
=

360◦

2
= 180◦.

• (3) =⇒ (1): First we draw the circumcircle of △ABC. Letting ÃC be the arc not
containing B, ∠ABC is equal to half the measure of ÃC. By assumption and the
inscribed angle theorem,

∠ADC = 180◦ − ∠ABC = 180◦ − ÃC

2
= 180◦ − 360◦ − ĂBC

2
=

ĂBC

2
.

Since D and B lie on the opposite sides of the line through AC, D lies on the side
of the line through AC not including ĂBC. By the converse of the inscribed angle
theorem, this forces D to lie on ÃC. Thus, ABCD is cyclic.

Problem 8.6. Find a formula for each diagonal of a cyclic quadrilateral purely in terms of
the side lengths of the quadrilateral.

Theorem 8.7. A trapezoid ABCD with parallel sides AB and CD is said to be isosceles
if it satisfies any one of the following conditions. Then these conditions are equivalent:

1. The diagonals AC and BD are equal in length.

2. If the point of intersection of the diagonals is X, then AX = BX and CX = DX.

3. A pair of the base angles are equal, where ∠ADC and ∠BCD is one pair of base
angles, and ∠DAB and ∠CBA is another pair of base angles. Note that if one pair of
base angles are equal then the other pair is also equal since same-side interior angles
of a transversal are supplementary, which implies that

∠ADC + ∠DAB = 180◦ = ∠BCD + ∠CBA.

4. A pair of opposite interior angles are supplementary. Note that one pair of opposite
interior angles being supplementary implies cyclicity, which implies that the other pair
of opposite interior angles is also supplementary.

Contrary to intuition, the legs (i.e. the two opposite sides that are not necessarily parallel)
being equal in length is not sufficient for the trapezoid to be isosceles. Otherwise, a non-
square rhombus would qualify,even though its diagonals are not equal, for example.
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AB

C D

X

Proof. We will cycle through the conditions:

• (1) =⇒ (2): If AC = BD, then alternate interior angles of a transversal tells us

that △ABX ∼ △CDX. By similarity ratios,
AX

CX
=

BX

DX
, and the hypothesis is that

AX + CX = BX +DX. By an algebraic ratio trick,

AX

BX
=

CX

DX
=

AX + CX

BX +DX
= 1.

• (2) =⇒ (3): If AX = BX and CX = DX, then isosceles triangles and alternate in-
terior angles of a transversal tell us that ∠ABD = ∠BDC = ∠ACD. Since trapezoids
are always convex, this means ABCD is cyclic. Then ∠ADB = ∠ACB as well, which
means

∠ADC = ∠ADB + ∠BDC = ∠ACB + ∠ACD = ∠BCD,

so two base angles are equal.

• (3) =⇒ (4): If a pair of base angles are equal then the other pair of base angles are
also equal, as argued in the statement of the theorem. Since same-side interior angles
of a transversal are supplementary,

∠ABC + ∠ADC = ∠ABC + ∠BCD = 180◦.

• (4) =⇒ (1): If opposite interior angles are supplementary, then using the fact that
same-side interior angles of a transversal are supplementary,

∠ADC = 180◦ − ∠ABC = 180◦ − (180◦ − ∠BCD) = ∠BCD.

Moreover, opposite interior angles being supplementary in a convex quadrilateral im-
plies cyclicity, which implies ∠DAC = ∠CBD. Since △ADC and △BCD share DC,
it follows from AAS congruence that they are congruent, which allows us to conclude
that AC = BD.
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Problem 8.8. Show that a trapezoid is isosceles if and only if connecting the midpoints of
the bases creates a segment perpendicular to both bases.

Now we will develop several concyclicity criteria for four points in the plane. The first is
based on the complex number “cross-ratio,” the second is a converse to the power of a point

theorem, and the third involves all
Ç
4

2

å
= 6 pairwise lengths between the four points.

Theorem 8.9 (Complex concyclicity). Let A,B,C,D be distinct points in the plane such
that they are not all collinear. Let the corresponding complex numbers in the complex plane
be a, b, c, d, respectively. Then A,B,C,D are concyclic if and only if

λ(a, b, c, d) =
b− c

a− c
· a− d

b− d

is a non-zero real number. We will prove the following more refined version:

1. A,B,C,D are concyclic such that C,D lie on the same side of the line through AB if
and only if λ(a, b, c, d) is a positive real number.

2. A,B,C,D are concyclic such that C,D lie on opposite sides of the line through AB if
and only if λ(a, b, c, d) is a negative real number.

Proof. If A,B,C,D were concyclic in some order then the resulting quadrilateral would be
cyclic. So the quadrilateral would be convex, which would mean that no three of the vertices
are collinear and none of the vertices lie in the interior of the triangle formed by the other
three vertices. Before we delve into the heart of the proof, we will briefly argue in the other
direction that, if λ(a, b, c, d) is a non-zero real number, then no one of A,B,C,D lies in the
interior or boundary of the triangle formed by the other three vertices. Suppose otherwise
for contradiction. Then the fourth vertex lies in the interior of the triangle or the interior of
one of the three edges. In essence, λ(a, b, c, d) is a non-zero real number if and only if

arg

Å
b− c

a− c

ã
+ arg

Å
a− d

b− d

ã
≡ 0, π.

Geometrically, this is equivalent to meaning the counterclockwise angle around C that makes
AC coincide with BC plus the counterclockwise angle around D that makes BD coincide with
AD is congruent to 0 or π modulo 2π. Due to size considerations of the two counterclockwise
angles in question, this never happens whenever one vertex lies in the interior of or on the
boundary of the triangle formed by the other three vertices. We encourage the reader to fill
in the details.
We have mentioned this so that, when we assume that λ(a, b, c, d) is a positive or negative real
number, we can safely work on only the cases where A,B,C,D form a convex quadrilateral
in some order. In those cases, there are 4! = 24 ways in which the vertices can be ordered;
due to the symmetry of rotations, we can assume the “first” vertex is A, which thankfully
gives 6 cases instead of 24 where we go counterclockwise from A:

ABCD,ABDC,ACDB,ADCB and ACBD,ADBC.

In the first four cases C,D lie on the same side of the line through AB, and in the last two
cases C,D lie on opposite sides of the line through AB.
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A
B

C
D

A
B

D
C

A
C

D
B

A
D

C
B

A
C

B
D

A
D

B
C

Thanks to reflections, we can actually cut the cases down to three, as in every alternate
one shown. We are finally ready to prove the two parts of the theorem. In each step of the
argument, the reader should verify that it make sense in the relevant diagrams.

1. Suppose A,B,C,D are concyclic and C,D lie on the same side of AB. By a criterion
for cyclic quadrilaterals, ∠ACB = ∠ADB and so

arg

Å
b− c

a− c

ã
= arg

Å
b− d

a− d

ã
,

as this arg equation is equivalent to ∠ACB = ∠ADB or 2π −∠ACB = 2π −∠ADB,
where we are referring to the non-reflex versions of ∠ACB and ∠ADB.

Conversely, if this arg equation holds, it means the counterclockwise angle resulting
from rotating AC around C to coincide with BC is equal to the counterclockwise angle
resulting from rotating AD around D to coincide with BD. Suppose for contradiction
that C,D lie on opposite sides of AB. Then one of the aforementioned counterclockwise
angles would be less than π and the other would be greater than π, meaning they cannot
be equal. So C,D lie on the same side of the line through AB. By the arg equation,
the non-reflex ∠ACB and ∠ADB are equal, as ∠ACB and ∠ADB are respectively

arg

Å
b− c

a− c

ã
and arg

Å
b− d

a− d

ã
, or respectively 2π−arg

Å
b− c

a− c

ã
and 2π−arg

Å
b− d

a− d

ã
.

Then a criterion for cyclic quadrilaterals tells us that A,B,C,D are concyclic.

So the initial conditions are equivalent to

0 ≡ arg

Å
b− c

a− c

ã
− arg

Å
b− d

a− d

ã
≡ arg

Å
b− c

a− c
÷ b− d

a− d

ã
,

which is equivalent to λ(a, b, c, d) being a positive real number.
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2. Suppose A,B,C,D are concyclic and C,D lie on opposite sides of AB. By a criterion
for cyclic quadrilaterals, ∠ACB + ∠ADB = π and so

arg

Å
b− c

a− c

ã
+ arg

Å
a− d

b− d

ã
≡ π,

as this congruence is equivalent to ∠ACB + ∠ADB ≡ π or (2π − ∠ACB) + (2π −
∠ADB) ≡ π, where we are referring to the non-reflex version of ∠ACB and ∠ADB.

Conversely, if this arg congruence holds, it means the counterclockwise angle resulting
from rotating AC around C to coincide with BC plus the counterclockwise angle
resulting from rotating BD around D to coincide with AD is congruent to a flat angle.
Suppose for the sake of contradiction that C,D lie on the same side of the line through
AB. Then one of the aforementioned counterclockwise angles will lie in (0, π) and the
other will lie in (π, 2π). Then their sum minus π will lie in (0, 2π), contradicting the
fact that it should be congruent to 0 modulo 2π. So C,D lie on opposite sides of AB.
By the arg congruence, the non-reflex ∠ACB and ∠ADB satisfy ∠ACB+∠ADB ≡ π,

as ∠ACB and ∠ADB are respectively arg

Å
b− c

a− c

ã
and arg

Å
a− d

b− d

ã
, or respectively

2π − arg

Å
b− c

a− c

ã
and 2π − arg

Å
a− d

b− d

ã
. This congruence is actually the equality

∠ACB + ∠ADB = π because both of the angles on the left lie in (0, π), which makes
their sum lie in (0, 2π). Then a criterion for cyclic quadrilaterals tells us that A,B,C,D
are concyclic.

So the initial conditions are equivalent to

π ≡ arg

Å
b− c

a− c

ã
+ arg

Å
a− d

b− d

ã
≡ arg

Å
b− c

a− c
· a− d

b− d

ã
,

which is equivalent to λ(a, b, c, d) being a negative real number.

Theorem 8.10 (Converse of power of a point). Let A,B,C,D be distinct points in the
plane that are not all collinear. Let P be the intersection of the lines through AB and CD.
Suppose P either lies on both of the segments AB and CD or neither. If

PA · PB = PC · PD,

then A,B,C,D are concyclic, not necessarily in that order.

Proof. We will use complex numbers. Let the four points be a, b, c, d, respectively. Since the
setup can be translated without issue, let P be the complex origin 0. Knowing that a, b, 0
are collinear and that c, d, 0 are collinear, there exist real numbers x, y such that

a = bx,

c = dy.
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Due to the fact that
PA · PB = PC · PD,

we know that P cannot equal any of the A,B,C,D because it would prevent at least two
of these four points from being distinct. So P is either in the interior of both segments
AB,CD or in the exterior of both segments. If 0 (as in, P ) lies on the segment AB and on
the segment CD then x, y are both negative since a negative dilation is required to send b to
a and, similarly, a negative dilation is required to to send d to c. On the other hand, if 0 lies
on neither the segment AB nor the segment CD, then the negative dilations are replaced
by positive dilations. Either way, xy is a positive real number, since the signs of x, y are the
same. The last bit of preliminary observation is that the equation

PA · PB = PC · PD

is equivalent to
aabb = ccdd

or
ab

cd
=

Å
cd

ab

ã
.

By the complex concyclicity criterion, it suffices to prove that λ(a, c, b, d) ∈ R. To that end,
we compute

λ(a, c, b, d) =
c− b

a− b
· a− d

c− d

=
c− b

bx− b
· a− d

dy − d

=
c− b

b(x− 1)
· a− d

d(y − 1)

=
c− b

b
· a− d

d
· 1

x− 1
· 1

y − 1

=
(c
b
− 1
)(a

d
− 1
)
· 1

x− 1
· 1

y − 1

=
(ac
bd
− a

d
− c

b
+ 1
)
· 1

x− 1
· 1

y − 1
.

Since x, y are defined to be real and

ac

bd
=

a

b
· c
d
= xy

is real, it suffices to prove that
a

d
+

c

b
is real. At this point, our tactic will be to prove that(a

d
+

c

b

)2
is real and non-negative, which will imply

a

d
+
c

b
(without the square) is real. First

we note that
a

d
+

c

b
=

bxÄ
c
y

ä + dy(
a
x

) =

Å
d

a
+

b

c

ã
xy.
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Since xy is already real and positive, it suffices to prove that(a
d
+

c

b

)Åd
a
+

b

c

ã
=

ab

cd
+

cd

ab
+ 2

is real and non-negative. Since

|a| · |b| = |c| · |d| =⇒
∣∣∣∣abcd
∣∣∣∣ = 1,

we know that
ab

cd
= eiϕ lies on the complex unit circle. Therefore,

ab

cd
+

cd

ab
= eiϕ +

1

eiϕ

= eiϕ + ei(−ϕ)

= (cosϕ+ i sinϕ) + (cos(−ϕ) + i sin(−ϕ))
= (cosϕ+ i sinϕ) + (cosϕ− i sinϕ)

= 2 cosϕ ≥ −2.

This completes the proof.

Theorem 8.11 (Ptolemy’s inequality). If A,B,C,D are four distinct points in the plane,
then

AB · CD +BC ·DA ≥ AC ·BD.

If they are not all collinear, then equality holds if and only if A,B,C,D are concyclic in that
clockwise or counterclockwise order. The equality criterion is called Ptolemy’s theorem.

Proof. We place A,B,C,D on the complex plane by letting them be represented by the
distinct points 0, z1, z2, z3 respectively, without loss of generality. Then we wish to show that

|z1| · |z2 − z3|+ |z1 − z2| · |z3| ≥ |z2| · |z1 − z3|.

Dividing both sides by |z1 · z2 · z3| yields the equivalent inequality∣∣∣∣ 1z3 − 1

z2

∣∣∣∣+ ∣∣∣∣ 1z2 − 1

z1

∣∣∣∣ ≥ ∣∣∣∣ 1z3 − 1

z1

∣∣∣∣ .
This is true by the complex triangle inequality. Since neither term on the left side is 0 due
to the distinctness of the points, equality holds if and only ifÄ

1
z3
− 1

z2

äÄ
1
z2
− 1

z1

ä = −z2 − z3
0− z3

· 0− z1
z2 − z1

= −λ(0, z2, z3, z1)

is a positive real number, by the equality criterion of the complex triangle inequality (see
Volume 1). Equivalently, λ(0, z2, z3, z1) is a negative real number. Assuming A,B,C,D are
not all collinear, the complex concyclicity criterion tells us that this is true if and only if
0, z1, z2, z3 are concyclic such that z1, z3 lie on opposite sides of the line through 0 and z2.
This is the result we seek.
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8.2 Cyclic and Tangential Polygons

Definition 8.12. The perpendicular bisector of a line segment is the line that runs
through the midpoint of the segment and is perpendicular to the segment.

Theorem 8.13. Given two distinct points A and B, the locus of points that are equidistant
from A and B is the perpendicular bisector of AB.

A B

Proof. Suppose P is a point that is equidistant from A and B. Then △APB is isosceles
with PA = PB. Let F be the foot of the perpendicular from P to AB. By HL congruence,
△APF ∼= △BPF, which implies AF = BF. Thus, P lies on the perpendicular bisector of
AB.
For the other inclusion, suppose Q lies on the perpendicular bisector of AB. Let the midpoint
of AB be M, so that AM = BM. By SAS congruence, △AMQ ∼= △BMQ, which implies
QA = QB. Thus, Q is equidistant from A and B.

Definition 8.14. A set of points is said to be concyclic if there exists a circle on which they
all lie. A cyclic polygon is one whose vertices are concyclic, where the circle on which all the
vertices can be placed is called the circumcircle. In other words, there is a point called the
circumcenter from which all the vertices are at a fixed distance called the circumradius.
Every cyclic polygon is convex because each interior angle is an inscribed angle, which must
be half of the corresponding central angle; since the central angle must be less than 360◦,
each interior angle is less than 180◦.

Definition 8.15. A collection of lines, rays or line segments is said to concur or be concur-
rent if there is a point that lies on all of them. This point is called a point of concurrency.

Theorem 8.16. A polygon is cyclic if and only if the perpendicular bisectors of all of its
edges concur at some point. If this point exists, it is the unique circumcenter.

Proof. If the circumcenter exists, then it is a point P that is equidistant from every ver-
tex, which means P is equidistant from the endpoints of every edge, and so P lies on the
perpendicular bisector of every edge, by Theorem 8.13.
Conversely, if the perpendicular bisectors of all of the edges concur at Q, then Q must be
equidistant from the endpoints of every edge, by Theorem 8.13. This means Q is equidistant
from every vertex, which means it is a circumcenter. Thus, P and Q are the same point if
either exists.
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Suppose for contradiction that there are two distinct circumcenters. Then the perpendicular
bisectors of the edges have more than one intersection point, causing them to all lie on the
same line. This would mean that each pair of edges is parallel or they lie on the same
line, both of which are impossible since consecutive edges share a vertex and create an
interior angle less than 180◦ in a convex polygon. Thus, the circumcenter is unique, and so
is the circumcircle since the uniqueness of the circumcenter implies the uniqueness of the
circumradius.

Definition 8.17. The angle bisector of an angle is the ray with the same vertex as the
angle and, with the exception of that vertex, the ray lies in the interior of the angle such
that it splits the angle into two equal angles.

Theorem 8.18. For a non-reflex angle, the locus of all points in the interior of the angle,
the feet of whose perpendicular segments to the line through each ray lies on the ray, and
that are equidistant from the rays of the angle is the angle bisector of the angle without its
endpoint.

A B

V

Proof. Let the vertex of the non-reflex angle be V. Suppose P is a point such that the
feet of its perpendicular segments to the line through each ray lies on the ray, and P is
equidistant from the rays of the angle. Let A be one foot and let B be the other foot. By
HL congruence, △PAV ∼= △PBV, which implies ∠PV A = ∠PV B. Thus, P is on the angle
bisector of ∠AV P.
For the other inclusion, suppose Q lies on the angle bisector of the angle without its endpoint.
Then Q lies in the interior of the angle. Let ℓ be a line through Q that intersects the rays
at C and D such that CD is perpendicular to V Q. The angles ∠CV Q and ∠DVQ are each
half of the original non-reflex angle, so they are both acute; then their complementary angles
∠V CQ and ∠V DQ are also acute. This means the perpendicular segments from Q to the
lines through V C and V D lie on the respective segments, which means the perpendicular
segments from Q to the line through each ray lies on the ray. Let the foot of the perpendicular
segment from Q to V C be X and the foot of the perpendicular segment from Q to V D be
Y. By AAS congruence, △V XQ ∼= △V Y Q and so QX = QY. Thus, Q is equidistant from
the rays of the angle.

Definition 8.19. We already know what it means for a line to be tangent to a circle. On
the other hand, we say that a line segment is tangent to a circle if the line through the
segment is tangent to the circle and the point of tangency lies on the segment.

© 2024 Samer Seraj. All rights reserved.



126 CHAPTER 8. CIRCLES II

Definition 8.20. A tangential polygon is one whose edges are all tangent to the same
circle, called the incircle. In other words, there is a point called the incenter which is at
a fixed perpendicular distance called the inradius from all the edges. The interior of the
incircle lies in the interior of the polygon. Also, every tangential polygon is convex because
each interior angle is supplementary with the opposite central angle, and so the interior angle
cannot exceed 180◦.

Notice that the point at which the incircle is tangent to an edge must lie in the interior of
the edge, because, if it lay on a vertex, then the two edges emanating from the vertex would
form a straight angle.

Theorem 8.21. A polygon is tangential if and only if it is convex and the angle bisectors
of its interior angles concur at some point. If this point exists, it is the unique incenter.

Proof. Recall from Theorem 5.17 that a convex polygon is equal to the region formed by
the intersection of its interior angles, from which we can derive that the intersection of the
interiors of the interior angles is equal to the interior of the polygon. If the polygon is
tangential, then convexity is guaranteed; moreover, there is an incenter P in the interior
of the polygon, the foot of whose perpendicular segment to the line through each edge lies
on the edge, and P is equidistant from every edge. By convexity, P is in the interior of
every interior angle, and by the preceding statement, P is equidistant from every pair of
consecutive edges. So P lies on the angle bisector of every interior angle.
Conversely, suppose the polygon is convex and the angle bisectors of the interior angles
concur at Q. By convexity, a point, such as Q, that is in the interior of all the interior angles
is in the interior of the polygon. Since the angle bisectors of the interior angles concur at Q,
the perpendicular segment from Q to the line running through each edge falls on the edge
(this is because half of each interior angle of a convex polygon is necessarily acute) and Q is
equidistant from every pair of consecutive edges. So Q must be equidistant from every edge,
which means it is an incenter. Thus, P and Q are the same point if either exists.
Suppose for contradiction that there are two distinct incenters. Then the angle bisectors of
the interior angles have more than one intersection point, causing them to all lie on the same
line. This would mean all the vertices of the polygon are collinear, which is a contradiction.
Thus, the incenter is unique, and so is the incircle because the uniqueness of the incenter
implies uniqueness of the inradius.
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Problem 8.22. If the sides of a tangential polygon P are s0, s1, . . . , sn−1 in clockwise
or counterclockwise order, then show that there exists a list of n positive real numbers
(t0, t1, . . . , tn−1) such that si = ti + ti+1 for each 0 ≤ i ≤ n − 1, where indices are reduced
modulo n.

Problem 8.23. Show that the area of a tangential polygon is rs, where r is the inradius
and s is the semiperimeter (half the perimeter).

Theorem 8.24 (Pitot’s theorem). If a quadrilateral ABCD is tangential then

AB + CD = AD +BC.

Conversely, if the sum of the lengths of two opposite edges of a convex quadrilateral equals
the sum of the lengths of the other two opposite edges, then the quadrilateral is tangential.

Proof. Suppose ABCD is tangential and let AB,BC,CD, and DA be tangent to the incircle
at A′, B′, C ′, and D′ respectively. Using the fact that both tangent segments from the same
external point have the same length,

AB + CD = (AA′ + A′B) + (CC ′ + C ′D)

= (AD′ +BB′) + (CB′ +DD′)

= (AD′ +D′D) + (BB′ +B′C)

= AD +BC.

There exists a natural “proof” of the converse that is shown in several well-known source,
such as [1], but it contains a hidden mistake that was explored by Alexander Bogomolny in
[3]. A rigorous proof, which requires carefully considering the implications of the convexity
assumption, is explained in detail in [6].

Problem 8.25. According to Definition 7.25, a kite is a convex quadrilateral with two dis-
joint pairs of sides such that each pair consists of adjacent sides that are equal. Without using
the converse of Pitot’s theorem, show that kites, and therefore rhombuses, are tangential.

Definition 8.26. A polygon is bicentric if it is both cyclic and tangential. Two circles are
said to be concentric if their centers coincide.

Problem 8.27. According to Definition 5.30, a regular polygon is a polygon whose sides
are all equal and all of its interior angles are equal. Show that all regular polygons are
bicentric, with the circumcircle and incircle being concentric. However, the circumcircle and
incircle are not necessarily concentric in a bicentric polygon, as will be evident when we
study triangle centers in Chapter 11.
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Chapter 9

Area

“And purchased a site, which was named ‘Bull’s Hide’ after
the bargain by which they should get as much land as they
could enclose with a bull’s hide.”

– Virgil’s Aeneid

We introduce the concept of area as a measure of subsets of two-dimensional space. In the
first section, area formulas are developed for specific polygons in the plane using their side
lengths. In the second section, general “shoelace” formulas are developed for computing areas
using Cartesian, complex, and barycentric coordinates.

9.1 Using Lengths

Definition 9.1. Intuitively, the area of a polygon is a numerical measure of the set of
points that it occupies in the plane. This is the number of 1× 1 unit squares that would fill
the polygon, including partial unit squares. We denote the area of a region P in the plane
using square brackets like [P ]. We will not define area more precisely, nor will we make it
clear which subsets of the plane can actually be assigned area, as both tasks would require
measure theory.
Theorem 9.2. The notion of area satisfies the following properties:

1. Partitioning regions: If we partition a region into finitely many regions (i.e. split into
non-overlapping regions, except perhaps at boundaries) whose areas can be calculated,
like triangles and special convex quadrilaterals, then the area of the original region is
the sum of the areas of the new smaller regions.

2. Complementary regions: If we place a region R inside a larger region S such that each
of S and the excess parts T (i.e. the region outside R but inside S) have areas that
can be calculated, then [R] = [S]− [T ].

3. Overlapping regions: If we express a region as the finite union of potentially overlapping
regions, where the areas of the new regions and their intersections can be calculated,
then the area of the original region is the sum of the new smaller regions, with sub-
tracting and adding overlaps, as needed. The counting becomes more elaborate as an
increasing number of regions overlap in places.

4. Tiling regions: If we copy and paste n congruent copies of a region R together in a
non-overlapping way (except possibly at boundaries) to produce a region S whose area

can be calculated, then [R] =
[S]

n
.
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These principles pertaining to areas can be especially helpful for finding the areas of non-
standard regions. The same techniques can be applied to surface area and volume calcula-
tions in 3D geometry. The above methods are analogous to combinatorial principles from
Volume 2, specifically the addition principle, subtraction principle, the principle of inclusion-
exclusion, and the division principle, respectively.

Definition 9.3. We define the area of a rectangle with side lengths a and b to be ab. This
is consistent with the fact that if a and b are integers, then there would fit exactly ab unit
squares inside the rectangle. As a consequence, the area of a square with side length s is s2.

b

a

Theorem 9.4. If two opposite bases of a parallelogram have length b and corresponding
height h, then its area is bh.

Proof. Suppose we have a parallelogram with parallel bases that have length b and a cor-
responding height h. The parallelogram can be placed inside a rectangle by drawing two
heights perpendicular to the bases and emanating from the outermost two opposite vertices.
The two resulting right triangles are congruent by SAS congruence with legs of length a and
h, and they can be placed together to form an a× h rectangle.

b

h

a

b

h

a

Subtracting the area of the smaller constructed rectangle from the larger rectangle tells us
that the area of the parallelogram is

(a+ b)h− ah = bh.

Theorem 9.5. If △ABC is a triangle whose height corresponding to base AC = b is h, then

[ABC] =
bh

2
.
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Proof. Intuitively, we will draw a second copy of the triangle and put it together with the
first to produce a parallelogram whose area we can calculate. More rigorously, we draw the
line through B that is parallel to AC, and then we draw the line through C that is parallel
to AB. Let the intersection of these two lines be D. Then ABDC is a parallelogram with
bases AC,BD of length b and a corresponding height h.

A

B

C

D

b

h

Moreover, by SSS congruence, △ABC ∼= △DCB, so

[ABC] =
[ABC] + [DCB]

2
=

[ABDC]

2
=

bh

2
.

Corollary 9.6. The area of a right triangle with legs of length a and b is
ab

2
.

Corollary 9.7. The area of any two triangles with the same base and same height have the
same area. In particular, if we fix a triangle ABC with base AB, then for any C ′ on the line
ℓ through C and parallel to AB,

[△ABC ′] = [△ABC].

Corollary 9.8. If two triangles each have a base that has a certain line running through
both of these cases and there is a common height corresponding to the bases, then the ratio
of their areas is the ratio of the lengths of the bases, as long as the order of the triangles is
preserved in both ratios.

Proof. Let the triangles be △ABC and △DEC with bases AB and DE that lie on the same
line, and a common height h emanating from C. Then

[ABC]

[DEC]
=

(
AB·h

2

)(
DE·h

2

) =
AB

DE
.

Problem 9.9. An orthodiagonal convex quadrilateral is a convex quadrilateral whose diag-
onals are perpendicular. An example is a kite. Prove that the area of a convex orthodiagonal

quadrilateral with diagonals of length c and d is
cd

2
.
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Example 9.10. Show that if a triangle has heights f, g, h then

1

f
+

1

g
>

1

h
.

Proof. Let the bases corresponding to the heights f, g, h be a, b, c respectively. Then three
ways of expressing the area △ of the triangle are

△ =
af

2
=

bg

2
=

ch

2
.

By the triangle inequality,
a+ b > c,

which we can rewrite as
2△
f

+
2△
g

>
2△
h

.

This is equivalent to what we want to prove because we can cancel the numerators. In general,
it can be fruitful to find the area of a region in more than one way in order to gain information
about variables involved. For example, a triangle has three pairs of corresponding bases and
heights as we just showed, and a parallelogram has two pairs of two equal bases and a
corresponding height.

Theorem 9.11. If a trapezoid has bases with length a and b and a corresponding height h,

then the area of the trapezoid is
(a+ b)h

2
.

Proof. Let the trapezoid be ABCD with bases AD = b and BC = a. If a = b, then the
trapezoid has two opposite sides that are parallel and equal in length, so it is parallelogram
and the formula is easy to verify in this case. Now suppose b > a. We draw the line through
D that is parallel to AB and the line through BC. Letting the intersection of the two lines be
E, we get a parallelogram ABED. Conveniently, △CED has base CE = BE −BC = b− a
with the corresponding height h.

A

B C

D

E

b

a b− a

h

Using complementary regions, the area of the trapezoid is

[ABCD] = [ABED]− [CED] = bh− (b− a)h

2
=

(a+ b)h

2
.
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Theorem 9.12 (Pythagorean theorem). If a right triangle has legs of length a and b and
hypotenuse c, then

a2 + b2 = c2.

Conversely, if a, b, c are the side lengths of a triangle such that a2 + b2 = c2, the triangle is a
right triangle with a right angle opposite the side with lengths c.
Note that we took the Pythagorean theorem for triangles whose legs are parallel to the
coordinate axes as the definition of Euclidean distance (Theorem 2.1), whereas the present
result is for any right triangle.

Proof. The result was already known as a special case of the cosine law (Theorem 3.8), but
it is worth showing the marvelous proof below. Let △ABC be a triangle with a right angle
at vertex C, and side lengths BC = a, CA = b, AB = c. First we construct a square ADEB
on the side of the line through AB that does not contain C. Now we extend CA into a ray
through A, and CB into a ray through B. Then we draw a line through D that is parallel to
CB, and a line through E that is parallel to CA. This produces three more right triangles
that are similar to △ABC by AA similarity. In fact, all four triangles are congruent by ASA
congruence since they all have hypotenuses of equal length c. The final observation is that
the legs of the four triangles produce a square, which we leave to the reader to easily verify
by checking that the sides are all a result of 180◦ angles and that they have equal length
a+ b.

C A

B

D

E

This allows us to write the area of the larger square is two ways:

4 · ab
2

+ c2 = (a+ b)2 = a2 + 2ab+ b2

c2 = a2 + b2.

Conversely, suppose △ABC is a triangle with side lengths BC = a, CA = b, AB = c such
that a2 + b2 = c2. We construct a right triangle △PQR with a right angle at vertex R and
side lengths RP = b and RQ = a. Then the Pythagorean theorem tells us that

PQ =
√

RP 2 +RQ2 =
√
a2 + b2 = c.

By SSS congruence, △ABC ∼= △PQR, which means △ABC is a right triangle too with a
right angle at vertex C.
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Corollary 9.13. In a right triangle, the hypotenuse is strictly longer than either leg.

Proof. Let the legs have length a and b and the hypotenuse have length c. By the Pythagorean
theorem,

c =
√
a2 + b2 >

√
a2 = a,

c =
√
a2 + b2 >

√
b2 = b.

Theorem 9.14 (HL similarity). Two right triangles with hypotenuses and one pair of legs
in the same ratio are similar.

Proof. Let the length of the hypotenuses be h and kh for some positive constant k, and the
legs in question have lengths l and kl. Then the remaining legs m and m′ are related by

m′ =
»

(kh)2 − (kl)2 = k
√
h2 − l2 = km,

where we have used the Pythagorean theorem. Now SSS similarity can be applied.

Finally, we look at some special triangles and related lengths that, for example, help us in
the evaluation of trigonometric functions at particular values (see Volume 1).

Theorem 9.15 (30◦ − 60◦ − 90◦ triangle). The height of an equilateral triangle with sides

of length s is
√
3s

2
. Thus, the area of such an equilateral triangle is

√
3s2

4
. Moreover, if a

triangle has angles 30◦ − 60◦ − 90◦, then the sides opposite those angles in that order are in
the ratio 1 :

√
3 : 2.

1

√
3

2

60◦

30◦

Proof. By dropping a height, we can use AAS congruence to establish that the two new
triangles are congruent right triangles. This means the height bisects the corresponding
base. If the side length of the equilateral triangle is s, then, by the Pythagorean theorem,

the height is
…

s2 −
(s
2

)2
=

√
3s

2
. (Note that the same technique can be used to calculate

the height of an isosceles triangle that emanates from the apex.) As a consequence, the area
of the equilateral triangle is

1

2
·
√
3s

2
· s =

√
3s2

4
.
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As a second consequence, we can observe from either of the two new right triangles that the
sides opposite the 30◦, 60◦, 90◦ angles are in the ratio

s

2
:

√
3s

2
: s = 1 :

√
3 : 2.

Example 9.16. A regular hexagon is a six-sided convex polygon such that all of the side
lengths are equal and all of the interior angles are equal. Determine the area of a regular
hexagon with sides of length s. Moreover, if the regular hexagon is A1A2A3A4A5A6, then
determine the length of A1A3 in terms of s.

Solution. The key is to notice that we can produce such a hexagon by gluing together six
equilateral triangles that have sides of length s. Indeed, since equilateral triangles have

interior angles measuring
180◦

3
= 60◦, the central angle in such a construction will be 60◦ =

360◦, so there will be no gaps. Moreover, all of the interior angles of the resulting six-sided
convex polygon will be 2 ·60◦ = 120◦, and it will have six sides of length s. By Theorem 9.15,
the area of the hexagon is

6 ·
√
3s2

4
=

3
√
3

2
· s2.

A1

A2A3

A4

A5 A6

s

For the length of A1A3, we notice that A1A2 = A3A2, so we drop an altitude from A2 to
A1A3. By HL congruence, the resulting two triangles are congruent. The two angles at A2

measure
120◦

2
= 60◦, so

A1A3 = 2 ·
√
3s

2
=
√
3s.

Problem 9.17. Let A1A2A3 . . . A12 be a regular dodecagon, which is a twelve-sided con-
vex polygon such that all side lengths are equal to s and all interior angles are equal. De-
termine the length of A1A4 in terms of s.

Theorem 9.18 (45◦−45◦−90◦ triangle). The sides opposite the 45◦, 45◦, 90◦ angles respec-
tively in an isosceles right triangle are in the ratio 1 : 1 :

√
2.
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Proof. A square with side length s can be split along a diagonal to construct a 45◦−45◦−90◦
triangle, whose diagonal has length

√
s2 + s2 = s

√
2

by the Pythagorean theorem. Thus, the sides opposite the 45◦, 45◦, 90◦ angles are in the
ratio

s : s :
√
2s = 1 : 1 :

√
2.

Example 9.19. A regular octagon is an eight-sided convex polygon such that all of the
side lengths are equal and all of the interior angles are equal. Determine the area of a regular
octagon with sides of length s.

Solution. Each interior angle of a regular octagon is be calculated to be

180◦(8− 2)

8
= 135◦.

The complement of this angle is 45◦, so extending every alternate edge into a line produces
four isosceles right triangles and an overarching square.

The triangles have area
1

2
· s√

2
· s√

2
=

s2

4

and the overarching square has areaÅ
s+ 2 · s√

2

ã2
= (s+

√
2s)2 = s2(3 + 2

√
2).

By complementary regions, the area of the regular octagon is

s2(3 + 2
√
2)− 4 · s

2

4
= 2s2 · (1 +

√
2).
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9.2 Using Coordinates

Although determinants will feature prominently in the presentation, we will use little to no
machinery from linear algebra. The main purpose of determinants in the material here is to
present certain algebraic expressions in an organized fashion.

Definition 9.20. For a generalized polygon P, we define its sign as

sgn(P ) =

®
1 if P is oriented counterclockwise
−1 if P is oriented clockwise

.

This is well-defined concept, by Definition 5.15.

Lemma 9.21. Let A = (0, 0), B = (xb, yb), C = (xc, yc), which are allowed to be collinear.
Then

[ABC] = sgn(ABC) · 1
2
· det

Å
xb xc

yb yc

ã
.

Proof. If A,B,C are collinear, then we have a degenerate triangle which should have area
0. Indeed, since collinearity implies the equality of the slopes

yb − 0

xb − 0
=

yc − 0

xc − 0
,

we get xbyc − xcyb = 0, as desired. The case where B and C are both on the y-axis can be
handled separately with ease.
Now suppose A,B,C are not collinear. Let θ be the measure of the counterclockwise rotation
around A that, along with a positive dilation from A, causes B to coincide with C. Since
interior angles of triangles measure less than π, the interior angle of △ABC at A is

∠BAC =

®
θ if sgn(ABC) = 1

2π − θ if sgn(ABC) = −1
.

As a result, letting h = AB · sin∠BAC be the height emanating from B and with foot on
AC,

[ABC] =
AC · h

2

=
1

2
· AB · AC · sin∠BAC

= sgn(ABC) · 1
2
· AB · AC · sin θ.

So now it suffices to show that

AB · AC · sin θ = det

Å
xb xc

yb yc

ã
.
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Let b = xb+ iyb and c = xc+ iyc. By the definition of θ, we know that
c

b
=
|c|
|b|

eiθ. By writing

out the components of each complex number, we get the equation

|b|(xc + iyc) = |c|(xb + iyb)(cos θ + i sin θ)

= |c|((xb cos θ − yb sin θ) + i(xb sin θ + yb cos θ)).

Equating real parts and imaginary parts yields the system of equations

|b|xc = |c|xb cos θ − |c|yb sin θ,
|b|yc = |c|xb sin θ + |c|yb cos θ.

Subtracting yb times the first equation from xb times the second equation proves that

|b|(xbyc − xcyb) = |c|(x2
b + y2b ) sin θ,

which finally implies

det

Å
xb xc

yb yc

ã
= |c| · |b|

2

|b|
sin θ = |b| · |c| · sin θ.

Theorem 9.22 (Shoelace formula for triangles). Let A = (x0, y0), B = (x1, y1), C = (x2, y2),
which are allowed to be collinear. Then

2 · sgn(ABC) · [ABC] = det

Å
x1 − x0 x2 − x0

y1 − y0 y2 − y0

ã
= det

Ñ
1 1 1
x0 x1 x2

y0 y1 y2

é
= det

Å
x0 x1

y0 y1

ã
+ det

Å
x1 x2

y1 y2

ã
+ det

Å
x2 x0

y2 y0

ã
.

Moreover, A,B,C are collinear in some order if and only if this quantity is 0.

Proof. Any translation sends a triangle to a congruent triangle with the same orientation,
and congruent triangles have the same area, due to to SAS congruence and the sine area
formula derived in Lemma 9.21. So we apply the translation (x, y) 7→ (x, y) − (x0, y0) to
get the three new points A′ = (0, 0), B′ = (x1 − x0, y1 − y0), C

′ = (x2 − x0, y2 − y0). By
Lemma 9.21,

2 · sgn(ABC) · [ABC] = 2 · sgn(A′B′C ′) · [A′B′C ′] = det

Å
x1 − x0 x2 − x0

y1 − y0 y2 − y0

ã
.

It is then immediately true that the other two forms are equal to this quantity by applying
the formulas for computing determinants.
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Note that A,B,C are collinear if and only if [ABC] = 0, which gives us the nice Cartesian
collinearity criterion

det

Ñ
1 1 1
x0 x1 x2

y0 y1 y2

é
= 0.

This is a symmetric criterion, as opposed to the criterion stating that the lines between CA
and BA have equal slopes.

Corollary 9.23 (Polygon shoelace formula). Let P = V0V1 · · ·Vn−1 be a generalized n-gon
with each vertex Vk having coordinates (xk, yk). Then

2 · sgn(P ) · [P ] =
n−1∑
k=0

det

Å
xk xk+1

yk yk+1

ã
,

where indices are reduced modulo n. The name of this result is due to the crisscross nature
of this series of 2× 2 determinants.

Proof. The proof is by induction on n. We already know the result for triangles, that is n = 3
from Theorem 9.22. Now suppose the result holds for generalized n-gons for some n ≥ 3 and
let P be a generalized (n + 1)-gon. Then P has an ear, so label P as V0V1 . . . Vn in either
counterclockwise or clockwise orientation such that Vn is an ear of P. Let Vk = (xk, yk) for
each index 0 ≤ k ≤ n. The ear Vn induces the triangle T = V0Vn−1Vn and clipping this ear
yields the generalized n-gon Q = V0V1 . . . Vn−1. Recall that T and Q both have the same
orientation as P. By the induction hypothesis for n-gons and the base case for triangles,

2 · sgn(P ) · [P ] = 2 · sgn(P )([Q] + [T ])

= 2 · sgn(Q) · [Q] + 2 · sgn(T ) · [T ]

=
n−1∑
k=0

det

Å
xk xk+1

yk yk+1

ã
+ det

Å
x0 xn−1

y0 yn−1

ã
+ det

Å
xn−1 xn

yn−1 yn

ã
+ det

Å
xn x0

yn y0

ã
=

n−2∑
k=0

det

Å
xk xk+1

yk yk+1

ã
+ det

Å
xn−1 xn

yn−1 yn

ã
+ det

Å
xn x0

yn y0

ã
=

n∑
k=0

det

Å
xk xk+1

yk yk+1

ã
.

Note that we sneakily cancelled the two terms

det

Å
xn−1 x0

yn−1 y0

ã
+ det

Å
x0 xn−1

y0 yn−1

ã
in the middle of the computation. The reader should algebraically verify that their sum is in
fact zero, though it is immediate from a property of determinants that states that swapping
columns in a matrix negates the determinant.
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One issue is that our derivation of this formula seems to rely on labelling P = V0V1 · · ·Vn in
a way that Vn is an ear. This is not the case because the formula is cyclic in the sense that,
for any integer i,

n∑
k=0

det

Å
xk xk+1

yk yk+1

ã
=

n∑
k=0

det

Å
xk+i xk+i+1

yk+i yk+i+1

ã
.

So it acceptable to relabel V0, V1, . . . , Vn as Vi, V1+i, . . . , Vn+i, where indices are reduced mod-
ulo n. Moreover, the derivation works for both types of orientations for P. Thus, the formula
holds for any labelling of P and the induction is complete.

Corollary 9.24. Suppose P and Q are similar generalized polygons in the plane such that
the ratio of the lengths of Q to the lengths of P is k > 0. Then

[Q] = k2 · [P ].

In particular, if P and Q are congruent, then k = 1 and they have the same area.

Proof. Suppose P and Q are as stated, each with n vertices. By Theorem 3.3, there exists
a similarity transformation of P to Q that consists of exactly one homothety of factor k
from the origin, followed by a Euclidean isometry. By the quoted result, every Euclidean
isometry can be expressed as a composition of translations, rotations around the origin and
conjugations. Thus, it suffices to show that applying a homothety from the origin multiplies
the area by k2, and that area is preserved under translations, rotations around the origin
and conjugations. We will prove each of these facts using the shoelace formula. Starting
from any vertex of P and going counterclockwise, let the coordinates of the vertices be
(x0, y0), (x1, y1), . . . , (xn−1, yn−1).

1. If Q is the image of P under a homothety of factor k from the origin, then sgn(Q) =
sgn(P ) = 1. We compute

[Q] =
1

2
·
n−1∑
i=0

det

Å
kxi kxi+1

kyi kyi+1

ã
=

k2

2
·
n−1∑
i=0

det

Å
xi xi+1

yi yi+1

ã
= k2 · [P ].

2. If Q is the image of P under a translation by z = x + iy, then sgn(Q) = sgn(P ) = 1.
We compute

[Q] =
1

2
·
n−1∑
i=0

det

Å
xi + x xi+1 + x
yi + y yi+1 + y

ã
=

1

2
·
n−1∑
i=0

((xiyi+1 − xi+1yi) + x(yi+1 − yi) + y(xi − xi+1))

=
1

2
·
n−1∑
i=0

det

Å
xi xi+1

yi yi+1

ã
+

x

2
·
n−1∑
i=0

(yi+1 − yi) +
y

2
·
n−1∑
i=0

(xi − xi+1)

=
1

2
·
n−1∑
i=0

det

Å
xi xi+1

yi yi+1

ã
+ 0 + 0 = [P ],

where indices are reduced modulo n. The second and third sums disappeared in the
end due to telescoping.
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3. If Q is the image of P under a counterclockwise rotation by θ radians around the origin,
then sgn(Q) = sgn(P ) = 1. Since

(x+ iy)eiθ = (x+ iy)(cos θ + i sin θ)

= (x cos θ − y sin θ) + i(x sin θ + y cos θ),

we want to compute

[Q] =
1

2
·
n−1∑
i=0

det

Å
xi cos θ − yi sin θ xi+1 cos θ − yi+1 sin θ
xi sin θ + yi cos θ xi+1 sin θ + yi+1 cos θ

ã
.

We could expand this via the 2 × 2 determinant formula and use the Pythagorean
identity to simplify it, but there is a more sophisticated method available. For those
familiar with matrix multiplication and the multiplicative property of the determinant,
each term in the sum is actually

det

ïÅ
cos θ − sin θ
sin θ cos θ

ãÅ
xi xi+1

yi yi+1

ãò
= det

Å
cos θ − sin θ
sin θ cos θ

ã
· det

Å
xi xi+1

yi yi+1

ã
= (cos2 θ + sin2 θ) · det

Å
xi xi+1

yi yi+1

ã
= det

Å
xi xi+1

yi yi+1

ã
,

which means [Q] = [P ] by the shoelace formula. Readers who are not familiar with
matrix multiplication should expand each term in the sum manually and watch the
terms cancel.

4. If Q is the image of P under a conjugation, sgn(Q) = −sgn(P ) = −1. We compute

[Q] = −1

2
·
n−1∑
i=0

det

Å
xi xi+1

−yi −yi+1

ã
=

1

2
·
n−1∑
i=0

det

Å
xi xi+1

yi yi+1

ã
= [P ].

Thus, the proposition is proven.

We will now see variants of the shoelace formula for triangles, using complex coordinates
and barycentric coordinates.

Corollary 9.25 (Complex shoelace for triangle). If the vertices of △ABC are placed on the
complex coordinates A = a,B = c, B = c, then the signed area of △ABC is

sgn(ABC) · [ABC] =
i

4
· det

Ñ
a a 1

b b 1
c c 1

é
.
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Proof. Using Theorem 1.28 and setting A = (x0, y0), B = (x1, y1), C = (x2, y2), we compute
that twice the signed area of △ABC is

2 · sgn(ABC) · [ABC] = det

Ñ
1 1 1
x0 x1 x2

y0 y1 y2

é
= det

Ñ
1 x0 y0
1 x1 y1
1 x2 y2

é
= det

Ñ
x0 y0 1
x1 y1 1
x2 y2 1

é
= det

Ñ
x0 + iy0 y0 1
x1 + iy1 y1 1
x2 + iy2 y2 1

é
=

1

−2i
· det

Ñ
x0 + iy0 −2iy0 1
x1 + iy1 −2iy1 1
x2 + iy2 −2iy2 1

é
=

1

−2i
· det

Ñ
x0 + iy0 x− iy0 1
x1 + iy1 x− iy1 1
x2 + iy2 x− iy2 1

é
=

i

2
· det

Ñ
a a 1

b b 1
c c 1

é
,

where we used i =
−1
i

at the end.

Next, we will develop the underpinnings of barycentric coordinates. This is a powerful
technique that can be used to solve many geometry problems in mathematical olympiads.

Lemma 9.26. Let A,B,C be distinct points in Rn. The three points are non-collinear if
and only if

−→
AC and

−−→
BC are linearly independent. Equivalently, A,B,C are collinear if and

only if
−→
AB and

−−→
BC are linearly dependent,

Proof. We will prove the contrapositive of each direction, that A,B,C are collinear if and
only if

−→
AC and

−−→
BC are linearly dependent. If A,B,C are collinear, then a line

ℓ = {p+ tv : t ∈ R}

runs through all three points. So there exist distinct real constants t1, t2, t3 such that

p+ t1v = A,

p+ t2v = B,

p+ t3v = C.

Then (t3 − t1)v = C − A and (t3 − t2)v = C −B, so the position vector −→v satisfies

−→v =
1

t3 − t1

−→
AC =

1

t3 − t2

−−→
BC,

making
−→
AC and

−−→
BC linearly dependent.

Conversely, suppose
−→
AC and

−−→
BC are linearly dependent. Then there exist real constants α

and β such that at least one of them is non-zero and

α
−→
AC + β

−−→
BC = 0.

In fact, neither of α, β can be zero because one of them being zero would cause B,C to
coincide or A,C to coincide, contradicting that the three points are distinct. Let −→v be the
position vector that is common to both sides of

α(
−→
C −

−→
A ) = −β(

−→
C −

−→
B ).
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Then

−→
A =

−→
C − 1

α
−→v ,

−→
B =

−→
C +

1

β
−→v ,

−→
C =

−→
C + 0−→v .

By taking the arrowheads of all of these position vectors, we find that A,B,C all lie on the
same line {C + tv : t ∈ R}, making these three points collinear.

Lemma 9.27. Let △ABC be a non-degenerate triangle and P be any point in the plane.
Then there exists a unique triple of real numbers (x, y, z) such that

−→
P = x

−→
A + y

−→
B + z

−→
C

and x+ y + z = 1. These entries (x, y, z) are called the barycentric coordinates of point
P with respect to the reference triangle △ABC.

Proof. Using z = 1− x− y, we work backwards to get

−→
P = x

−→
A + y

−→
B + z

−→
C

= x
−→
A + y

−→
B + (1− x− y)

−→
C

= x(
−→
A −

−→
C ) + y(

−→
B −

−→
C ) +

−→
C

−→
P = x(

−→
A −

−→
C ) + y(

−→
B −

−→
C )

−→
CP = x

−→
CA+ y

−−→
CB.

So we need to show that real numbers x and y exist such that they satisfy the equation
in the last line. Since △ABC is non-degenerate, it means A,B,C are non-collinear. By
Lemma 9.26,

−→
CA and

−−→
CB are linearly independent, allowing for a unique pair of coefficients

x and y to exist. Letting z = 1− x− y, we are done.

Theorem 9.28 (Barycentric shoelace for triangles). Let △ABC be the reference triangle
(necessarily non-degenerate) in a barycentric system. Let △PQR be an arbitrary triangle
(possibly degenerate) whose vertices have barycentric coordinates given by

P = (x1, y1, z1),

Q = (x2, y2, z2),

R = (x3, y3, z3).

Then,

sgn(PQR) · [PQR]

sgn(ABC) · [ABC]
= det

Ñ
x1 y1 z1
x2 y2 z2
x3 y3 z3

é
© 2024 Samer Seraj. All rights reserved.



9.2. USING COORDINATES 143

Proof. In Cartesian coordinates, let A = (a1, a2), B = (b1, b2), C = (c1, c2). We are seeking
the area of the triangle between the vectors

−→
RP and

−→
RQ. These two can be decomposed as

−→
RP =

−→
CP −

−→
CR

= (x1

−→
CA+ y1

−−→
CB)− (x3

−→
CA+ y3

−−→
CB)

= (x1 − x3)
−→
CA+ (y1 − y3)

−−→
CB

= (x1 − x3)(a1 − c1, a2 − c2) + (y1 − y3)(b1 − c1, b2 − c2)

= ((x1 − x3)(a1 − c1), (x1 − x3)(a2 − c2)) + ((y1 − y3)(b1 − c1), (y1 − y3)(b2 − c2))

= ((x1 − x3)(a1 − c1) + (y1 − y3)(b1 − c1), (x1 − x3)(a2 − c2) + (y1 − y3)(b2 − c2))

and

−→
RQ =

−→
CQ−

−→
CR

= (x2

−→
CA+ y2

−−→
CB)− (x3

−→
CA+ y3

−−→
CB)

= (x2 − x3)
−→
CA+ (y2 − y3)

−−→
CB

= (x2 − x3)(a1 − c1, a2 − c2) + (y2 − y3)(b1 − c1, b2 − c2)

= ((x2 − x3)(a1 − c1), (x2 − x3)(a2 − c2)) + ((y2 − y3)(b1 − c1), (y2 − y3)(b2 − c2))

= ((x2 − x3)(a1 − c1) + (y2 − y3)(b1 − c1), (x2 − x3)(a2 − c2) + (y2 − y3)(b2 − c2)).

By the first line of the shoelace formula for triangles (Theorem 9.22), since △RPQ has the
same orientation and area as △PQR, we find that

2 · sgn(RPQ) · [RPQ]

= 2 · sgn(PQR) · [PQR]

= det

Å
(x1 − x3)(a1 − c1) + (y1 − y3)(b1 − c1) (x2 − x3)(a1 − c1) + (y2 − y3)(b1 − c1)
(x1 − x3)(a2 − c2) + (y1 − y3)(b2 − c2) (x2 − x3)(a2 − c2) + (y2 − y3)(b2 − c2)

ã
.

By matrix multiplication and the multiplicative property of determinants, this is equivalent
to

det

ïÅ
a1 − c1 b1 − c1
a2 − c2 b2 − c2

ã
·
Å
x1 − x3 x2 − x3

y1 − y3 y2 − y3

ãò
= det

Å
a1 − c1 b1 − c1
a2 − c2 b2 − c2

ã
· det

Å
x1 − x3 x2 − x3

y1 − y3 y2 − y3

ã
= 2 · sgn(ABC) · [ABC] · det

Ñ
1 1 1
x3 x1 x2

y3 y1 y2.

é
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As a result, we obtain that

2 · sgn(RPQ) · [RPQ]

2 · sgn(ABC) · [ABC]
= det

Ñ
1 1 1
x3 x1 x2

y3 y1 y2

é
= det

Ñ
x3 + y3 + z3 x1 + y1 + z1 x2 + y2 + z2

x3 x1 x2

y3 y1 y2

é
= det

Ñ
z3 z1 z2
x3 x1 x2

y3 y1 y2

é
= det

Ñ
x3 x1 x2

y3 y1 y2
z3 z1 z2

é
= det

Ñ
x1 x2 x3

y1 y2 y3
z1 z2 z3

é
.

Here, we used several of the preservation properties of determinants, which were listed in
Theorem 1.28.

Corollary 9.29. The barycentric coordinates of a point P with respect to the reference
triangle △ABC are

(x, y, z) =

Å
sgn(PBC) · [PBC]

sgn(ABC) · [ABC]
,
sgn(PCA) · [PCA]

sgn(ABC) · [ABC]
,
sgn(PAB) · [PAB]

sgn(ABC) · [ABC]

ã
.

Proof. First we observe that the barycentric coordinates of A,B,C themselves are given by
the coefficients in

−→
A = 1 ·

−→
A + 0 ·

−→
B + 0 ·

−→
C

−→
B = 0 ·

−→
A + 1 ·

−→
B + 0 ·

−→
C

−→
C = 0 ·

−→
A + 0 ·

−→
B + 1 ·

−→
C .

By Theorem 9.28,

sgn(PBC) · [PBC]

sgn(ABC) · [ABC]
= det

Ñ
x y z
0 1 0
0 0 1

é
= x,

sgn(PBC) · [PBC]

sgn(ABC) · [ABC]
= det

Ñ
x y z
0 0 1
1 0 0

é
= y,

sgn(PBC) · [PBC]

sgn(ABC) · [ABC]
= det

Ñ
x y z
1 0 0
0 1 0

é
= z,

which completes the proof.
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Chapter 10

Cevians

“I must ask you to forgive me if I concentrate on my own
favourite branches, and I must take the risk of offending
various geometers who will ask why I have not dealt with
algebraic geometry, differential geometry, symplectic
geometry, continuous geometry, metric spaces, Banach
spaces, linear programming, and so on.”

– H. S. M. Coxeter

For computing lengths of cevians, Stewart’s theorem is indispensable. In the study of concur-
rent cevians, the key results are Ceva’s theorem, its converse, and its trigonometric variant.
We will study all of these results plus applications to interesting problems.

10.1 Computing Lengths

Definition 10.1. Recall that cevians were defined in Definition 5.18. The three most com-
mon cevians of triangles are as follows.

• A median is a cevian whose foot is the midpoint of the edge on which it lies, so the
median bisects its edge.

• An angle bisector is a cevian that cuts in half the interior angle inside in which it
lies, so it bisects the interior angle.

• An altitude is a generalized cevian that makes a right angle with the line through the
edge on which its foot lies. An altitude is also called a height, though the latter term
is often reserved for the length of the altitude.

Problem 10.2. In a right triangle, show that dropping the altitude from the right angle’s
vertex creates two triangles that are similar to the original triangle.

Theorem 10.3. Suppose △ABC and △A′B′C ′ are triangles such that △ABC ∼ △A′B′C ′.
Let D,E, F be the feet of the median, angle bisector, height respectively of △ABC from A
to the line through BC, and define D′, E ′, F ′ similarly for △A′B′C ′. If the similarity ratio
of the side lengths of △ABC to the corresponding side lengths of △A′B′C ′ is k, then

AD

A′D′ =
AE

A′E ′ =
AF

A′F ′ = k.

Proof. It will be helpful to conceptualize the following proofs by nesting one of the triangles
inside the other with ∠A = ∠A′ being the shared angle.
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1. Medians: Note that
BD

B′D′ =
BC/2

B′C ′/2
=

BC

B′C ′ = k. Since
BA

B′A′ = k and ∠B = ∠B′, we

find using SAS similarity that

△BAD ∼ △B′A′D′

with similarity ratio k, which allows us to conclude that
AD

A′D′ = k.

A = A′

B

C

B′

C ′

D′

D

2. Angle bisectors: Note that ∠B = ∠B′ and that

∠BAE =
∠BAC

2
=

∠B′A′C ′

2
= ∠B′A′E ′.

By AA similarity, △BAE ∼ △B′A′E ′. Since
BA

B′A′ = k, this is also the similarity ratio

of △BAE to △B′A′E ′, which in turn gives us
AE

A′E ′ = k.

A = A′

B

C

B′

C ′

E

E ′

3. Altitudes: Since ∠B = ∠B′ and ∠BFA = ∠B′F ′A′ = 90◦, we get that △BAF ∼
△B′A′F ′ by AA similarity. Once again, since

BA

B′A′ = k, this is also the similarity

ratio of △BAF to △B′A′F ′. Thus,
AF

A′F ′ = k as well.
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A = A′

B

C

B′

C ′

F

F ′

Theorem 10.4 (Angle bisector theorem). Let △ABC have an angle bisector AD where D
lies on BC. Then

AB · CD = AC ·BD.

Proof. First we draw the line ℓ through C that is parallel to the line through AB. Then we
extend AD as a ray through D so that it meets ℓ at E.

A B

C

D

ℓ E

Since AB and CE are parallel, we get the equal alternate interior angles ∠BAE = ∠AEC.
By alternate interior angles,

∠CEA = ∠BAE = ∠CAE,

so △ACE is isosceles with AC = EC. Moreover, we can observe by the same alternate
interior angles and ∠ABC = ∠BCE that △BAD ∼ ∠CED. By similarity ratios and the
isosceles triangle,

BD

CD
=

AB

EC
=

AB

AC
,

which implies AB · CD = AC ·BD as desired.

Theorem 10.5 (Stewart’s theorem). Let AD be a cevian of △ABC. Let BC = a, CA =
b, AB = c, BD = m,CD = n,AD = d. Then all the lengths are related by

(d2 +mn)a = b2m+ c2n.
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A common mnemonic for remembering this formula is to write it as

dad+man = bmb+ cnc,

though it would also be necessary to memorize the configuration with its labels.

A

B CD

c b

m n

d

Proof. First we label the non-reflex angles ∠ADB = θ and ∠ADC = ϕ. By the cosine law,

cos θ =
d2 +m2 − c2

2dm
,

cosϕ =
d2 + n2 − b2

2dn
.

Since θ + ϕ = 180◦,
cos θ = cos(180◦ − ϕ) = − cosϕ.

Then our two expressions from the cosine law are negations of each other, meaning

d2 +m2 − c2

2dm
= −d2 + n2 − b2

2dn
.

Clearing the denominators and rearranging the terms yields

d2(m+ n) +mn(m+ n) = b2m+ c2n.

Since m+ n = a, we are done.

Problem 10.6 (Apollonius’s theorem). For △ABC, find an expression in terms of a =
BC, b = CA, c = AB for the median emanating from A.

Problem 10.7. Given △ABC, let the medians with feet on BC = a, CA = b, AB = c be
ma,mb,mc, respectively. Suppose a ≤ b ≤ c. Prove that a, b, c can each be scaled by the
same factor to produce mc,mb,ma respectively if and only if a2, b2, c2 form an arithmetic
sequence in that order. In this case, the triangle with side lengths ma,mb,mc is known as
an automedian triangle.

Problem 10.8. Given △ABC, find an expression in terms of a = BC, b = CA, c = AB for
the cevian that is the angle bisector emanating from A.
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Formulas for the lengths of specific cevians are not worth memorizing as they can be derived
from Stewart’s theorem when necessary.

Theorem 10.9 (Ratio lemma). Let D be a point on BC in △ABC. Then

BD

CD
=

BA

CA
· sinBAD

sinCAD
.

A

B CD

Proof. By the applying the law of sines (Theorem 6.7) to △ABD and △ACD,

AD

sinABD
=

BD

sinBAD
=

AB

sinADB
,

AD

sinACD
=

CD

sinCAD
=

AC

sinADC
.

Then

BD =
AD sinBAD

sinABD
,

CD =
AD sinCAD

sinACD
,

and dividing the first by the second yields

BD

CD
=

sinBAD sinACD

sinCAD sinABD
.

Now note that
sinADB = sin(180◦ − ADC) = sinADC

by a reflection trigonometric identity. Then, the equations from the law of sines also give
equations

sinADB =
AB sinABD

AD
,

sinADC =
AC sinACD

AD

that can be set equal to each other to get

AB sinABD

AD
=

AC sinACD

AD
=⇒ sinACD

sinABD
=

AB

AC
.
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Therefore,
BD

CD
=

sinBAD sinACD

sinCAD sinABD
=

sinBAD

sinCAD
· AB
AC

,

as desired. Do you see how this contains the angle bisector theorem (Theorem 10.4) as a
special case?

Definition 10.10. A symmedian through a vertex V of a triangle is a cevian that is
produced by reflecting the line through the median emanating from V over the line through
the angle bisector emanating from V .

Theorem 10.11 (Symmedian lemma). Given △ABC, let the tangents to its circumcircle
at B and C intersect at D. Prove that AD runs through the symmedian emanating from A.

Proof. Let the intersection of AD with BC be M . Let the reflection of AD across the angle
bisector emanating from A intersect with BC at N . We wish to prove that N is the midpoint
of BC, so it suffices to prove that BN = NC. Let O be the circumcenter so that OC ⊥ CD
and OB ⊥ BD.

A

B

C

D
N

M

O

By the sine law,

BN = AN · sinBAN

sinABN
,

NC = AN · sinCAN

sinACN
.

Taking the quotient of the top equation divided by the bottom one, we get
BN

NC
=

sinBAN

sinABN
· sinACN

sinCAN
.

Now we work to find interrelations between the angles that characterize this configuration.
Using the three isosceles triangles centred at O, let

x = ∠OBC = ∠OCB,

y = ∠OCA = ∠OAC,

z = ∠OAB = ∠OBA.
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Using the shorthand notation A,B,C for the interior angles of △ABC at these respective
vertices, we get the system

A = ∠BAC = y + z,

B = ∠CBA = z + x,

C = ∠ACB = x+ y,

which we solve for x, y, z to get

2x = B + C − A,

2y = C + A−B,

2z = A+B − C.

Some exploration and angle-chasing leads to

∠ABD = z + 90◦

=
A+B − C

2
+ 90◦

=
A+B − C

2
+

A+B + C

2
= A+B = 180◦ − C

∠ACD = y + 90◦

=
C + A−B

2
+ 90◦

=
C + A−B

2
+

A+B + C

2
= C + A = 180◦ −B.

Continuing from earlier, we use the fact that the line through AN is a reflection of the line
through AM across the angle bisector of A to get

BN

NC
=

sinBAN

sinABN
· sinACN

sinCAN

=
sinBAN

sinB
· sinC

sinCAN

=
sinCAM

sin(180◦ − ACD)
· sin(180

◦ − ABD)

sinBAM

=
sinCAM

sinACD
· sinABD

sinBAM

=
CD

AD
· AD
BD

=
CD

BD
= 1,

since the tangent lengths BD = CD from D are equal in length. We also used the sine law
on △ACD and △ABD near the end.
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10.2 Concurrency

In what follows, we will repeatedly use the algebraic ratio trick that

a

b
=

c

d
= k =⇒ a+ c

b+ d
=

a− c

b− d
= k,

assuming these denominators are not 0. This trick was proven in Volume 1.

Theorem 10.12 (Ceva’s theorem). In △ABC, the three cevians AX,BY,CZ concur at a
point P if and only if

BX

XC
· CY

Y A
· AZ
ZB

= 1.

A

B CX

Y

Z

P

Proof. Suppose the three cevians concur. Recall that if two triangles each have a base
running through the same line and the corresponding two heights are the same line segment,
then the ratio of these bases is the ratio of the areas of the corresponding triangles. Then

BX

XC
=

[ABX]

[ACX]
=

[PBX]

[PCX]
=

[ABX]− [PBX]

[ACX]− [PCX]
=

[ABP ]

[ACP ]
.

By similar derivations,

CY

Y A
=

[BCP ]

[BAP ]
,

AZ

ZB
=

[CAP ]

[CBP ]
.

Multiplying the three equations yields the telescoping product

BX

XC
· CY

Y A
· AZ
ZB

=
[ABP ]

[ACP ]
· [BCP ]

[BAP ]
· [CAP ]

[CBP ]
= 1.

Conversely, suppose
BX

XC
· CY

Y A
· AZ
ZB

= 1. Let P be the interior point of the triangle at which
BY and CZ intersect. Let X ′ be the foot of the cevian emanating from A that goes through
P. By Ceva’s theorem,

BX ′

X ′C
· CY

Y A
· AZ
ZB

= 1.
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Equating this with the equation in the hypothesis, we get

BX

XC
=

BX ′

X ′C
.

Using
BC = BX +XC = BX ′ +X ′C,

we get
BC −XC

XC
=

BC −X ′C

X ′C
.

So XC = X ′C and BX = BX ′, and therefore X = X ′.
Here, we defined a point that conveniently fulfils a desired property and then showed that
a given point is the same point. This technique is called using “phantom points” and is
frequently used to prove the converse of a theorem.

There is a more general version of Ceva’s theorem that holds for generalized cevians, but we
will not foray into it because it involves the ratios of directed lengths. For the same reason,
we will avoid the related collinearity result called Menelaus’s theorem and its converse.

Theorem 10.13 (Van Aubel’s theorem). If the cevians AX,BY,CZ of △ABC concur at
P, then

AP

PX
=

AY

Y C
+

AZ

ZB
.

A

B CX

Y

Z

P

Proof. Similar to our proof of Ceva’s theorem, we find that

AP

PX
=

[ABP ]

[PBX]
=

[ACP ]

[PCX]
=

[ABP ] + [ACP ]

[PBX] + [PCX]
=

[ABP ] + [ACP ]

[PBC]
.

In the proof of Ceva’s theorem, we found that

AY

Y C
=

[ABP ]

[CBP ]
,

AZ

ZB
=

[ACP ]

[BCP ]
.

Then van Aubel’s theorem follows immediately.
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Problem 10.14 (Gergonne’s theorem). Prove that if △ABC has cevians AX,BY,CZ that
concur at P, then

PX

AX
+

PY

BY
+

PZ

CZ
= 1.

Subtracting each side from 3 yields the equivalent identity

AP

AX
+

BP

BY
+

CP

CZ
= 2.

The preceding two results attributed, to Van Aubel and Gergonne, are not well-known, but
they appear with proofs in [2].

Problem 10.15. Let D be the midpoint of BC in △ABC, and let E be a point on AC,
and F be a point on AB. Prove that the cevians AD,BE,CF concur if and only if EF is
parallel to BC.

A

B CD

EF

Theorem 10.16 (Trigonometric Ceva’s theorem). The cevians AX,BY,CZ of △ABC are
concurrent if and only if

sinBAX

sinXAC
· sinCBY

sinY BA
· sinACZ

sinZCB
= 1.

A

B CX

Y

Z

Proof. Using the sine law and the fact that the sines of supplementary angles are equal, we
get

sinBAX

sinXAC
=

BX
BA
· sinBXA

XC
CA
· sinCXA

=
BX

XC
· CA

AB
.
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Similar derivations yield

sinCBY

sinY BA
=

CY

Y A
· AB
BC

,

sinACZ

sinZCB
=

AZ

ZB
· BC

CA
.

Now we get the partially telescoping product

sinBAX

sinXAC
· sinCBY

sinY BA
· sinACZ

sinZCB
=

Å
BX

XC
· CA

AB

ã
·
Å
CY

Y A
· AB
CB

ã
·
Å
AZ

ZB
· BC

AC

ã
=

Å
BX

XC
· CY

Y A
· AZ
ZB

ã
·
Å
CA

AB
· AB
CB
· BC

AC

ã
=

BX

XC
· CY

Y A
· AZ
ZB

.

Ceva’s theorem says that AX,BY,CZ are concurrent if and only if

BX

XC
· CY

Y A
· AZ
ZB

= 1,

so we are done.

Problem 10.17 (Cevian nest). In △ABC, suppose the cevians AD,BE,CF concur. Sup-
pose also that in △DEF , cevians DX,EY,CZ concur. Prove that the lines through
AX,BY,CZ concur. Hint: the ratio lemma, Ceva’s theorem, and the trigonometric form of
Ceva’s theorem will be helpful.

A

B CD

E

F

X

Y

Z
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Chapter 11

Triangle Centers

“There is no royal road to geometry.” (in response to
Ptolemy I Soter)

– Euclid

We will take a look at the most important triangle centers and their properties. Our list will
be focused, in comparison to the thousands of triangle centers listed by Clark Kimberling.
Specific triangle centers we will find and study include the centroid, incenter, excenters,
orthocenter and circumcenter. Along the way, we will come across additional concepts, such
as the Nagel point, Gergonne point, and the Euler line.

11.1 Examples

Theorem 11.1. Recall that median is a cevian whose foot lies on the midpoint of an edge.
The three medians of any triangle are concurrent.

Proof. Let the medians be AX,BY,CZ. By the definition of a median,

BX

XC
· CY

Y A
· AZ
ZB

= 1

because in each of the three fractions, the numerator is equal to the denominator. By the
converse of Ceva’s theorem, the medians are concurrent.

Definition 11.2. The point of concurrency of the medians of a triangle is called its centroid,
which is often denoted by the letter G.

A B

C

XY

Z

G

Problem 11.3. Show that, if the medians AX,BY,CZ of △ABC concur at P, then

AP

PX
=

BP

PY
=

CP

PZ
= 2.
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Use this to show that the six regions into which the medians of △ABC split the triangle are
of equal area.

A

B CD

EF

G

Definition 11.4. Recall that an interior angle bisector is the ray that splits an interior angle
in half. An interior angle bisector can also refer to the part of such a ray that lies on the
triangle. When we refer to an angle bisector, it will be clear from the context whether we
are referring to the ray or the cevian.

Theorem 11.5. In any triangle, the three cevians that are the interior angle bisectors are
concurrent. This means that every triangle has a unique incenter, which we often denote by
the letter I.

Proof. The angle bisector theorem tells us that

BX

XC
· CY

Y A
· AZ
ZB

=
AB

AC
· BC

BA
· CA

CB
= 1.

By the converse of Ceva’s theorem, the angle bisectors are concurrent. Alternatively, the
trigonometric form of Ceva’s theorem proves the result immediately. The incenter is unique
by Theorem 8.21.

Definition 11.6. The incenter of a triangle is defined as the concurrency point of the three
angle interior angle bisectors.

A B

C

X
Y

Z

I

Definition 11.7. The perimeter of a triangle is the sum of its three side lengths. The
semiperimeter of a triangle is half the perimeter; this might seem like a strange concept,
but it comes up in Heron’s formula in Theorem 11.27, for example.
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158 CHAPTER 11. TRIANGLE CENTERS

The following is a useful substitution that allows us to turn computational problems about
triangles, such as geometric inequalities, into problems about positive real numbers, or vice
versa.

Theorem 11.8 (Ravi substitution). The positive real numbers a, b, c are the three side
lengths of some triangle if and only if there exist positive real numbers x, y, z such that

a = y + z,

b = z + x,

c = x+ y.

In the case that these x, y, z exist, they are unique.

Proof. Let a, b, c be positive numbers. Recall that the triangle inequality for triangles in the
plane (Theorem 3.10) tells us that a, b, c are the three side lengths of some triangle if and
only if the following three inequalities hold:

b+ c > a,

c+ a > b,

a+ b > c.

Suppose there exist positive real numbers x, y, z that satisfy the three equations in the
statement of the theorem. Then

b+ c− a = 2x > 0,

c+ a− b = 2y > 0,

a+ b− c = 2z > 0.

In the other direction, suppose a, b, c are the three side lengths of some triangle. Then the
incenter exists. Suppose the incircle touches BC,CA,AB at X, Y, Z respectively. Thanks
to the equality of both tangent lengths from the same point, we can let

x = AY = AZ,

y = BZ = BX,

z = CX = CY.

In fact, we already proved the existence of the positive x, y, z in the same way when working
with tangential polygons in Problem 8.22.
In the case that x, y, z exist, they are unique because we can isolate them in terms of a, b, c
as

x = s− a,

y = s− b,

z = s− c,

where s =
a+ b+ c

2
is the semiperimeter of the triangle.
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Problem 11.9. Suppose the incircle of△ABC touches BC,CA,AB at X, Y, Z respectively.
Show that the cevians AX,BY,CZ concur. The point of concurrency is called the Gergonne
point Ge of the triangle. Note: this is different from the incenter I, as shown in the diagram.

A

B CD

E

F

Ge
I

Lemma 11.10. There is a unique point IA in the exterior of △ABC that is equidistant
from the segment BC, the ray emanating from A through B, and the ray emanating from
A through C. It is implicit in this equidistant condition that the foot of the perpendicular
segment from IA to the line through BC lies on BC, to the line through ray AB lies on ray
AB, and to the line through ray AC lies on ray AC.

IA

A

C

B

Proof. First we construct such a point IA. Each interior angle has two equal exterior angles
that are supplementary to it. Choosing the exterior angle of ∠ABC that is on the same side
of the line through AB as C, and choosing the exterior angle of ∠ACB that is on the same
side of the line through AC as B, let IA be the intersection of the bisectors of these two
exterior angles. Because IA lies on angle bisectors, it is equidistant from the rays of each
of these angles, which is what we wanted (the lines through two of these rays coincide and
intersection of two of these two rays is BC), due to Theorem 8.18.
Now suppose IA is any point that satisfies the definition in the statement of the lemma.
We want to show that IA is unique. Since the intersection of the aforementioned two angle
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160 CHAPTER 11. TRIANGLE CENTERS

bisectors is unique, it suffices to prove that IA lies on both. Since IA is equidistant from ray
AB and BC, it lies on the angle bisector of the exterior angle of ∠ABC that is on the same
side of the line through AB as C. Similarly, since IA is equidistant from ray AC and BC, it
lies on the angle bisector of the exterior angle of ∠ABC that is on the same side of the line
through AC as B.

Definition 11.11. In the notation of Lemma 11.10, IA an excenter of △ABC. The circle
with center IA that is tangent to BC, the ray AB and the ray AC is an excircle. Its radius
is called an exradius. We can similarly define an excircle that is tangent to the segment
CA or the segment AB. To distinguish between the three excircles, we may refer to the one
in our argument as the A-excircle with A-excenter IA and A-exradius rA,, with symmetric
definitions for B and C.

Example 11.12. Given △ABC, show that A, the incenter I, and the A-excenter IA are
collinear. Use this to show that the A-exradius is equal to

rA =
rs

s− a
,

where r is the inradius, s is the semiperimeter and a = BC.

Solution. Since IA is in the interior of the interior angle ∠BAC with AB and AC extended
as rays past B and C respectively, and since IA is equidistant from the rays AB and AC, IA
lies on the ray that is the angle bisector of the interior angle ∠BAC. As A and I also lie on
this angle bisector, A, I, IA are collinear.
Now let the foot of the perpendicular segment from I to AC be Y. Let the A-excircle touch
BC at IAA, the ray AB at IAB, and the ray AC at IAC .

IA

A

C

B

I

IAC

IAB

IAA

Y

The critical observation is that, by tangency,

AB +BIAA = AB +BIAB = AIAB = AIAC = AC + CIAC = AC + CIAA.
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At the same time,

AB +BIAA + CIAA + AC = AB +BC + CA = 2s,

so AIAB = AIAC = s. By nested angles, △AIY and △AIAIAC are similar right triangles.
Then we get the similarity ratio

rA
s

=
IAIAC

AIAC

=
IY

AY
=

r

s− a
.

Multiplying both sides is s produces the desired formula.

Problem 11.13. Given △ABC, let the A-excircle touch BC at IAA, the B-excircle touch
CA at IBB, and the C-excircle touch AB at ICC . Show that the cevians AIAA, BIBB and
CICC are concurrent. The point of concurrency is called the Nagel point of the triangle.

Theorem 11.14. Every triangle has a unique circumcenter, which we often denote by the
letter O. As a result, the perpendicular bisectors of the edges of the triangle are concurrent
at the same point.

Proof. Let the triangle be △ABC. The edges of a triangle are not parallel, so the perpen-
dicular bisectors of BC and CA must intersect at a point O. Since O is on the perpendicular
bisector of BC, O is equidistant from B and C. Similarly, since O is on the perpendicular
bisector of CA, O is equidistant from C and A. Since O equidistant from all of A,B,C,
it is a circumcenter, which we know to be unique when it exists by Theorem 8.16. As a
consequence, the perpendicular bisectors of the three edges are concurrent at O.

Definition 11.15. The circumcenter of a triangle is the unique point that is equidistant
from the three vertices of the triangle. Note that the circumcenter does not necessarily lie
in the interior of the triangle.

O

A B

C

Theorem 11.16. Recall that an altitude or height of a triangle is a generalized cevian that
is the perpendicular segment from a vertex to the line running through the opposite edge.
Since the foot of an altitude may lie in the interior, endpoints, or outside of an edge, it is
not always the case that an altitude is a cevian. Nonetheless, the lines through the three
altitudes of any triangle are concurrent.
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162 CHAPTER 11. TRIANGLE CENTERS

Proof. As with perpendicular bisectors and the circumcenter, the supposed point of concur-
rency might not lie in the interior of the triangle because an altitude is not necessarily a
cevian. Since both altitudes and perpendicular bisectors involve perpendicularity, perhaps
we can use the concurrency of the perpendicular bisectors of the edges of a triangle. We
would be done if the lines running through the altitudes of our triangle were the perpendic-
ular bisectors of some other triangle. To this end, we recall that if a triangle’s vertices are
the midpoints of the edges of another triangle, then the former is called the medial triangle
of the latter. We will show that the lines through the altitude of the medial triangle are the
perpendicular bisectors of the larger triangle, and then we will show that every triangle is
the medial triangle of some other triangle.

A
B

C A′B′

C ′

H

Let A′B′C ′ be a triangle. Let the midpoints of B′C ′, C ′A′, A′B′ be A,B,C respectively. By
SSS congruence,

△A′CB,△BAC ′,△ABC,△CB′A

are all congruent. Then equal alternate interior angles of a transversal tell us that the line
through BC is parallel to the line through B′C ′. Since the line through the altitude hA of
△ABC emanating from A is perpendicular to the line through BC, it is also perpendicular
to the line through B′C ′. Since hA intersects B′C ′ at A and A is the midpoint of B′C ′, the
line running through hA is the perpendicular bisector of B′C ′. Symmetric arguments hold
for the heights emanating from B and C.

Given △ABC, we can see that it is the medial triangle of some triangle as follows. Let ℓA
be the line through A that is parallel to BC, let ℓB be the line through B that is parallel to
CA, and let ℓC be the line through C that is parallel to AB. We leave it to the reader to
use triangle congruence theorems to show that it suffices for our purposes to use the triangle
whose vertices are the pairwise intersections of ℓA, ℓB, ℓC .

Definition 11.17. The point of concurrency of the lines through the altitudes of a triangle
is called its orthocenter, which we often denoted by the letter H. Note that the orthocenter
does not necessarily lie in the interior of the triangle.

Problem 11.18. Given △ABC, let let r be the inradius, let ha, hb, hc be the altitudes
emanating from A,B,C respectively, and let ra, rb, rc be the exradii of the excircles tangent
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to BC,CA,AB respectively. Show that

1

ha

+
1

hb

+
1

hc

=
1

r
=

1

ra
+

1

rb
+

1

rc
.

Example 11.19. Let △ABC be isosceles with apex A. Then the altitude emanating from
A is contained in the ray that is the interior angle bisector emanating from A, which is
contained in the perpendicular bisector of BC.

Solution. Let F be the foot of the altitude emanating from A, which lies in the interior
of BC since △ABC is isosceles with apex A. By HL congruence, △ABF ∼= △ACF. So
∠BAF = ∠CAF, which shows that that the altitude emanating from A lies on the interior
angle bisector emanating from A.
Now let E be the point in the interior of BC at which which the interior angle bisector
emanating from A intersects BC. By SAS congruence, △BAE ∼= △CAE. So ∠BEA =
∠CEA = 90◦ and BE = CE, which shows that the interior angle bisector emanating from
A is contained in the perpendicular bisector of BC.

Problem 11.20. Show that, in any equilateral triangle, the centroid, incenter, circumcenter,
and orthocenter are all the same point. This is called the center of the equilateral triangle.

Problem 11.21. Let A,B,C be three distinct non-collinear points in the plane. If O is the
circumcenter and H is the orthocenter of △ABC, verify that

−−→
OH =

−→
OA+

−−→
OB +

−→
OC.

Using the dot product, deduce that

OH2 = 9R2 − a2 − b2 − c2,

where a = BC, b = CA, c = AB are lengths, and R is the circumradius.

Theorem 11.22 (Euler line). For any △ABC, the circumcenter O, centroid G and ortho-
center H are collinear in that order such that OG : GH = 1 : 2. The line that runs through
them is called the Euler line. This is true as a result of the following computations. Let
a, b, c be the complex numbers corresponding to A,B,C respectively.

1. The centroid is g =
a+ b+ c

3
.

2. If the circumcenter is at the origin, then the orthocenter is h = a+ b+ c.

Proof. We will first compute g and h, and then we will prove their collinearity with the
circumcenter.

1. Recall that the line segment from a complex number z to a complex number w is given
by (1 − t)z + tw for t ∈ [0, 1]. Moreover, assuming z and w are distinct, the ratio
between the distance from z to (1− t)z + tw and the distance from z to w is

|(1− t)z + tw − z|
|w − z|

= t.
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The foot of the median emanating from a is the midpoint of b and c, which is
b+ c

2
.

Since the distance from a to the centroid g should be two-thirds of the distance from

a to
b+ c

2
, we substitute t =

2

3
into

(1− t)a+ t

Å
b+ c

2

ã
to get the centroid

g =

Å
1− 2

3

ã
a+

2

3

Å
b+ c

2

ã
=

a+ b+ c

3
.

2. Suppose the circumcenter is at the origin 0 and let the circumradius be R. In many
arguments involving the geometry of complex numbers, the barrier to computing the
location of a point is the removal of its conjugate from an expression. To lay the tracks,
we note that since a, b, c lie on the circumcircle,

aa = |a|2 = R2,

bb = |b|2 = R2,

cc = |c|2 = R2.

Let h be the orthocenter. Then the line through a and h is perpendicular to the line
through b and c. By the complex perpendicularity criterion,

h− a

b− c
= −
Å
h− a

b− c

ã
= −

Ä
h− R2

a

äÄ
R2

b
− R2

c

ä
=

bc

aR2
· ah−R2

b− c
.

Clearing the denominators and rearranging the equation yields

haR2 − a2R2 + bcR2 = abch.

Similarly, since the line through b and h is perpendicular to the line through c and a,
a symmetric derivation yields

hbR2 − b2R2 + caR2 = abch.

Since the right sides of the two equations are equal, we can equate the left sides to
compute that

haR2 − a2R2 + bcR2 = hbR2 − b2R2 + caR2

ha− a2 + bc = hb− b2 + ca

h(a− b)− (a− b)(a+ b)− c(a− b) = 0

h = a+ b+ c.

© 2024 Samer Seraj. All rights reserved.



11.1. EXAMPLES 165

Since translation preserves distances and counterclockwise angles, it preserves three relevant
properties: collinearity, the order in which points are collinear, and the pairwise distances
between the collinear points. So we may assume without loss of generality that the circum-

center O of △ABC is the origin 0. Then the centroid G is g =
a+ b+ c

3
and the orthocenter

H is h = a+ b+ c. The segment from 0 to h is given by

(1− t)0 + th = t · (a+ b+ c).

Taking t =
1

3
show that g lies

1

3
of the way through the segment from 0 to h, which

simultaneously proves the collinearity of O,G,H in that order and the ratio OG : GH = 1 : 2.
As a side note, the Euler line contains other important triangle centers, such as the center
of the nine-point circle and the Exeter point, but we will not discuss them.

Problem 11.23 (Napoleon’s theorem). Let △ABC be any (non-degenerate) triangle. If
an equilateral triangle is erected on each side, with each one exterior to the triangle, prove
that the centroids of those three equilateral triangles are the vertices of another equilateral
triangle. Also prove that the result still holds if all the three equilateral triangles are drawn
on the half-planes that cause their interiors to overlap with the interior of △ABC.

A

B

C

D

E

F

P

Q

R

A

B

C

D

EF

P
Q

R

Lemma 11.24. If B and C are points in R2, and D is a point on segment BC such that we
have the lengths BD = x and CD = y, then

−→
D =

y
−→
B + x

−→
C

x+ y
.

Proof. By scaling down
−−→
BC, we find that

x

x+ y

−−→
BC =

−−→
BD,

x

x+ y

−→
C − x

x+ y

−→
B =

−→
D −

−→
B .
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Then we can isolate −→
D =

y

x+ y

−→
B +

x

x+ y

−→
C .

Example 11.25. Let A,B,C be three distinct non-collinear points in the plane. Prove that
the position vector of the centroid of △ABC is

−→
G =

−→
A +

−→
B +

−→
C

3
,

so that the barycentric coordinates of the centroid are
Å
1

3
,
1

3
,
1

3

ã
.

Solution. By Lemma 11.24, the position vector of the midpoint M of AB is
−→
M =

−→
A +

−→
B

2
.

By the geometric fact that the medians cut each other in a 2 : 1 ratio with the larger segment
being closer to the emanating vertex, we can compute that

−→
G −

−→
C =

−→
CG =

2

3

Ç−→
A +

−→
B

2
−
−→
C

å
=

−→
A +

−→
B

3
− 2

3

−→
C

−→
G =

−→
A +

−→
B

3
− 2

3

−→
C +

−→
C =

−→
A +

−→
B +

−→
C

3
.

There is also a way to get this result without using the 2 : 1 intersection property of the
centroid, and it uses the comparison of coefficients of linearly independent vectors. We
will use this other method in Example 11.26 in order to find the position vector of the
incenter.

Example 11.26. Let A,B,C be three distinct non-collinear points on the plane. If I is the
incenter of △ABC, then the position vector of I is

−→
I =

a
−→
A + b

−→
B + c

−→
C

a+ b+ c
,

where a = BC, b = CA, c = AB are lengths. Equivalently, a triple of unhomogenized
barycentric coordinates for the incenter is (a, b, c).

Solution. First we will zone into the case of Lemma 11.24 where D is the foot of an angle
bisector. If D is the foot of the angle bisector from A to BC, then bx = cy by the angle
bisector theorem, where x = DB and y = DC. Then

−→
D =

y
−→
B + x

−→
C

x+ y
=

bx
c

−→
B + x

−→
C

x+ bx
c

=
b
−→
B + c

−→
C

b+ c
.

Analogously, if E is the foot of the angle bisector from B to AC, then

−→
E =

c
−→
C + a

−→
A

c+ a
.
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Since I lies at the intersection of AD and BE, some scaling of
−−→
AD will equal

−→
AI =

−→
I −
−→
A,

and some scaling of
−−→
BE will equal

−→
BI =

−→
I −
−→
B . So there exist constants α and β such that

α

Ç
b
−→
B + c

−→
C

b+ c
−
−→
A

å
=
−→
I −
−→
A,

β

Ç
c
−→
C + a

−→
A

c+ a
−
−→
B

å
=
−→
I −
−→
B .

As a result,

−→
I = α

Ç
b
−→
B + c

−→
C

b+ c
−
−→
A

å
+
−→
A = β

Ç
c
−→
C + a

−→
A

c+ a
−
−→
B

å
+
−→
B ,

which we can rewrite as

α

Ç
b(
−→
B −

−→
A ) + c(

−→
C −

−→
A )

b+ c

å
+ (
−→
A −

−→
B ) = β

Ç
c(
−→
C −

−→
B ) + a(

−→
A −

−→
B )

c+ a

å
αb

b+ c

−→
AB +

αc

b+ c

−→
AC −

−→
AB +

βc

c+ a

−−→
CB +

βa

c+ a

−→
AB = 0.

By substituting
−→
AB = −

−−→
BC −

−→
CA into this, we get

0 = − αb

b+ c

−−→
BC − αb

b+ c

−→
CA+

αc

b+ c

−→
AC +

−−→
BC +

−→
CA+

βc

c+ a

−−→
CB − βa

c+ a

−−→
BC − βa

c+ a

−→
CA,

0 =

Å
αb

b+ c
+ β − 1

ã−−→
BC +

Å
βa

c+ a
+ α− 1

ã−→
CA.

Since A,B,C are distinct and non-collinear,
−−→
BC and

−→
CA are linearly independent, so

αb

b+ c
+ β =

βa

c+ a
+ α = 1.

Solving for α and β yields

α =
b+ c

a+ b+ c
and β =

c+ a

a+ b+ c
.

Therefore, we compute

−→
I = α

Ç
b
−→
B + c

−→
C

b+ c
−
−→
A

å
+
−→
A =

b+ c

a+ b+ c
·
Ç
b
−→
B + c

−→
C

b+ c
−
−→
A

å
+
−→
A =

a
−→
A + b

−→
B + c

−→
C

a+ b+ c
.
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11.2 Area Formulas

Theorem 11.27 (Triangle area formulas). Let△ABC have edges a = BC, b = CA, c = AB,
semiperimeter s, inradius r and circumradius R. Then the area of △ABC is

[ABC] = rs

=
»

s(s− a)(s− b)(s− c) (Heron’s formula)

=
1

2
ab sinC

=
abc

4R
.

Proof. We will prove the formulas in succession as each will help to prove the next one.

1. The first formula was already proven more generally for all tangential polygons, but
we will review the proof here in the special case of a triangle. Letting the incenter be
I,

[ABC] = [BIC] + [CIA] + [AIB] =
ra

2
+

rb

2
+

rc

2
= r

Å
a+ b+ c

2

ã
= rs.

2. This proof of Heron’s formula is due to Miles Dillon Edwards [4], who published it
relatively recently. Let the incircle touch AB,BC,CA at X, Y, Z respectively. By
Ravi substitution, let

u = AY = AZ = s− a,

v = BZ = BX = s− b,

w = CX = XY = s− c.

Since the incenter is the point of concurrency of the angle bisectors, SAS congruence
yields the congruence of the following pairs of right triangles

△AIY ∼= △AIZ,

△BIZ ∼= △BIX,

△CIX ∼= △CIY.

So we can label the equal pairs of angles

α = ∠AIY = ∠AIZ,

β = ∠BIZ = ∠BIX,

γ = ∠CIX = ∠CIY.

Then 2α+2β+2γ = 2π or α+β+γ = π. By applying the definitions of cosine and sine
to α = ∠AIY in △AIY, we can compute the two components of the complex number

r + iu = AI(cosα + i sinα) = AIeiα.
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Similarly, we express two more complex numbers in rectangular and trigonometric form

r + iv = BIeiβ,

r + iw = CIeiγ.

Multiplying the three equations yields

(r + iu)(r + iv)(r + iw) = AI ·BI · CI · eα+β+γ = −AI ·BI · CI.

This complex number is real, so its imaginary part is

0 = Im((r + iu)(r + iv)(r + iw))

= Im(r3 + ir2(u+ v + w)− r(uv + vw + wu)− iuvw)

= r2(u+ v + w)− uvw.

Therefore, the area of △ABC is

[ABC] = rs = s ·
…

uvw

u+ v + w
=
»

s(s− a)(s− b)(s− c).

As a side note, expanding Heron’s formula leads us to an algebraic identity

(a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c) = 2a2b2 + 2b2c2 + 2c2a2 − a4 − b4 − c4,

which has remarkably few terms in the expanded side.

3. Since ∠ACB ∈ (0, π), we know that sinC ∈ (0, 1) So sin∠C =
√
1− cos2C, where

we are able to take the positive square root. By the cosine law and the difference of
squares factorization,

1

2
ab sinC =

1

2
ab ·
√
1− cos2C

=
1

2
ab ·

 
1−
Å
a2 + b2 − c2

2ab

ã2
=

1

4
·
»

(2ab)2 − (a2 + b2 − c2)2

=
1

4
·
»

(2ab− a2 − b2 + c2)(2ab+ a2 + b2 − c2)

=
1

4
·
»

(c2 − (a− b)2)((a+ b)2 − c2)

=
1

4
·
»

(a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c)

=
»

s(s− a)(s− b)(s− c).

This is Heron’s formula, so we are done.

4. By the extended law of sines,
c

sinC
= 2R, so

[ABC] =
1

2
ab sinC =

1

2
ab · c

2R
=

abc

4R
.
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Corollary 11.28. Let △ABC have edges a = BC, b = CA, c = AB, semiperimeter s,
inradius r, circumradius R, height ha emanating from A, and exradius ra of the A-excircle.
Then

r =
[ABC]

s
,

R =
abc

4[ABC]
,

ha =
2[ABC]

a
,

ra =
[ABC]

s− a
,

where each expression can be written purely in terms of a, b, c using Heron’s formula for
[ABC].

Problem 11.29. Given△ABC, let the inradius be r and the exradii of the excircles tangent
to BC,CA,AB be ra, rb, rc respectively. Show that

[ABC] =
√
rrarbrc.

Theorem 11.30 (Bretschneider’s formula). Let ABCD be a generalized quadrilateral. Let
AB = a,BC = b, CD = c,DA = d, let the interior angles at A,B,C,D be α, β, γ, δ

respectively, and let the semiperimeter be s =
a+ b+ c+ d

2
. Then

[ABCD] =

…
(s− a)(s− b)(s− c)(s− d)− abcd · cos2

(α + γ

2

)
.

Proof. There are a few configurations to consider:

• ABCD is a convex polygon.

• ABCD is a concave polygon, which is equivalent to one of the four vertices lying in
the interior of the triangle formed by the other three vertices.

• ABCD is not a polygon, which is equivalent to some three (consecutive) vertices being
collinear.

The reader should verify that, thanks to the fact that sine is positive on (0, π), negative on
(π, 2π), and 0 at π, it is true in all configurations that

[ABCD] =
1

2
ad sinα +

1

2
bc sin γ.

Since the target formula has an overarching square root, we square our equation to get

4[ABCD]2 = (ad)2 sin2 α + (bc)2 sin2 γ + 2abcd · sinα sin γ.
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By the cosine law,

BD2 = a2 + d2 − 2ad cosα = b2 + c2 − 2bc cos γ.

We rearrange this equation and square it to getÅ
a2 + d2 − b2 − c2

2

ã2
= (ad cosα− bc cos γ)2

= (ad)2 cos2 α + (bc)2 cos2 γ − 2abcd · cosα cos γ,

which is a cosine counterpart of our first equation. Adding the two equations gives

4[ABCD]2 +

Å
a2 + d2 − b2 − c2

2

ã2
= ((ad)2 + (bc)2)(sin2 α + cos2 α) + 2abcd(sinα sin γ − cosα cos γ)

= (ad)2 + (bc)2 − 2abcd · cos(α + γ)

= (ad+ bc)2 − 4abcd ·
Å
cos(α + γ) + 1

2

ã
= (ad+ bc)2 − 4abcd · cos2

(α + γ

2

)
,

where we have used the Pythagorean identity, an angle sum identity and a half angle identity.
By using the difference of squares factorization several times in the same manner used to
derive Heron’s formula, we find that

[ABCD]2 =

Å
ad+ bc

2

ã2
−
Å
a2 + d2 − b2 − c2

4

ã2
= (s− a)(s− b)(s− c)(s− d).

Note that we could replace cos2
(α + γ

2

)
with cos2

Å
β + δ

2

ã
because

cos2
Å
β + δ

2

ã
= cos2

(
π − α + γ

2

)
=
[
− cos

(α + γ

2

)]2
= cos2

(α + γ

2

)
.

Corollary 11.31 (Brahmagupta’s formula). If a, b, c, d are the edges of a cyclic quadrilateral

ABCD and the semiperimeter is s =
a+ b+ c+ d

2
, then

[ABCD] =
»

(s− a)(s− b)(s− c)(s− d).

Proof. This follows immediately from Bretschneider’s formula because opposite angles in a
cyclic quadrilateral are supplementary, and cos2

π

2
= 0. So the extra term in Bretschneider’s

formula vanishes.
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Chapter 12

Conics

“I was almost driven to madness in considering and
calculating this matter. I could not find out why the
planet would rather go on an elliptical orbit. Oh,
ridiculous me! As the liberation in the diameter could not
also be the way to the ellipse. So this notion brought me
up short, that the ellipse exists because of the liberation.
With reasoning derived from physical principles, agreeing
with experience, there is no figure left for the orbit of the
planet but a perfect ellipse.”

– Johannes Kepler

While conic sections have been studied since antiquity, we will study conics from the per-
spective of algebraic equations. Beyond the basic definitions, our goals are three-fold. First,
we will show that every conic is congruent to a conic that arises from a convenient type of
bivariate quadratic, which are called standard forms. Secondly, there is a pair of uniqueness
results that will interest us. Specifically, we will determine when two bivariate quadratics
can produce the same conic, and we will find all directrices, eccentricities, and foci for fixed
conics. Lastly, we will look at geometric properties of the curves that are conics.

12.1 Bivariate Quadratics

Conic sections were originally defined as the curves on the boundaries of cross-sections of any
“double” right cone that extends infinitely. Despite the fact that this is how conic sections
came to have their name, we have preferred a definition from analytic geometry involving a
focus, an eccentricity, and a directrix.
We have already seen an example of a conic: circles. The general equation of a circle is

(x− a)2 + (y − b)2 = r2.

This can be expanded and written in the form

x2 + y2 + Ax+By + C = 0,

though not all equations of this form lead to a circle. While circles are technically a type of
conic, the following definition that we will use for a conic will not cover it. As such, whenever
we write about conics, it will be in reference to non-circular conics.
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Definition 12.1. A DEF-construction is an ordered triple of a line ℓ called the directrix,
a positive real number e called the eccentricity, and a point F outside ℓ called the focus.
In a given DEF-construction, the distance from the focus to the directrix is called the focal
parameter. A constructible conic is a set of points that, for some DEF-construction
(ℓ, e, F ), is equal to the locus of all points P such that the distance from P to F is equal to
e times the distance from P to ℓ. In our case, all references to conics will be to those that
are constructible.

Note that the same constructible conic might arise from more than one DEF-construction.
In fact, the question of classifying all DEF-constructions of a conic that has at least one
DEF-construction will later occupy us.

Definition 12.2. Let e be the eccentricity in a DEF-construction of a conic. Then the conic
is called an 

ellipse if 0 < e < 1

parabola if e = 1

hyperbola if e > 1

.

Some sources fit a circle within this classification scheme by referring to it as a limiting case
with an eccentricity of e = 0, but we will not do so because a circle has no directrix in the
plane.

As we will see, the distinction between ellipses, parabolas and hyperbolas is justified because
the algebra and geometry play out somewhat differently in each case.

Theorem 12.3. In a DEF-construction, let the directrix be given by ax + by + c = 0, let
(x0, y0) be the focus, and let e > 0 be the eccentricity. Then (x, y) is a point on the resulting
conic if and only

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0,

where the coefficients are

A = a2(1− e2) + b2,

B = −2abe2,
C = a2 + (1− e2)b2,

D = −2(ace2 + (a2 + b2)x0)

E = −2(bce2 + (a2 + b2)y0)

F = (a2 + b2)(x2
0 + y20)− e2c2.

This is one tuple of coefficients that works, and we will later show that all other such tuples
are its non-zero scalar multiples.

Proof. The point (x, y) is on the conic if and only if the distance from (x, y) to (x0, y0)
is equal to e times the distance from (x, y) to the line given by ax + by + c = 0. By the
point-point and point-line distance formulas, this relation is given by the equation»

(x− x0)2 + (y − y0)2 =
e|ax+ by + c|√

a2 + b2
.
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Neither side can be negative, so squaring is a reversible step. After that, it is a matter of
taking everything to one side, expanding, and collecting like terms:

0 = (a2 + b2)[(x− x0)
2 + (y − y0)

2]− e2(ax+ by + c)2

= (a2 + b2)(x2 + y2 − 2x0x− 2y0y + x2
0 + y20)

− e2(a2x2 + b2y2 + c2 + 2abxy + 2acx+ 2bcy)

= (a2 + b2 − e2a2)x2 − 2e2abxy + (a2 + b2 − e2b2)y2

+ [−2x0(a
2 + b2)− 2e2ac]x+ [−2y0(a2 + b2)− 2e2bc]y

+ [(a2 + b2)(x2
0 + y20)− e2c2],

which matches the desired result after some minor algebraic fiddling.

Definition 12.4. A bivariate quadratic is a two-variable function of the form

Q(x, y) = Ax2 +Bxy + Cy2 +Dx+ Ey + F,

where the coefficients are real.

Example. As we saw, every constructible conic is the zero set of some bivariate quadratic.
However, it is not true that the zero set of every bivariate quadratic is a constructible conic.
As an extreme example, there are no real points (x, y) such that

x2 + y2 + 1 = 0.

There are also bivariate quadratics which have non-empty zero sets that are not constructible
conics. Those curves are called degenerate conics. Henceforth, by “conic,” we shall only
refer to a constructible one, as in one that arises from a DEF-construction.

The next result will show the existence of a conic as the graph of a convenient equation for
each possible pair of an eccentricity and a focal parameter.

Theorem 12.5. Given e > 0 and f > 0, there exists a conic with eccentricity e and focal
parameter f. Specifically, we can choose it to be the graph of one of the following equations,
which we call the standard form of an ellipse, parabola or hyperbola.

1. If 0 < e < 1 then we choose
x2

p2
+

y2

q2
= 1 where p =

fe

1− e2
> 0 and q = p

√
1− e2 > 0.

2. If e = 1 then we choose y2 = 4px where p =
f

2
> 0.

3. If e > 1 then we choose
x2

p2
− y2

q2
= 1 where p =

fe

e2 − 1
> 0 and q = p

√
e2 − 1 > 0.

Along the way, we will show that, for a conic that is a zero set of a bivariate quadratic
in standard form, there is at least one DEF-construction of a parabola, and at least two
DEF-constructions of an ellipse or hyperbola.

Proof. Suppose we are given e > 0 and f > 0. We construct the conic in each case as follows.

© 2024 Samer Seraj. All rights reserved.
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1. Suppose 0 < e < 1. We choose the focus to be (pe, 0) and the corresponding directrix

to be x =
p

e
where p =

fe

1− e2
. The focal parameter is

p

e
− pe = p

Å
1− e2

e

ã
= f

as desired. Then (x, y) lies on the ellipse with this focus-directrix pair and eccentricity
e if and only if »

(x− pe)2 + y2 = e ·
∣∣∣x− p

e

∣∣∣ .
Neither side can be negative, so squaring both sides is reversible. We do this and
rearrange the terms to get

x2

p2
+

y2

p2(1− e2)
= 1.

2. Suppose e = 1. We choose the focus to be (p, 0) and the corresponding directrix to be

x = −p where p =
f

2
. The focal parameter is f as desired. Then (x, y) lies on the

parabola with this focus-directrix pair and eccentricity e = 1 if and only if»
(x− p)2 + y2 = |x+ p|.

Squaring and rearranging the terms yields y2 = 4px.
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3. Suppose e > 1. As with an ellipse, we choose the focus to be (pe, 0) and the corre-

sponding directrix to be x =
p

e
where p =

fe

e2 − 1
. The focal parameter is

pe− p

e
= p

Å
e2 − 1

e

ã
= f

as desired. Then (x, y) lies on the hyperbola with this focus-directrix pair and eccen-
tricity e if and only if »

(x− pe)2 + y2 = e ·
∣∣∣x− p

e

∣∣∣ .
Squaring both sides and rearranging the terms yields

x2

p2
− y2

p2(e2 − 1)
= 1.

In fact, for ellipses or hyperbolas in standard form, the focus-directrix pair of (−pe, 0) and
x = −p

2
works with the same eccentricity and gives the same focal parameter. Admittedly,

the choices of foci and directrices may seem to be lacking motivation. In Theorem 12.8, we
will describe a naturally-arising Euclidean isometry that maps a conic that is the graph of a
generic bivariate quadratic to a conic that is the graph of an equation in standard form.

If a conic is the graph of an equation in standard form, we will sometimes abuse language
to say that the conic itself is in standard form, though the meaning is clear.
Inspired by the fact that two polygons are congruent if and only if the image of one under
a Euclidean isometry is the other, we make the following general definition.

Definition 12.6. Two subsets of R2 are said to be congruent if the image of one of the
sets under some Euclidean isometry is equal to the other set.

Example. This definition applies to subsets of the plane that are conics, which gives us the
notion of congruent conics. As we will see, congruence of conics is a useful concept because
many of the parameters that we will define for conics are preserved under congruence, and
conversely some combinations of matching parameters imply congruence.
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Theorem 12.7. The image of a conic S under a Euclidean isometry k is a congruent set k(S)
that is a conic that has the same eccentricity and focal parameter as those of S. Moreover,
each focus-directrix pair of S is mapped to a focus-directrix pair of k(S). Conversely, two
conics with the same eccentricity and the same focal parameter are congruent.

Proof. For the first direction, let the eccentricity and focal parameter of S be e and f
respectively, and let F be a focus of S and ℓ be the corresponding directrix of S. Then k
maps F to a point k(F ) and ℓ to a line k(ℓ), where the latter is known from Theorem 3.13.
That theorem also states that Euclidean isometries preserve the distance between a point
and a line, so the distance between k(F ) and k(ℓ) is the same as the (non-zero) distance
between F and ℓ. Let S ′ be the conic with eccentricity e that has k(F ) as a focus and k(ℓ)
as the corresponding directrix. By the preceding statement, S ′ has focal parameter f. Now
it suffices to show that k(S) = S ′. This idea of constructing one object and showing that
it turns out to be the same as another object is called using a “phantom” object, where the
object is most commonly just a point, like in the proof of the converse of Ceva’s theorem
(Theorem 10.12). Suppose P ∈ S ′. This is true if and only if

d(P, k(F )) = e · d(P, k(ℓ)),

where d denotes the distance between the enclosed pair of elements; we will be using this
notation later as well, so take heed. Since k is a Euclidean isometry, Theorem 3.2 says that
it has an inverse k−1 that is also a Euclidean isometry. Euclidean isometries preserve the
distance between a pair of points and the distance between a point and a line, so the last
equation is true if and only if

d(k−1(P ), F ) = e · d(k−1(P ), ℓ).

This is equivalent to saying that k−1(P ) lies on S, which is true if and only if P ∈ k(S).
So, P ∈ S ′ if and only if P ∈ k(S). Thus, k(S) is not only congruent to S as set of points,
but k(S) is S ′, which is a conic that has the same eccentricity and focal parameter as S.
Moreover, k(F ) and k(ℓ) form a focus-directrix pair of k(S).
In the other direction, suppose S and S ′ are conics with the same eccentricity and focal
parameter. Since they have the same eccentricity, it suffices to show that the image of a
focus-directrix pair of S under some Euclidean isometry is a focus-directrix pair of S ′. Let F
and ℓ be a focus-directrix pair of S, and let F ′ and ℓ′ be a focus-directrix pair of S ′. Let D be
the foot of the perpendicular from F to ℓ, and let D′ be the foot of the perpendicular from
F ′ to ℓ′. Since S and S ′ have the same focal parameter, FD = F ′D′. Thus, a translation
followed by a rotation will map F to F ′ and D to D′. This causes ℓ to get mapped to ℓ′ as
well since there is exactly one line that goes through a given point and is perpendicular to
a given line segment.

The last result shows that conics arising from DEF-constructions that have the same eccen-
tricity and focal parameter are unique up to congruence.

Theorem 12.8. Suppose S is a constructible conic. Let

Q(x, y) = Ax2 +Bxy + Cy2 +Dx+ Ey + F
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be a bivariate quadratic whose zero set is S. If B ̸= 0, then rotating S counterclockwise by

θ around the origin, where θ satisfies cot 2θ =
C − A

B
, yields a congruent conic that is the

zero set of a bivariate quadratic, the coefficient of whose xy term is 0. Then an appropriate
translation and/or reflection of this conic is a congruent conic that is the zero set of a
bivariate quadratic in standard form.

Proof. The counterclockwise rotation of S around the origin by some θ is the graph of

Q(x cos θ + y sin θ, y cos θ − x sin θ).

We will not show the messy details, but the coefficient of the xy term after expanding and
collecting like terms is

2(A− C) cos θ sin θ +B(cos2 θ − sin2 θ).

We want to choose θ so that this expression is 0. Using the double angle identities for sine
and cosine, the xy term vanishes if and only if

(C − A) sin(2θ) = B cos(2θ).

If A = C, then we can choose θ =
π

4
. Otherwise, we can apply the arctan function to

tan(2θ) =
B

C − A
and find a suitable angle θ in the range of arctan, which is

(
−π

2
,
π

2

)
.

If this angle is negative, we can add 2π to make it positive so that the rotation is still
counterclockwise if desired.
After the xy term is eliminated, we can complete the square in whichever of the variables x
and/or y still have a term of second degree left and then apply an appropriate translation
(vertical and/or horizontal), possibly along with a reflection so that it is the graph of an
equation in standard form. This reflection could be across a coordinate axis, or across the
lines x = y to swap the roles of the variables.

We will now work through a number of preliminary results before we can classify the coeffi-
cient tuple of bivariate quadratics whose infinite zero set is a given constructible conic.

Lemma 12.9. Let ℓ be a line in the plane, parametrized by

(x, y) = (r, s) + t(v, w).

Let
Q(x, y) = Ax2 +Bxy + Cy2 +Dx+ Ey + F

be a bivariate quadratic. Then either ℓ intersects the zero set Q(x, y) = 0 at 0, 1, or 2 distinct
points, or every point on ℓ lies on Q(x, y) = 0.

Proof. By substituting

x = r + tv,

y = s+ tw
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into Q(x, y), the intersections of the line with the conic occur at the values of t that satisfy

0 = Q(r + tv, s+ tw)

= A(r + tv)2 +B(r + tv)(s+ tw) + C(s+ tw)2 +D(r + tv) + E(s+ tw) + F.

Upon expanding this and collecting like terms in the parameter t, we get a polynomial
equation

0 = αt2 + βt+ γ

of degree at most 2. If α2 + β2 + γ2 = 0, then every t gives a solution, making ℓ a subset of
the curve cut out by Q(x, y) = 0. Otherwise,

αt2 + βt+ γ

has at least one non-zero coefficient, leaving 0, 1, or 2 distinct solutions t, by the fundamental
theorem of algebra from Volume 1.

Problem 12.10 (Bivariate quadratic identity theorem). If there are two bivariate quadratics

Q1(x, y) = A1x
2 +B1xy + C1y

2 +D1x+ E1y + F1,

Q2(x, y) = A2x
2 +B2xy + C2y

2 +D2x+ E2y + F2

that give the same output for all real x and y, use the identity theorem for polynomials from
Volume 1 to prove that corresponding coefficients match. That is, we have the equality

(A1, B1, C1, D1, E1, F1) = (A2, B2, C2, D2, E2, F2).

Lemma 12.11 (Bivariate quadratic decomposition). Let

Q(x, y) = Ax2 +Bxy + Cy2 +Dx+ Ey + F

be a bivariate quadratic and let

L1(x, y) = a1x+ b1y + c1,

be a line, where a21 + b21 ̸= 0. This means a1 ̸= 0 or b1 ̸= 0, which splits the result into two
(overlapping) cases:

• Case 1: If a1 ̸= 0, then there exists a linear function

L2(x, y) = a2x+ b2y + c2

such that
Q(x, y) = L1(x, y)L2(x, y) +M(y),

where M(y) is a unique quadratic whose only variable is y.

• Case 2: If b1 ̸= 0, then there exists a linear function

L3(x, y) = a3x+ b3y + c3

such that
Q(x, y) = L1(x, y)L3(x, y) +N(x),

where N(x) is a unique quadratic whose only variable is x.

© 2024 Samer Seraj. All rights reserved.



180 CHAPTER 12. CONICS

Proof. First we handle Case 1. Suppose a1 ̸= 0. If the stated decomposition exists, then

Ax2 +Bxy + Cy2 +Dx+ Ey + F −M(y)

= Q(x, y)−M(y)

= L1(x, y)L2(x, y)

= (a1x+ b1y + c1)(a2x+ b2y + c2)

= (a1a2)x
2 + (a1b2 + a2b1)xy + (b1b2)y

2 + (a1c2 + a2c1)x+ (b1c2 + b2c1)y + c1c2.

By Problem 12.10, since M(y) does not contain the variable x, the coefficients of x2, xy, x
can be matched in the two expressions to give

A = a1a2,

B = a1b2 + a2b1,

D = a1c2 + a2c1.

Since it was assumed that a1 ̸= 0, we get

a2 =
A

a1
,

B = a1b2 +
Ab1
a1

=⇒ b2 =
Ba1 − Ab1

a21
,

D = a1c2 +
Ac1
a1

=⇒ c2 =
Da1 − Ac1

a21
.

This determines
L2 = a2x+ b2y + c2.

Finally, M(y) is a well-defined and uniquely determined quadratic in the variable y because
it is determined as Q(x, y)− L1(x, y)L2(x, y), due to how a2, b2, c2 were engineered:

M(y) = Q(x, y)− L1(x, y)L2(x, y) = Cy2 + Ey + F.

Note that the proof relied on division by a1 ̸= 0. The proof of Case 2 is symmetrical, with
reliance on division by b1, which is acceptable due to the assumption that b1 ̸= 0 in Case
2.

Lemma 12.12. Let

Q(x, y) = Ax2 +Bxy + Cy2 +Dx+ Ey + F

be a bivariate quadratic, and let

L1(x, y) = a1x+ b1y + c1

be a linear function with a21+ b21 ̸= 0. If every point on L1(x, y) = 0 lies on Q(x, y) = 0, then
there exists a linear function

L1(x, y) = a2x+ b2y + c2

such that
Q(x, y) = L1(x, y)L2(x, y).

In fact, this result strengthens itself by holding even if we know only that the zero sets
L1(x, y) = 0 and Q(x, y) = 0 intersect in at least 3 distinct points.
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Proof. Since a21 + b21 ̸= 0, we know that a1 ̸= 0 or b1 ̸= 0. If a1 ̸= 0, then Lemma 12.11 says
that there exists a linear function

L2(x, y) = a2x+ b2y + c2

and M(y) such that
Q(x, y) = L1(x, y)L2(x, y) +M(y).

For each y ∈ R, there exists exactly one x ∈ R (call it ϕ(y)) such that

L1(x, y) = 0,

since we can divide by the non-zero coefficient a1 of x to get

a1x+ b1y + c = 0 =⇒ x = −b1y + c

a1
= ϕ(y).

Since it is assumed that every point on L1(x, y) = 0 also lies on Q(x, y) = 0, it means Q
vanishes wherever L1 vanishes. As a result,

0 = Q(ϕ(y), y)

= L(ϕ(y), y)L2(ϕ(y), y) +M(y)

= 0 · L2(ϕ(y), y) +M(y)

= M(y).

Since this says that M(y) vanishes for all real y, the identity theorem for polynomials from
Volume 1 says that the coefficients of M are all 0. This leaves us with

Q(x, y) = L1(x, y)L2(x, y),

as desired.
The second case, where b1 ̸= 0, follows from a symmetrical argument.
For the strengthening, suppose that, instead of knowing that L1(x, y) = 0 is a subset of
Q(x, y) = 0, we instead only knew that there are at least 3 points of intersection between
L1(x, y) = 0 and Q(x, y) = 0. Then Lemma 12.9 says that more than two points of in-
tersection implies that L1(x, y) = 0 is a subset of Q(x, y) = 0. The rest has already been
argued.

Lemma 12.13. If Q(x, y) = 0 is a constructible conic, meaning it arises from a DEF-
construction, then the conic Q(x, y) = 0 cannot contain a whole line. By Lemma 12.12, this
implies that there do not exist linear functions

L1(x, y) = a1x+ b1y + c1,

L2(x, y) = a2x+ b2y + c2

such that
Q(x, y) = L1(x, y)L2(x, y).
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Proof. Since the conic is constructible, let a focus be P = (x0, y0) and its corresponding
directrix be

ax+ by + c = 0.

For contradiction, suppose the conic Q(x, y) = 0 contains a line, within which there are
points V = (x1, y1) and W = (x2, y2) and let U be the midpoint of V and W . Then △V PW
has PU as a median. By Apollonius’s theorem (Problem 10.6), which is simply the median
case of Stewart’s theorem (Theorem 10.5), along with the definition of a DEF-construction
(Definition 12.1),

4PU2 + VW 2 = 2PV 2 + 2PW 2

4 ·
∣∣a (x1+x2

2

)
+ b
(
x1+x2

2

)
+ c
∣∣2

a2 + b2
+ (x1 − x2)

2 + (y1 − y2)
2

= 2 · |ax1 + by1 + c|2

a2 + b2
+ 2 · |ax2 + by2 + c|2

a2 + b2
.

Clearing the denominator a2 + b2 makes this

[a(x1 + x2) + b(y1 + y2) + 2c]2 + (a2 + b2)[(x1 − x2)
2 + (y1 − y2)

2]

= 2(ax1 + by1 + c)2 + 2(ax2 + by2 + c)2.

Rearranging the left side and expanding it gives

[(ax1 + by1 + c) + (ax2 + by2 + c)]2 + (a2 + b2)[(x1 − x2)
2 + (y1 − y2)

2]

= 2(ax1 + by1 + c)2 + 2(ax2 + by2 + c)2

(ax1 + by1 + c)2 + 2(ax1 + by1 + c)(ax2 + by2 + c) + (ax2 + by2 + c)2

+ (a2 + b2)[(x1 − x2)
2 + (y1 − y2)

2]

= 2(ax1 + by1 + c)2 + 2(ax2 + by2 + c)2.

Cancelling common terms from both sides and completing a square, we get

(a2 + b2)[(x1 − x2)
2 + (y1 − y2)

2 = [(ax1 + by1 + c)− (ax2 + by2 + c)]2

(a2 + b2)[(x1 − x2)
2 + (y1 − y2)

2] = [a(x1 − x2) + b(y1 − y2)]
2.

By the real number Cauchy-Schwarz inequality from Volume 1,

(a2 + b2)[(x1 − x2)
2 + (y1 − y2)

2] ≥ [a(x1 − x2) + b(y1 − y2)]
2,

where equality holds if and only if (a, b) = (0, 0) (which is impossible since ax + by + c is a
line), or (a, b) and (x1 − x2, y1 − y2) are linearly dependent. Since (a, b) is a normal vector
to the directrix ax+ by+ c = 0 and (x1− x2, y1− y2) is a direction vector of the line though
VW , the line through VW must be perpendicular to the stated directrix. Subsequently, the
line through VW intersects the directrix, so let the point of intersection be R. But then
the eccentricity times the shortest distance between R and the directrix must be 0, which is
equal to the distance between R and the focus. So R is the focus, which makes the focus lie
on the directrix. This is a contradiction to the definition of a DEF-construction.
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Finally, if it is possible to cause a decomposition

Q(x, y) = L1(x, y)L2(x, y),

then Q(x, y) = 0 if and only if L1(x, y) = 0 or L2(x, y) = 0, which would cause the zero set
of Q to contain both lines. As we saw above, the zero set of a constructible conic cannot
contain a line, so Q cannot split multiplicatively.

Theorem 12.14. Suppose S is a constructible conic (which therefore has infinitely many
points, and so is non-degenerate). If Q1 is a bivariate quadratic whose zero set is S, then the
same is true for λQ1 for any real λ ̸= 0, which we call a scalar multiple of Q1. Conversely,
if Q1 and Q2 are bivariate quadratics whose zero sets are both S, then there exists a real
λ ̸= 0 such that Q2 = λQ1. More explicitly, this is saying that, given

Q1(x, y) = A1x
2 +B1xy + C1y

2 +D1x+ E1y + F1,

Q2(x, y) = A2x
2 +B2xy + C2y

2 +D2x+ E2y + F2,

these two bivariate quadratics have the same constructible conic as their zero set if and only
if there exists a real λ ̸= 0 such that

λ · (A1, B1, C1, D1, E1, F1) = (A2, B2, C2, D2, E2, F2).

Proof. The first direction is easy because a point (x, y) satisfies Q1(x, y) = 0 if and only if
it satisfies Q2(x, y) = λQ1(x, y) = 0, given λ ̸= 0. So the two zero sets are the same.
The second direction is more challenging, and it is the goal towards which we have been build-
ing with the preceding lemmas. Since Q1(x, y) arises from a constructible conic, Lemma 12.13
says that it cannot be decomposed into the product of two linear functions. By the contra-
positive of Lemma 12.12, every line intersects Q1(x, y) = 0 in at most 2 points.
Since Q1(x, y) = 0 is a constructible conic, it has infinitely many points. From the curve,
we pick 5 distinct points Pi = (xi, yi) for i = 1, 2, 3, 4, 5. The zero sets of Q1(x, y) = 0 and
Q2(x, y) = 0 are assumed to be the same, so the Pi also lie on the latter. Then we obtain
the following system of equations, represented using matrix multiplication:


x2
1 x1y1 y21 x1 y1 1

x2
2 x2y2 y22 x2 y2 1

x2
3 x3y3 y23 x3 y3 1

x2
4 x4y4 y24 x4 y4 1

x2
5 x5y5 y25 x5 y5 1



A2

B2

C2

D2

E2

F2

 =


0
0
0
0
0
0

 .

Since the five (xi, yi) coordinate pairs are known, each of the five rows represents a linear
equation in 6 variables (A2, B2, C2, D2, E2, F2). We wish to show that all such 6-tuples
are determined as non-zero scalar multiples of (A1, B1, C1, D1, E1, F1). With this goal in
mind, if we can show that the rows are linearly independent, then the rows will span a
5-dimensional subspace of the 6-dimensional Euclidean vector space. The set of solutions
for (A2, B2, C2, D2, E2, F2) forms the “null space” of this system, meaning it is the set of
6-component real vectors that are individually sent to 0 by each row of the matrix. By the
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well-known rank-nullity theorem (which we have not covered) from linear algebra, this null
space has dimension 6 − 5 = 1. So, all (A2, B2, C2, D2, E2, F2) are scalar multiples of each
other, and, in particular, they are generated as the set of scalar multiples of the known tuple
(A1, B1, C1, D1, E1, F1).
As a result of the preceding argument, our penultimate step should be to prove that the rows
of the matrix are linearly independent. For the sake of contradiction, suppose that, without
loss of generality, the fifth row is a linear combination of the first four rows. Let the row
vectors be r1, r2, r3, r4, r5 and let a hypothetical solution to the system be

s = (A2, B2, C2, D2, E2, F2).

So, there exist real numbers α1, α2, α3, α4 such that

r5 = α1r1 + α2r2 + α3r3 + α4r4,

Taking the dot product of both sides by s, we get

r5 • s = (α1r1 + α2r2 + α3r3 + α4r4) • s
= α1(r1 • s) + α2(r2 • s) + α3(r3 • s) + α4(r4 • s)
= 0.

This means that, for any s = (A2, B2, C2, D2, E2, F2) such that

Q2(x, y) = A2x
2 +B2xy + C2y

2 +D2x+ E2y + F2 = 0

for each (x, y) = (xi, yi) (i = 1, 2, 3, 4), it is also true that (x5, y5) lies on the conic Q2(x, y) =
0 by satisfying the same equation.
Let a12x + b12y + c12 = 0 be the line that runs through (x1, y1) and (x2, y2), and let a34x +
b34y + c34 = 0 be the line that runs through (x3, y3) and (x4, y4). Then expanding and
collecting the like terms of

(a12x+ b12y + c12)(a34x+ b34y + c34) = 0

yields a bivariate quadratic that that goes through (xi, yi) for i = 1, 2, 3, 4. By the above
argument, (x5, y5) also lies on it, so at least one of the following equations is true:

a12x5 + b12y5 + c34 = 0,

a34x5 + b34y5 + c34 = 0.

This would imply that three collinear points, that is (xi, yi) for i = 1, 2, 5 or i = 3, 4, 5 lie
in the zero set of Q1(x, y) = 0. Finally, this contradicts the fact that we derived at the
beginning of the proof: every line intersects Q1(x, y) = 0 in at most 2 points.

Problem 12.15. In a bivariate quadratic that represents a constructible conic, prove that
at least one of the coefficients of the quadratic terms x2, xy, y2 is non-zero.
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So far, we know that every constructible conic can be transformed by a Euclidean isometry
to be the zero set of a bivariate quadratic in standard form (Theorem 12.8). We also know
that its DEF-constructions get mapped to those of the image conic and without changing
the eccentricity or focal parameter (Theorem 12.7). We found that there is at least one DEF-
construction for parabolas, and at least two DEF-constructions for ellipses and hyperbolas
(Theorem 12.5). If we can deduce that there is also at most one DEF-construction for a
parabola and at most two for ellipses and hyperbolas (it suffices to look at standard forms),
then we will know that there are exactly as many DEF-constructions. When the eccentricity
and focal parameter turn out to be the same in every DEF-construction for a constructible
conic, we will finally be able to refer to “the” eccentricity and “the” focal parameter of a given
conic.

Theorem 12.16. A parabola has a unique eccentricity, and exactly one focus-directrix pair.
As a result, it has exactly one possible focal parameter.

Proof. Due to preservations under isometry, it suffices to look at the standard form

0x2 + 0xy + 1y2 + (−4p)x+ 0y + 0 = 0

for p > 0. With the “at least” direction established in Theorem 12.5, we will show that at
most one DEF-construction exists. Suppose there is a DEF-construction with the directrix
ax+ by+ c = 0 where a2 + b2 ̸= 0, eccentricity e > 0, and focus (x0, y0). By Theorem 12.14,
we can scale these coefficients to be equal to those in Theorem 12.3:

λ ·


0
0
1
−4p
0
0

 =


A
B
C
D
E
F

 =


a2(1− e2) + b2,
−2abe2,

a2 + (1− e2)b2,
−2(ace2 + (a2 + b2)x0)
−2(bce2 + (a2 + b2)y0)
(a2 + b2)(x2

0 + y20)− e2c2

 .

The second equation gives us −2abe2 = 0, which is equivalent to a = 0 or b = 0 since we
require e > 0. The first equation says

a2(1− e2) + b2 = 0.

So, in the hypothetical case that a = 0, we would also get b = 0, contradicting a2+b2 ̸= 0. We
have deduced b = 0. Moreover, since (a, b, c) can be scaled without changing the directrix,
we may choose a = 1 without loss of generality. Then the third equation becomes

λ = a2 + (1− e2)b2 = 1.

The first equation yields

0 = a2(1− e2) + b2 = 1− e2 =⇒ e = 1.

We update the fourth, fifth, and sixth equations to say−4p0
0

 =

DE
F

 =

 −2(c+ x0)
−2y0

x2
0 + y20 − c2

 .
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Then y0 = 0 and we can further simplify the system to

2p = c+ x0,

0 = x2
0 − c2 = (x0 − c)(x0 + c) = (x0 − c)2p.

The last equation yields x0 = c, since p > 0. Combining this with 2p = c + x0 gives
c = x0 = p. Therefore, there is at most one DEF-construction, which is

((a : b : c), e, (x0, y0)) = ((1 : 0 : p), 1, (p, 0)),

where the colons indicate that multiplying all the components of (a : b : c) by a non-zero
scalar does not change the ratio.

Theorem 12.17. An ellipse has a unique eccentricity, and exactly two focus-directrix pairs,
each with the same focal parameter.

Proof. Due to preservations under isometry, it suffices to look at the standard form

1

p2
x2 + 0xy +

1

q2
y2 + 0p+ 0q + (−1) = 0

for p > 0 and q > 0. Since the “at least” direction has already been established in Theo-
rem 12.5, we will show that at most two DEF-constructions exist, which will turn out to
have equal eccentricities and equal focal parameters. Suppose there is a DEF-construction
with the directrix ax + by + c = 0 where a2 + b2 ̸= 0, eccentricity e > 0, and focus (x0, y0).
By Theorem 12.14, we can scale these coefficients to be equal to those in Theorem 12.3:

λ ·


1/p2

0
1/q2

0
0
−1

 =


A
B
C
D
E
F

 =


a2(1− e2) + b2,
−2abe2,

a2 + (1− e2)b2,
−2(ace2 + (a2 + b2)x0)
−2(bce2 + (a2 + b2)y0)
(a2 + b2)(x2

0 + y20)− e2c2

 .

Suppose, for contradiction that p = q. Then subtracting the third equation from the first
yields

0 =
1

p2
− 1

q2
= −e2(a2 + b2) =⇒ e = 0,

since a2 + b2 ̸= 0. This value of e is not allowed in a DEF-construction, so we know that
p ̸= q. Before we do casework on q > p and p > q, note that the second equation 0 = −2abe2
leads to a = 0 or b = 0, which is a key deduction. In fact, since (a : b : c) can be scaled
without changing the directrix and a2 + b2 ̸= 0, we can choose a = 1 if b = 0, or b = 1 if
a = 0.

• Case 1: Suppose q > p. Suppose, for contradiction, that b = 0 and we take a = 1.
Then dividing the first equation by the third yields

1 <
q2

p2
=

λ

λ
· a

2(1− e2) + b2

a2 + (1− e2)b2
=

1− e2

1
=⇒ e2 < 0,
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which is a contradiction. So, a = 0 and we take b = 1. Then, the first equation
becomes

λ

p2
= a2(1− e2) + b2 = 1 =⇒ λ = p2.

The third equation yields

p2

q2
=

λ

q2
= a2 + (1− e2)b2 = 1− e2 =⇒ e =

 
1− p2

q2
,

which exists in the real numbers because q > p. We update the fourth, fifth, and sixth
equations to say  0

0
−p2

 =

DE
F

 =

 −2x0

−2(ce2 + y0)
x2
0 + y20 − e2c2

 .

The first of these equations immediately gives x0 = 0. The second equation gives

ce =
−y0
e

=⇒ c2e2 =
y20
e2
,

which can be substituted into the third equation to give

−p2 = y20 − e2c2 = y20 −
y20
e2

= y20

Å
1− 1

e2

ã
.

Substituting e =

 
1− p2

q2
into this and algebraic manipulations yield the isolated

solutions
y0 = ±

√
q2 − p2.

Finally, we can compute

c =
−y0
e2

=
q2

∓
√
q2 − p2

.

Therefore, there are at most two DEF-constructions, which are

((a : b : c), e, (x0, y0)) =

ÇÇ
0 : 1 :

q2

∓
√

q2 − p2

å
,

 
1− p2

q2
,
Ä
0,±

√
q2 − p2

äå
.

The eccentricity is the same in both cases, and the focal parameter is equal to

q2√
q2 − p2

−
√

q2 − p2 =
p2√

q2 − p2

in both cases, which were easy to compute because the directrices are horizontal.

• Case 2: Suppose p > q. In an argument that is symmetrical to that for Case 2, we find
that

((a : b : c), e, (x0, y0)) =

ÇÇ
1 : 0 :

p2

∓
√

p2 − q2

å
,

 
1− q2

p2
,
Ä
0,±

√
p2 − q2

äå
.
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Again, the eccentricity is the same in both cases, and the focal parameter is equal to

p2√
p2 − q2

−
√

p2 − q2 =
q2√

p2 − q2

in both cases, which were easy to compute because the directrices are vertical.

Theorem 12.18. A hyperbola has a unique eccentricity, and exactly two focus-directrix
pairs, each with the same focal parameter.

Proof. Due to preservations under isometry, it suffices to look at the standard form

1

p2
x2 + 0xy +

Å
− 1

q2

ã
y2 + 0p+ 0q + (−1) = 0

for p > 0 and q > 0. As we have already established the “at least” direction in Theorem 12.5,
we will show that at most two DEF-constructions exist, which will turn out to have equal
eccentricities and equal focal parameters. Suppose there is a DEF-construction with the
directrix ax + by + c = 0 where a2 + b2 ̸= 0, eccentricity e > 0, and focus (x0, y0). By
Theorem 12.14, we can scale these coefficients to be equal to those in Theorem 12.3:

λ ·


1/p2

0
−1/q2

0
0
−1

 =


A
B
C
D
E
F

 =


a2(1− e2) + b2,
−2abe2,

a2 + (1− e2)b2,
−2(ace2 + (a2 + b2)x0)
−2(bce2 + (a2 + b2)y0)
(a2 + b2)(x2

0 + y20)− e2c2

 .

The second equation −2abe2 = 0 implies a = 0 or b = 0. We investigate these two cases
separately:

• Case 1: Suppose a = 0. Since a2 + b2 ̸= 0 and (a : b : c) may be rescaled without
changing the directrix, we may choose b = 1. Then the first equation gives

λ

p2
= a2(1− e2) + b2 = 1 =⇒ λ = p2.

This leads to the third equation yielding

−p2

q2
= a2 + b2(1− e2) = 1− e2 =⇒ e =

 
1 +

p2

q2
.

We update the fourth, fifth, and sixth equations to say 0
0
−p2

 =

DE
F

 =

 −2x0

−2(ce2 + y0)
x2
0 + y20 − e2c2

 .
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As with the first case for ellipses, the first of these equations immediately gives x0 = 0,
and the second equation gives

ce =
−y0
e

=⇒ c2e2 =
y20
e2
.

This can be substituted into the third equation to give

−p2 = y20 − e2c2 = y20 −
y20
e2

= y20

Å
1− 1

e2

ã
.

Substituting e =

 
1 +

p2

q2
into this and algebraically manipulating it yields

y20 = −(q2 + p2) < 0.

This is a contradiction, meaning Case 1 (where the directrix is horizontal due to a = 0)
is empty for the standard form.

• Case 2: Suppose b = 0. Since a2 + b2 ̸= 0 and (a : b : c) may be rescaled without
changing the directrix, we may choose a = 1. Then the third equation gives

λ

q2
= a2 + b2(1− e2) = 1 =⇒ λ = q2.

Then the first equation yields

−q2

p2
= a2(1− e2) + b2 = 1− e2 =⇒ e =

 
1 +

q2

p2
.

We update the fourth, fifth, and sixth equations to say 0
0
−q2

 =

DE
F

 =

 −2(ce2 + x0)
−2y0

x2
0 + y20 − e2c2

 .

The first of these equations gives y0 = 0, and the second equation can be contorted
into

ce =
−x0

e
=⇒ c2e2 =

x2
0

e2
.

This can be substituted into the third equation to give

−q2 = x2
0 − e2c2 = x2

0 −
x2
0

e2
= x2

0

Å
1− 1

e2

ã
.

Substituting e =

 
1 +

q2

p2
into this and algebraically manipulating it yields

x2
0 = q2 + p2 =⇒ x0 = ±

√
p2 + q2.
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Finally, we compute

c =
−x0

e2
=

p2

∓
√

p2 + q2
.

Therefore, there are at most two DEF-constructions, which are

((a : b : c), e, (x0, y0)) =

ÇÇ
1 : 0 :

p2

∓
√
p2 + q2

å
,

 
1 +

q2

p2
,
Ä
±
√

p2 + q2, 0
äå

.

The eccentricity is the same in both cases, and the focal parameter is equal to√
p2 + q2 − p2√

p2 + q2
=

q2√
p2 + q2

in both cases, which were easy to compute because the directrices are vertical.

Corollary 12.19. For a given constructible conic, the eccentricity and focal parameter are
equal in every DEF-construction that leads to the conic. In other words, these parameters are
inherent to the curve that is the conic and does not depend on how the curve is constructed.
Thus, we can refer to “the” eccentricity and “the” focal parameter of a conic.

Problem 12.20. The discriminant of a bivariate quadratic

Q(x, y) = Ax2 +Bxy + Cy2 +Dx+ Ey + F

is δ(Q) = B2 − 4AC. Suppose S is a conic arising from a specific DEF-construction with
eccentricity e and that Q is a bivariate quadratic whose zero set is S. Prove that

sgn(δ(Q)) = sgn(e− 1).

Thus, the sign of δ(Q) determines the type of the conic.

12.2 Metric Properties

Problem 12.21. For an ellipse, parabola or hyperbola in standard form, determine, in terms
of a and b, the set of x values that have a corresponding y value such that (x, y) satisfies the
equation; for each such x value, determine the number of y values that correspond to this x
value. Repeat the exercise with the roles of x and y interchanged.

Definition 12.22. Equipped with a complete classification of the focus-directrix pairs of
each type of conic, we can define the following geometric components of a conic:

1. The principal axis of a conic is the line through a focus that is perpendicular to the
directrix corresponding to that focus. For an ellipse or hyperbola, the principal axis
runs through both foci and is perpendicular to both directrices. For a parabola, it is
called the axis of symmetry. The principal axis of a conic is a line of symmetry in
the sense that reflecting the conic across the line yields the same set of points.
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2. Ellipses and hyperbolas have a secondary line of symmetry that is perpendicular
to the axis of symmetry and runs through the midpoint of the segment connecting the
foci. This is a name that we have coined for this book, as the line is unnamed in the
literature to the best of our knowledge. Reflecting an ellipse or hyperbola across its
secondary line of symmetry yields the same set of points. Note that it is parallel to
the directrices.

3. The two regions of a hyperbola are called its branches. For a hyperbola that is the
graph of an equation in standard form, the two branches are the points (x, y) on the
hyperbola such that x ≤ −p and the points (x, y) on the hyperbola such that x ≥ p.
For any hyperbola, there is one branch and one focus-directrix pair on each half-plane
defined by the secondary axis of symmetry. Points in each branch are strictly closer to
the focus in its half-plane than the focus in the other half-plane.

4. The center of an ellipse or hyperbola is the point of intersection of its principal axis
and its secondary line of symmetry. This happens to be the midpoint of the segment
joining the two foci. The center is a point of symmetry in the sense that reflecting the
conic across it yields the same set of points.

5. The linear eccentricity of an ellipse or hyperbola is the distance between the center
and a focus. This distance is the same for either of the two choices of a focus in an
ellipse or hyperbola.

6. A chord of a conic is a line segment whose endpoints are two distinct points on the
conic. A latus rectum of a conic is, for a particular focus-directrix pair, the chord
that contains the focus and is parallel to the directrix. The length of such a chord is
the same regardless of the focus-directrix pair chosen. A semi-latus rectum is either
of the two segments resulting from splitting a latus rectum at the focus that is its
midpoint.

7. The points at which the principal axis of a conic intersects the conic are called the
vertices of the conic. Parabolas have one vertex, whereas ellipses and hyperbolas
have two vertices. Note that a parabola in standard form has its vertex as the origin,
which is where its extreme x-coordinate occurs. The vertices of an ellipse in standard
form occupy the two extreme x-coordinates if p > q or the two extreme y-coordinates
if p < q, and the vertices of a hyperbola in standard form occupy the extreme x-
coordinates of each branch.

8. For an ellipse or hyperbola, the unique chord lying on the principal axis is called the
major axis in an ellipse and the transverse axis in a hyperbola. The endpoints of
this chord happen to be the two vertices. This is the longest chord of an ellipse and
the shortest chord connecting the two branches of a hyperbola. A semi-major axis
is either of the two segments resulting from splitting the major axis at its midpoint,
which is the center of the conic.

9. The minor axis of an ellipse is the unique chord lying on the secondary line of symme-
try. This is the shortest chord of the ellipse. A semi-minor axis is either of the two
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segments resulting from splitting the minor axis at its midpoint, which is the center
of the conic. The analogous idea for a hyperbola is the conjugate axis, which is
the segment perpendicular to the principal axis whose midpoint is the center of the

hyperbola, and whose length is
2fe√
e2 − 1

where f is the focal parameter and e is the

eccentricity. Though it is not a chord of the hyperbola, it does have significance in the
context of the asymptotes of a hyperbola, which is the next definition.

10. The asymptotes of a hyperbola are the two lines that run through the diagonals of the
rectangle that is defined by having the transverse and conjugate axes as its medians.
Both asymptotes come arbitrarily close to both branches of the hyperbola as x → ∞
and x → −∞ but the asymptotes do not intersect the hyperbola. In standard form,
the axes are y = ±q

p
x.

We will not prove that these notions are well-defined or that the various assertions made
about them are true, but the reader is encouraged to pursue the proofs as they are not
difficult for the most part. All of these objects and lengths have the expected preservation
properties under Euclidean isometries. As such, it suffices to consider only the standard
forms for the proofs and then apply a suitable arbitrary Euclidean isometry to them.

Problem 12.23. A rectangular hyperbola is a conic whose eccentricity is
√
2.

1. Show that a hyperbola is rectangular if and only if its asymptotes are perpendicular.

2. Show that every rectangular hyperbola in standard form has an equation of the form
x2 − y2 = p2.

3. Determine an equation of the rectangular hyperbola resulting from rotating a rectan-
gular hyperbola in standard form counterclockwise by

π

4
around the origin.

Problem 12.24. Determine an equation whose graph is the resulting of rotating the graph

of a conic in standard form by
π

2
, π or

3π

2
counterclockwise around the origin. Work with

each type of conic separately.
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Theorem 12.25. Let S be a conic and let its eccentricity be e and focal parameter be f.
Then the following relations hold.

1. Suppose S is the graph of an equation in standard form. If S is an ellipse then the
length of the semi-major axis is p and the length of the semi-minor axis is q. If S
is a hyperbola then the length of the semi-transverse axis is a and the length of the
semi-conjugate axis is b.

2. If the length of the semi-latus rectum is l then e =
l

f
. This is true for all parabolas,

ellipses and hyperbolas.

3. If S is an ellipse or hyperbola, let the linear eccentricity be r, the length of the semi-
major axis or semi-transverse axis be p, and the length of the semi-minor axis or
semi-conjugate axis be q. Then

e =
r

p
=

p

f + r
=
−f +

√
f 2 + 4p2

2p
.

4. In the above notation, p2 − q2 = r2 if the conic is an ellipse, and p2 + q2 = r2 if the
conic is a hyperbola.

Proof. All of these objects and lengths are preserved under Euclidean isometries so it suffices
to prove the relations for only conics that are the graphs of equations in standard form. This
is helpful because all the lengths involved are then parallel or perpendicular to the coordinate
axes, making their computations easier. The results all follow from expressing the quantities
in terms of the coefficients p and q in the standard form. We chose p > q for ellipses.

Ellipse Parabola Hyperbola

Eccentricity

 
1−
Å
q

p

ã2

1

 
1 +

Å
q

p

ã2
Linear eccentricity

√
p2 − q2 Undefined

√
p2 + q2

Focal parameter
q2√

p2 − q2
2p

q2√
p2 + q2

Semi-major axis
Semi-transverse axis p Undefined p

Semi-minor axis
Semi-conjugate axis q Undefined q

Semi-latus rectum
q2

p
2p

q2

p
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We leave it to the reader to compute the entries of this table and verify the stated relations,
but we note that it will be helpful to remember the coordinates of the foci and the equations
of the corresponding directrices for conics in standard forms.

Unlike most elementary texts, we have not used the following characterizations of ellipses
and hyperbolas as our primary definition because DEF-constructions provide a more unified
framework. They are still interesting properties to work out.

Example 12.26. Given two distinct points F1 and F2 and a real number d > F1F2, let S be
the set of points P such that PF1 + PF2 = d. Show that there exists an ellipse E such that
S ⊆ E , and that F1 and F2 are the foci of E and that d is the length of the major axis of
E . On the other hand, show that if E ′ is some ellipse with foci F ′

1 and F ′
2, then there exists

a real number d′ > F ′
1F

′
2 such that for all points P ′ on E ′, P ′F ′

1 + P ′F ′
2 = d′. As a result,

E ⊆ S as well, proving that S = E .

Solution. We apply a Euclidean isometry to the configuration so that F1 and F2 are opposite
points on the x-axis. Let F1 = (r, 0) and F2 = (−r, 0) for some r > 0. Since we expect d to
be the length of the major axis, we define p so that d = 2p. Then we are seeking all points
P = (x, y) such that »

(x+ r)2 + y2 +
»

(x− r)2 + y2 = 2p.

Now, we perform a sequence of manipulations, the reversibility of which do not matter since
we only want to establish a subset relation for the time being:»

(x+ r)2 + y2 = 2p−
»

(x− r)2 + y2

(x+ r)2 + y2 = 4p2 + (x− r)2 + y2 − 4a
»

(x− r)2 + y2

p2 − rx = p
»

(x− r)2 + y2

(p2 − rx)2 = p2((x− r)2 + y2)

p2(p2 − r2) = x2(p2 − r2) + p2y2

1 =
x2

p2
+

y2

p2 − r2
.

Since p =
d

2
>

F1F2

2
= r, we can define q > 0 to satisfy q2 = p2 − r2, which means that S is

a subset of an ellipse E in standard form. Due to the relation r2 = p2 − q2 being satisfied, r
is the linear eccentricity, and so F1 and F2 are the foci. Of course, d = 2a is the length of
the major axis.
For the second part, let the eccentricity of E ′ be e and let P ′ be a point on E ′. Let the
directrices of E ′ be d1 and d2. By using the focus-directrix definition of an ellipse and the
fact that the two directrices are parallel, we get

P ′F ′
1 + P ′F ′

2 = e · d(P ′, d1) + e · d(P ′, d2) = e · d(d1, d2).

Using the equations of the directrices in standard form, the distance between the directrices
is

e · d(d1, d2) = e
(p
e
−
(
−p

e

))
= 2p,
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which is the desired constant d′ > F ′
1F

′
2, since the segment between the foci is strictly

contained within the major axis in an ellipse. (Note that here p is the symbol used in the
standard form of an ellipse.)
Finally, going back to the first part, S is easily shown to be non-empty, say by showing that
either of the two vertices of E satisfies the condition required to lie in S. Thus, the second
part implies that E ⊆ S, proving S = E .

Problem 12.27. Given two distinct points F1 and F2 and a real number F1F2 > d > 0, let
S be the set of points P such that |PF1 − PF2| = d. Show that there exists a hyperbola
H such that S ⊆ H, and that F1 and F2 are the foci of H and that d is the length of the
transverse axis of H. On the other hand, show that if H′ is some hyperbola with foci F ′

1

and F ′
2, then there exists a positive real number d′ < F ′

1F
′
2 such that for all points P ′ on H′,

|P ′F ′
1−P ′F ′

2| = d. More specifically, show that P ′F ′
2−P ′F ′

1 = d′ if P ′ is on the branch closer
to F ′

1 and P ′F ′
1 − P ′F ′

2 = d′ if P ′ is on the branch closer to F ′
2. As a result, H ⊆ S as well,

proving that S = H. You may use the solution to Example 12.26 as a template.

There is a wonderful algebraic development of the theory of conics in [5]. The enterprising
reader is encouraged to explore that book.
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Chapter 13

Cross Product

“Plato said God geometrizes continually.”
– Plutarch, Convivialium disputationum

The analogue in three-dimensional Cartesian space of a line in the two-dimensional Cartesian
plane is a plane. The cross product of three-dimensional Euclidean vectors is a natural
outgrowth of the study planes in three dimensions. We will study planes, their normal
vectors, such as the cross product, and the algebraic and geometric properties of the cross
product.

13.1 Formulas

Now we will define lines in higher dimensions by extending the definition of lines in R2 from
Chapter 1 into a definition for Rn.

Definition 13.1. Recalling Lemma 1.8, we define a line in Rn (as opposed to just R2) to
be a set

ℓ = {p+ tv : t ∈ R}

parametrized by the real variable t, where p ∈ Rn is a point and v ∈ Rn is a non-zero point
that controls the direction. The variable t is called a parameter. This form includes lines
in every direction, including those that run through a coordinate axis.

Definition 13.2. If (0, v) and (0, w) are non-zero position vectors in Rn (here, 0 is the
n-dimensional origin) such that tv = w for some (necessarily non-zero) real t, then we say
that the vectors [v] and [w] are parallel. In this case, we also define that the displacement
vectors in [v] are parallel to the displacement vectors in [w]. By Theorem 1.36, lines in
R2 that have position vectors v, w that are just scaled versions of each other are parallel or
coincident. Subsequently, we define that two lines

{p+ tv : t ∈ R} and {q + tw : t ∈ R}

in Rn are parallel if v and w are parallel as vectors but the lines are not exactly the same set
of points; if they are the same set of points, we use the word coincident instead of parallel.

We have been working on the 2-dimensional plane so far, which is like a flat piece of paper,
with no height, that extends infinitely in all directions. In 3-dimensional space, there are
infinitely many copies of the plane, as should be intuitively clear. This is clearly defined as
follows.

196
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Definition 13.3. Inspired by Problem 1.31, in Euclidean spaces of dimension n ≥ 3, a
plane is defined as a translation of the collection of all arrowheads of the set of position
vectors

{av + bw : a ∈ R, b ∈ R},

where v and w are linearly independent position vectors. By a translation, we mean that
we add the same point z ∈ R3 to all the arrowheads to get a subset of R3 that we then
call a plane. By a plane, we might also refer to the collection of linear combinations of two
linearly independent vectors, if we do not want to talk about a particular translation.

For the remainder of the chapter, we will work only on three dimensions. We begin our
exploration of the cross product by asking a natural question: what can be said about a
vector that is “perpendicular” to an entire plane in three dimensions?

Theorem 13.4. Suppose u is a vector that is orthogonal to two linearly independent vectors
v and w. Then u is orthogonal to every vector in the plane spanned by v and w, and u is
orthogonal to no other vectors.

Proof. If ⟨u, v⟩ = 0 and ⟨u,w⟩ = 0, then for any real a, b,

⟨u, av + bw⟩ = a⟨u, v⟩+ b⟨u,w⟩ = a · 0 + b · 0 = 0,

so u is orthogonal to every vector in the plane of v, w. Now suppose z is a vector that is
orthogonal to u. We want to show that there exist real a, b such that z = av + bw. Working
backwards, if such a, b exist, then

⟨z, v⟩ = ⟨av + bw, v⟩ = a⟨v, v⟩+ b⟨w, v⟩,
⟨z, w⟩ = ⟨av + bw,w⟩ = a⟨v, w⟩+ b⟨w,w⟩.

This system of equations can be written as the matrix equationï
⟨v, v⟩ ⟨w, v⟩
⟨v, w⟩ ⟨w,w⟩

ò ï
a
b

ò
=

ï
⟨z, v⟩
⟨z, w⟩

ò
.

The matrix on the far left has its determinant equal to

∥v∥ · ∥w∥ − ⟨v, w⟩2,

which is strictly positive by the Cauchy-Schwarz inequality (Theorem 4.8) since v, w are
linearly independent. Since the determinant is non-zero, we can multiply both sides by the
inverse of the matrix and uniquely solve for a and b. We want to prove that z = av + bw.
Unfortunately, the proof of which we are aware depends on a result from linear algebra, so
we will provide only an outline of it: Let x = z− (av+ bw). Our aim is to prove that x = 0.
By reversing our steps, we know that x is orthogonal to u, v, w, so x is orthogonal to three
linearly independent vectors. All vectors in R3 can be generated by such three vectors, so x
is orthogonal to all vectors in R3. By the weak cancellation rule (Theorem 4.5), x = 0 and
so z = av + bw. The reader will be able to fill in the gaps in a course in linear algebra.
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Definition 13.5. Inspired by Theorem 13.4, we say that a vector v is orthogonal to a plane
if v is orthogonal to two vectors that generate the plane with their linear combinations. A
vector v that is orthogonal to a plane is called a normalized orthogonal vector if it is, well,
normalized so that it has a magnitude of 1. The process of normalizing v is to divide v by
∥v∥, since ∥∥∥∥ v

∥v∥

∥∥∥∥ =
∥v∥
∥v∥

= 1.

Next comes the question of whether every plane has a normal vector. The answer is “yes”
and such a vector is a key aspect of analyzing planes, especially their equations.

Theorem 13.6 (Orthogonal projection to a plane). Let v and w1, w2 be vectors in R3, where
w1, w2 are linearly independent. Then there exist unique vectors u, z such that u is in the
plane of w1, w2 and z is orthogonal to this plane and v = u+ z. Letting the w1, w2 plane be
W, we call u the projection of v to W and denote it by projWv, and we call z the rejection
of v from W and denote it by oprojWv.

Proof. Working backwards, suppose such u, z exist. In other words,

⟨z, w1⟩ = ⟨z, w2⟩ = 0,

and there exist real a, b such that u = aw1 + bw2, and v = u+ z. Then

0 = ⟨z, w1⟩ = ⟨v − u,w1⟩ = ⟨v − aw1 − bw2, w1⟩ = ⟨v, w1⟩ − a⟨w1, w1⟩ − b⟨w2, w1⟩
⟨v, w1⟩ = a⟨w1, w1⟩+ b⟨w2, w1⟩

and similarly,

0 = ⟨z, w2⟩ = ⟨v − u,w2⟩ = ⟨v − aw1 − bw2, w2⟩ = ⟨v, w2⟩ − a⟨w1, w2⟩ − b⟨w2, w2⟩
⟨v, w2⟩ = a⟨w1, w2⟩+ b⟨w2, w2⟩.

This system of two equations in two variables a, b may be written as the matrix equationï
⟨w1, w1⟩ ⟨w2, w1⟩
⟨w1, w2⟩ ⟨w2, w2⟩

ò ï
a
b

ò
=

ï
⟨v, w1⟩
⟨v, w2⟩

ò
.

Since w1, w2 are linearly independent, the Cauchy-Schwarz inequality (Theorem 4.8) implies
that the determinant of the matrix on the far left is strictly positive, and so non-zero. So
we can multiply both sides by the inverse of the matrix, which proves that, if a, b exist, then
they are unique. That would make u = aw1 + bw2 unique and z = v− u unique as well. We
must show that these a, b actually work, meaning v− aw1− bw2 is orthogonal to w1 and w2.
Since our steps were reversible, we can go through them in the reverse order and find that

⟨v − aw1 − bw2, w1⟩ = ⟨v − aw1 − bw2, w2⟩ = 0.

So we can set u = aw1 + bw2 and z = v − u, and these u, z will satisfy our conditions.
Here is a side note for those inclined to look further into linear algebra: the “basis” consisting
of w1 and w2 for the plane that they generate would be called orthonormal if the norms
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of w1 and w2 are both 1 and the two vectors are orthogonal to each other. In that case,
computing a, b is easy becauseï

⟨w1, w1⟩ ⟨w2, w1⟩
⟨w1, w2⟩ ⟨w2, w2⟩

ò
=

ï
1 0
0 1

ò
=⇒

ï
a
b

ò
=

ï
⟨v, w1⟩
⟨v, w2⟩

ò
.

Corollary 13.7. The vector Pythagorean theorem (Theorem 4.14) for two dimensions ex-
tends to three dimensions by an identical proof. To be precise, if v is a vectors and W is a
plane, let u = projWv and let z = oprojWv. Then

∥u∥2 + ∥z∥2 = ∥v∥2.

Definition 13.8. In Theorem 13.6, if we can assume that v can be chosen “outside” the
plane so that z is a non-zero vector (we have not yet proven that such a v exists), then
every plane in R3 has a normal vector, meaning a non-zero vector that is orthogonal to every
vector in the plane (and no other vectors by Theorem 13.4). Though we will not prove
it, one normal vector can characterize a plane in R3 by itself and with a point that is on
the plane, instead of us generating a plane using the linear combinations of two linearly
independent vectors. So, while a plane in R3 was originally defined as a translation of the
set of linear combinations of two linearly independent vectors with possibly a translation
(Definition 13.3), it may equivalently be defined as the set that is orthogonal to some normal
vector and runs through some given point.

Definition 13.9. Two planes in R3 are said to be:

1. Intersecting if there is at least once point that lies on both of them.

2. Coincident if they consist of the same set of points

3. Parallel if they do not intersect

4. Perpendicular if they have orthogonal normal vectors

There are statements that can be made about the various configurations of intersections of
two or three lines and/or planes in space, but we will not look into them in detail here. For
example, two planes intersect if and only if they have non-parallel normal vectors or the
planes are coincident. The contrapositive of this biconditional statement is also useful: Two
planes are parallel if and only if they have parallel normal vectors and the planes are not
coincident.

Theorem 13.10 (Equation of a plane). If n = (a, b, c) is a non-zero vector and p =
(x0, y0, z0) is a point in space, then the unique plane that contains p and that has n as
a normal vector (we will assume that such a plane exists) is given by the set

{(x, y, z) ∈ R3 : ax+ by + cz + d = 0},

where d = −(ax0 + by0 + cz0). In the other direction, if (a, b, c) ̸= 0 and d is some real
constant, then the set of points (x, y, z) that satisfy the equation ax + by + cz + d = 0 is a
plane that has (a, b, c) as a normal vector. We call ax+by+cz+d = 0 a standard equation
of the plane, much like the standard form of the equation of a line in the Cartesian plane.
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Proof. The key idea is that a point (x, y, z) lies on the unique plane if and only if the vector

((x0, y0, z0), (x, y, z)) ≏ (0, 0, 0), (x− x0, y − y0, z − z0))

is orthogonal to the non-zero vector (a, b, c). Using the dot product, this is true if and only
if

0 = (a, b, c) • (x− x0, y − y0, z − z0)

= a(x− x0) + b(y − y0) + c(z − z0)

= ax+ by + cz − (ax0 + by0 + cz0)

= ax+ by + cz + d.

For the second assertion, suppose (a, b, c) ̸= 0. If we can find a point (x0, y0, z0) that satisfies
the equation ax + by + cz + d = 0, then we can go through the steps above in backwards
fashion to rewrite the equation as

(a, b, c) • (x− x0, y − y0, z − z0) = 0.

Equivalently,

((x0, y0, z0), (x, y, z)) ≏ (0, 0, 0), (x− x0, y − y0, z − z0)) ⊥ ((0, 0, 0)(a, b, c)).

Thus, the existence of a point that satisfies the equation implies that the set of points that
satisfy the equation is a plane with a normal vector (a, b, c). To find a point (x0, y0, z0), we
will use the fact that at least one of a, b, c is non-zero. If a ̸= 0, then we set y = z = 0 and

isolate x = −d

a
. The b ̸= 0 and c ̸= 0 cases follow similarly. In any of the three cases, this

process finds a point in the set.

Corollary 13.11 (Point-plane perpendicular distance). If a plane is defined by the equation
Ax+ By + Cz +D = 0 and (x0, y0, z0) is a point in space, then the perpendicular distance
from the point to the plane is given by

|Ax0 +By0 + Cz0 +D|√
A2 +B2 + C2

.

Proof. Let (x1, y1, z1) be a point on the plane. We will proceed by the same clever method
as in Theorem 4.17, by finding the length of the projection of the displacement vector

((x1, y1, z1), (x0, y0, z0))

to the plane’s normal vector (A,B,C). By the formula in Theorem 4.13, our answer is∥∥∥∥⟨(x0 − x1, y0 − y1, z0 − z1), (A,B,C)⟩
⟨(A,B,C), (A,B,C)⟩

(A,B,C)

∥∥∥∥
=
|⟨(x0 − x1, y0 − y1, z0 − z1), (A,B,C)⟩|

∥(A,B,C)∥

=
|Ax0 − Ax1 +By0 −By1 + Cz0 − Cz1|√

A2 +B2 + C2

=
|Ax0 +By0 + Cz0 +D|√

A2 +B2 + C2
,
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where we have used the fact that Ax1 +By1 +Cz1 +D = 0 in the last step. As before, this
length is the one we seek due to the triangle inequality and parallelogram law.

Theorem 13.12. “The” shortest distance between two parallel planes in three dimensions
is a well-defined concept because:

1. Suppose we are given a plane and a point in space that does not lie on the plane. Then
there exists a unique line segment of shortest length with one endpoint on the point
and the other endpoint on the plane. The segment is perpendicular to any direction
vectors on the plane.

2. The distance from a point on one plane to the closest point on a parallel plane is a
constant, regardless of the first point.

3. The shortest distance from any point on the first plane to the second plane is the same
as the shortest distance from any point on the second plane to the first plane.

Proof. The proofs are very similar to the proofs of the corresponding parts of Lemma 7.17,
showing that perpendicular distance once again converges with shortest distance. We en-
courage the reader to follow through with a write-up. It will be helpful to use the formula
for the perpendicular distance between a point and a plane in space (Corollary 13.11).

Problem 13.13. Prove that, if two points p, q are on a plane, then the line

ℓ = {p+ t(q − p) : t ∈ R}.

through the two points lies entirely on the plane.

One may wonder about the extent to which the equation of a plane is unique. Certainly, we
may multiply through an equation

ax+ by + cz + d = 0

by a non-zero constant t to get

(ta)x+ (tb)y + (tc)z + (td) = 0

without altering the set of points that satisfy the equation because the step is reversible. So
any non-zero multiple of a normal vector to a plane is also a normal vector. But do any other
equations in standard form yield the same plane? If we can show that all normal vectors
to a plane are non-zero multiples of each other, then it will mean that all equations of the
plane are non-zero multiples of each other. This is because if the equations

ax+ by + cz + d1 = 0,

(ta)x+ (tb)y + (tc)z + d2 = 0

are satisfied by the same point (x, y, z), then

td1 − d2 = t(ax+ by + cz)− ((ta)x+ (tb)y + (tc)z) = 0,

so td1 = d2. Therefore, let us show that all normal vectors to a plane are non-zero multiples
of each other. This line of investigation naturally leads to the cross product as follows.
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Theorem 13.14 (Derivation of the cross product). Let a = (a1, a2, a3) and b = (b1, b2, b3)
be linearly independent (and, so, non-zero) position vectors. Then the set of normal vectors
to the plane generated by a, b is precisely the set of non-zero multiples of the vector

n = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

This vector is 0 if and only if a = 0 or b = 0 or a, b are non-zero linearly dependent vectors
(so they point in the same or opposite directions). More briefly, n is non-zero if and only if
a, b are linearly independent.

Proof. Following the definition of n in terms of a, b, we will aim to show that ± n

∥n∥
are the

only unit normal vectors of the plane generated by a, b. This will prove that all non-zero
multiples of n are normal vectors, and that there are no further normal vectors beyond their
multiples because normalizing any others to have magnitude 1 would produce these just two.
First we will check that

n • a = n • b = 0.

Then we will naturally deduce n, thereby proving that n is a normal vector that is unique
up to multiplication by a non-zero real. Indeed,

⟨n, a⟩ = ⟨(a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1), (a1, a2, a3)⟩
= a1(a2b3 − a3b2) + a2(a3b1 − a1b3) + a3(a1b2 − a2b1)

= 0,

and a similar computation shows that ⟨n, b⟩ = 0. Now we will compute the norm of n to
check that it is non-zero and determine the conditions under which it is zero. The crucial
idea is to use a sum-of-squares identity, called Lagrange’s identity: for complex n-tuples

(a1, a2, . . . , an) and (b1, b2, . . . , bn),

it holds that (
n∑

k=1

a2k

)
·

(
n∑

k=1

b2k

)
=

n−1∑
i=1

n∑
j=1

(aibj − ajbi)
2.

The real n = 3 case (which the reader should be able to check manually) then states that

∥n∥2 = (a2b3 − a3b2)
2 + (a3b1 − a1b3)

2 + (a1b2 − a2b1)
2

= (a21 + a22 + a23)(b
2
1 + b22 + b23)− (a1b1 + a2b2 + a3b3)

2

= ∥a∥2 · ∥b∥2 − ⟨a, b⟩2.

The Cauchy-Schwarz inequality (Theorem 4.8) returns! By Cauchy-Schwarz, ∥n∥ = 0 if and
only if a, b are linearly dependent, which is equivalent to our stated condition. Since our a, b
are linearly independent, ∥n∥ is strictly positive, so n is a non-zero vector and we can divide
by its norm. This proves that every plane has a non-zero normal vector to it.
Next we will deduce all possibilities for n. We know from a moment ago that every plane
has a non-zero orthogonal vector, so suppose m = (m1,m2,m3) is one such normal vector.
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Without loss of generality, we may assume that that m is a unit vector, since, as we said, m
may be scaled to

m

∥m∥
. This yields the following relations:

0 = ⟨m, a⟩ = m1a1 +m2a2 +m3a3,

0 = ⟨m, b⟩ = m1b1 +m2b2 +m3b3,

1 = ⟨m,m⟩ = m2
1 +m2

2 +m2
3.

We wish to determine (m1,m2,m3) from this system of equations. We do not know which
variables might be zero, so we will have to avoid isolating variables by division. Instead, we
will use elimination via multiplication. We will multiply the first equation by b1, b2, b3 and
the second equation by a1, a2, a3, which produces the array of equations

0 = m1a1b1 +m2a2b1 +m3a3b1, 0 = m1b1a1 +m2b2a1 +m3b3a1,

0 = m1a1b2 +m2a2b2 +m3a3b2, 0 = m1b1a2 +m2b2a2 +m3b3a2,

0 = m1a1b3 +m2a2b3 +m3a3b3, 0 = m1b1a3 +m2b2a3 +m3b3a3.

Equating the equations that are beside each other yields the following three equations, after
cancelling common terms and factoring a bit:

m3(a3b1 − a1b3) = m2(a1b2 − a2b1),

m1(a1b2 − a2b1) = m3(a2b3 − a3b2),

m2(a2b3 − a3b2) = m1(a3b1 − a1b3).

As we have previously verified that n is non-zero, we may define

(α, β, γ) =
n

∥n∥
=

1

∥n∥
(a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

This allows us to rewrite the equations as

m3β = m2γ,

m1γ = m3α,

m2α = m1β.

Moreover, α2 + β2 + γ2 = 1 holds. We will use these four equations to show that m =
±(α, β, γ). Since (α, β, γ) ̸= 0 at least one of the three components has to be non-zero.
Suppose it is α. Then

m3 = m1 ·
γ

α
and m2 = m1 ·

β

α
.

By substitution, we get

1 = m2
1 +m2

2 +m2
3

= m2
1 ·
Å
1 +

β2

α2
+

γ2

α2

ã
= m2

1 ·
Å
α2 + β2 + γ2

α2

ã
=

m2
1

α2
.
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Thus, m1 = ±α. Choosing m1 = α leads to m2 = β and m3 = γ, whereas choosing m1 = −α
leads to m2 = −β and m3 = −γ. Now recall that we were only dealing with the case α ̸= 0;
the cases where β ̸= 0 and γ ̸= 0 follow similarly and lead to the same two options for m.
We encourage the reader to write out at least one of them. Therefore, the only two possible
unit vectors that are normal to the plane generated by a and b are

±(α, β, γ) = ± n

∥n∥
.

This completes the proof, in accordance with our original strategy.

Definition 13.15. The cross product of two position vectors a = (a1, a2, a3) and b =
(b1, b2, b3) in R3 is denoted by and defined as the vector

a× b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

This vector is the zero vector if and only if a = 0 or b = 0 or a, b are non-zero linearly
dependent vectors. As it is a complicated formula, the student may be interested in knowing
the following mnemonic for remembering it in the form of a “formal” 3×3 determinant (recall
determinants from Definition 1.27, where we mentioned the Rule of Sarrus memory trick)

a× b = det

 i j k
a1 a2 a3
b1 b2 b3

 = ia2b3 + ja3b1 + ka1b2 − ka2b1 − ja1b3 − ia3b2

= (a2b3 − a3b2)i+ (a3b1 − a1b3)j + (a1b2 − a2b1)k,

where we define

i = (1, 0, 0),

j = (0, 1, 0),

k = (0, 0, 1).

Note that the definition for the cross product requires us to use position vectors, as opposed
to arbitrary displacement vectors.

This formula for the cross product tell us an explicit way of finding a non-zero normal vector
to any given plane. Every non-zero vector generates a plane to which it is normal (given a
point on the plane), and every plane has a non-zero vector that is unique up to multiplication
of the normal vector by a non-zero scalar.

13.2 Properties

Theorem 13.16. Given three distinct non-collinear points in space, there exists a plane
that runs through them.
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Proof. It suffices to find an equation of the form ax + by + cz + d = 0 that is satisfied by
all three terms. We know that, if two linearly independent vectors lie on a plane, then their
cross product is a normal to the plane. After that, it is a matter of knowing one point on
the plane to determine the constant term of the equation. If the three points are p, q, r, then
the vectors (r, p) and (r, q) lie on the plane and are linearly independent by Lemma 9.26,
since they are non-collinear. Then we can take the cross product

(r, p)× (r, q) = (0, p− r)× (0, q − r) = (a, b, c)

to get a normal vector and use the point r = (r1, r2, r3) to get the constant term d =
−(ar1 + br2 + cr3). Thus, the equation ax+ by + cz + d = 0 works.

Theorem 13.17 (Algebraic properties of cross product). Let a, b, c be vectors in R3 and r
be a real number. Then the cross product satisfies the following properties:

1. Anticommutative: a× b = −(b× a)

2. Distributive over addition: a× (b+ c) = a× b+ a× c

3. Compatible with scalar multiplication: (ra)× b = r(a× b)

It follows from the first and third properties that a× (rb) = r(a× b) as well. We leave the
algebraic verification of these properties to the reader as an independent exercise.

Problem 13.18. Let i, j, k be defined as in Definition 13.15. Compute each of

i× j, j × k, k × i.

Lemma 13.19. Given two parallel lines in space, there exists a plane that goes through
both lines. (Recall that parallel lines do not include the coincident configuration.)

Proof. Let the lines be p1 + sq and p2 + tq, where p1, p2 are distinct points, s, t are real
parameters, and q is the common direction of the lines. We will show that the plane through
p1, p1 + q, p2 has the same equation as the plane through p2, p2 + q, p1. This will prove that
there exists a plane that runs through all four points; by Problem 13.13, the line through
p1, p1 + q and the line through p2, p2 + q will both lie on the plane. The first plane has a
normal vector

(p1 − p2)× (p1 − (p1 + q)) = (p1 − p2)× (−q) = q × (p1 − p2).

The second plane has a normal vector

(p2 − (p2 + q))× (p2 − p1) = (−q)× (p2 − p1) = q × (p1 − p2).

Since both planes have the same normal vector and both planes contain the point p1 (and
p2), they satisfy the same standard equation, and so they must be the same plane.

Theorem 13.20 (Trigonometric cross product). If θ is the non-reflex angle between vectors
a and b, then

∥a× b∥ = ∥a∥ · ∥b∥ · sin θ.

© 2024 Samer Seraj. All rights reserved.



206 CHAPTER 13. CROSS PRODUCT

Proof. According to the application of Lagrange’s identity in the proof of Theorem 13.14
and the trigonometric dot product (Theorem 4.10),

∥a× b∥2 = ∥a∥2 · ∥b∥2 − ⟨a, b⟩2

= ∥a∥2 · ∥b∥2 − ∥a∥2 · ∥b∥2 · cos2 θ
= ∥a∥2 · ∥b∥2(1− cos2 θ)

= ∥a∥2 · ∥b∥2 · sin2 θ.

Since θ is non-reflex, sin θ must lie in [0, 1] making it non-negative. So we may take the
square root of both sides to get

∥a× b∥ = ∥a∥ · ∥b∥ · | sin θ| = ∥a∥ · ∥b∥ · sin θ.

Corollary 13.21. An added benefit of the trigonometric cross product is that, by the sine
area formula for a triangle,

∥a∥ · ∥b∥ · sin θ
is the area of the parallelogram that has displacement vector representatives of a and b as
adjacent sides with a common tail.

Definition 13.22. A parallelepiped is the three-dimensional analogue of a parallelogram.
More precisely, there are at least three ways of characterizing it:

1. A 6-faced polyhedron such that each face is a parallelogram.

2. A 6-faced polyhedron such that there are three pairs of parallel faces.

3. A parallelogram-based prism (not necessarily right).

To construct a parallelepiped, it is enough to know three vectors that are edges that protrude
from one vertex of a parallelepiped. The volume of a parallelepiped may be computed as
the area of any base times the corresponding height, which is the distance between that base
and its twin parallel base.

Theorem 13.23. Let P be the parallelepiped that has a vertex at the origin and the position
vectors a, b, c as adjacent edges coming out of the origin. Then the volume of P is given by

V = |c • (a× b)|.

Subsequently, a, b, c are coplanar, meaning they inhabit the same plane, if and only if V = 0;
this will be proven rigorously, but it should make geometric sense as well.
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Proof. We recommend that the reader draws a diagram and adds to it while going through
the proof. Let B be the area of the a, b base and h be the displacement normal vector from
the a, b base to the arrowhead of c; this means that ∥h∥ is the distance between these two
parallel faces. By the trigonometric dot product, we know that

B = ∥a∥ · ∥b∥ · sin θ = ∥a× b∥,

where θ is the non-reflex angle between the vectors a, b. Let α be the non-reflex angle between
the normal vector a× b and c. By Lemma 13.19, there exists a plane that runs through a× b
and h. By Problem 13.13, c also lies on this plane since it attaches the tail of n = a×b to the
arrowhead of h. Let β be the non-reflex angle between h and c. By the theorems on angles
between parallel lines and a transversal, regardless of the direction of a× b in comparison to
the direction of h,

| cosα| = | cos β|

since cosx and cos(π−x) are negatives of each other. By the unit circle definition of cosine,

| cos β| = ∥h∥
∥c∥

=⇒ ∥h∥ = ∥c∥ · | cos β|.

By the trigonometric dot product, the volume of the parallelepiped is

V = B · ∥h∥ = ∥c∥ · ∥a× b∥ · | cos β|
= ∥c∥ · ∥a× b∥ · | cosα|
= |c • (a× b)|.

For the corollary about a, b, c being coplanar, recall that a × b is orthogonal to the a, b
plane, and a vector is orthogonal to a × b if and only if it lies on the a, b plane. Therefore,
|c • (a× b)| = 0 if and only if c lies on the a, b plane, meaning a, b, c are coplanar.

Definition 13.24. A computation of the form a • (b× c), where there is the dot product of
a vector with a cross product, is called a scalar triple product.

Theorem 13.25. If we have three position vectors

a = (a1, a2, a3), b = (b1, b2, b3), c = (c1, c2, c3),

then

a • (b× c) = det

a1 a2 a3
b1 b2 b3
c1 c2 c3

 .

As a consequence,
a • (b× c) = b • (c× a) = c • (a× b).

Thanks to the anticommutativity of the cross product, the volume of parallelepiped can also
be computed as

−a • (c× b) = −b • (a× c) = −c • (b× a).
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Proof. The determinant identity may be proven by direct expansion of both sides, which we
ask the reader to verify independently. The consequences follow because transposing any
two rows of a matrix only changes change the sign of the determinant, and so applying two
transpositions leaves the determinant intact (Theorem 1.28).

Problem 13.26. For any vectors a, b in three dimensions, prove that

a • (a× b) = b • (a× a) = 0.

Problem 13.27 (Lagrange’s formula). Let a, b, c be any three vectors in three dimensions.
Since b× c is orthogonal to b and c, the vector triple product a× (b× c) is orthogonal to
b× c. So a× (b× c) must lie in the b, c plane. Prove that

a× (b× c) = (a • c)b− (a • b)c.

Problem 13.28 (Jacobi’s identity). For any three vectors a, b, c in three dimensions, prove
that

a× (b× c) + b× (c× a) + c× (a× b) = 0.
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Chapter 14

Three Dimensions

“I’ve always been passionate about geometry and the study
of three-dimensional forms.”

– Ernő Rubik

The two basic measures of objects in three dimensions are volume and surface area. The
objects that we will study are prisms and pyramids, followed by their curved counterparts,
which are cylinders and cones, along with spheres. The material presented here about
three-dimensional geometry will partly be about observing formulas whose rigorous proofs
are beyond the presented level of exposition. However, one should be familiar with the
definitions and formulas. In the cases where we derive the formulas with complete or partial
proofs, it is important to understand the logic in addition to knowing the formulas.

14.1 Prisms and Pyramids

Definition 14.1. In the 2D plane, recall from Definition 2.16 that a half-plane is either
part of the plane resulting from splitting the plane with a line. For our purposes, we include
the splitting line as a part of each of the two resulting half-planes. The 3D analogue of a
half-plane is a half-space, which is defined as either side of a plane in 3D space. Similar
to how we include the line in a half-plane defined by the line, we include the plane in a
half-space defined by the plane.

Similar to Definition 2.16, half-planes are a useful concept because it is possible to show that
one formulation of the definition of a convex polygon is a bounded non-empty region in the
2D plane that is the intersection of finitely many half-planes, where we never include both
half-planes resulting from any one line. This allows us to easily define the 3D analogue of
convex polygons, as follows.

Definition 14.2. A convex polyhedron (the plural is polyhedra) is a bounded non-empty
region in 3D space that is the intersection of finitely many half-spaces, where we never include
both half-spaces resulting from any one plane. This region’s boundary has three types of
components:

• Flat faces that are polygons resulting from each plane being cut by other planes

• Straight edges that are maximal line segments on the boundaries of each face

• Vertices that are corners at the endpoints of edges; these are also the vertices of faces
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Unfortunately, it is much more difficult to define non-convex polyhedrons, so we will not
attempt to characterize them. In fact, there is some controversy over several competing
definitions that are not equivalent.

Definition 14.3. In a convex polyhedron, the degree of a vertex is the number of edges
emanating from it. For convex polyhedra, it is clear that the degree of a vertex is also equal
to the number of faces meeting at the vertex.

Definition 14.4. A regular polyhedron, otherwise known as a Platonic solid, is a
convex polyhedron whose faces are congruent regular polygons and each vertex has the same
degree.

Example. There are exactly five distinct Platonic solids: tetrahedron, hexahedron (cube),
octahedron, dodecahedron, and icosahedron.

We classified them and studied the properties of their skeletons using the tools of graph
theory in Volume 2.

Definition 14.5. There are two standard ways of measuring the size of a polyhedron, anal-
ogous to the perimeter and area of a polygon:

• The surface area of a polyhedron is the sum of the areas of its faces.

• Intuitively, the volume of a polyhedron is the amount of space it takes up in 3D space.
This is the number of 1 × 1 × 1 unit cubes that would fit inside it, including partial
unit cubes.
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Definition 14.6. A prism is a convex polyhedron whose construction begins with two
congruent faces called bases that are translations of each other (i.e. no other transformations
like rotation are involved) and that lie on parallel but different planes. The other faces, called
lateral faces, are constructed by drawing line segments between corresponding vertices of
the bases. If the bases are n-gons, we call the polyhedron an n-gonal prism. There are
some related concepts:

• By Theorem 13.12, there is a constant perpendicular distance between the two bases
because they lie on parallel planes. This is the prism’s height or altitude.

• A right prism is a prism in which the lateral faces are perpendicular to the bases.
Otherwise, it is called an oblique prism.

Example. The most common prism is a right rectangular prism, otherwise known as a
box; the word “right” is usually dropped because it is presumed that a rectangular prism is
right. This polyhedron has three disjoint sets of two parallel faces each, where any two faces
from different sets lie on perpendicular planes. A box has three disjoint sets of parallel edges
that each have four edges of equal length. These three lengths are called its dimensions,
distinguished as the length, width and height, though there is no canonical way of making
the distinction. A special case of a rectangular prism is a cube, whose three dimensions
are all equal. If the dimensions of a box are a, b, c, then its volume is defined as abc; this
formula is consistent with the fact that if a, b, c are positive integers, then exactly abc unit
cubes could be fitted together without overlaps or gaps to produce a box with dimensions
a× b× c.

Example 14.7. Find a formula for the surface area of a rectangular prism with dimensions
a× b× c and use it to find the surface area of a cube of edge length s.
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Solution. A rectangular prism has six faces, which come in three pairs of congruent faces.
The sum of the areas of the six faces is 2(ab + bc + ca). Subsequently, since each face of a
cube of edge length s is a square of side length s, its surface area is 6s2.

Problem 14.8 (Square-cube law). Defining the similarity of polyhedrons in a sensible way,
if the ratio of corresponding edges is k, then the ratio of surface areas is k2 and the ratio of
volumes is k3. Prove this for boxes. This is the three-dimensional version of Corollary 9.24.

Problem 14.9. A space diagonal of a box is a line segment connecting one of the three
pairs of opposite vertices. By “a pair of opposite vertices,” we mean that there does not exist
a face such that the two vertices both belong to that face. If a box has dimensions a× b× c,
then determine the lengths of its space diagonals.

Theorem 14.10. We can compute the following:

1. The surface area of a right prism is S = 2B + ph, where B is the area of a base, p is
the perimeter of a base, and h is the height of the prism.

2. The volume of a prism is V = Bh, where B is the area of a base and h is the height.
A consequence of this formula is that the volume remains unchanged if the bases
are translated to anywhere on the respective planes running through them, since the
distance between two parallel planes is constant.

Proof. In a right prism, all the lateral faces are rectangles with height h. If the side lengths
of the base are s1, s2, . . . , sn, then the sum of the areas of the lateral faces is

s1h+ s2h+ · · ·+ snh = ph.

Then we simply add the areas of the bases, which is 2B. We do not provide a proof of the
volume formula.

Definition 14.11. A pyramid is a convex polyhedron whose construction begins with a
face called the base, and a vertex called the apex that lies outside the plane of the base.
The other faces, called lateral faces, are constructed by drawing the line segments between
the vertices of the base and the apex. If the base is an n-gon, then we call the polyhedron
an n-gonal pyramid. There are some related concepts:

• The perpendicular distance between the apex and the plane running through the base
is the height or altitude of the pyramid.
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• For our purposes, we define a regular pyramid to be a pyramid such that its base is
a regular polygon and the foot of its height is the center of the base. For our purposes,
we will call non-regular pyramids oblique.

• The lateral faces of a regular pyramid are congruent triangles, and a lateral face height
emanating from the apex is called a lateral height or slant height of the pyramid.
The Pythagorean theorem tells us that the slant height is

√
r2 + h2 where r is the

inradius of the base (this is the perpendicular distance from the center of the regular
polygon that is the base to an edge of the base), and h is the height of the pyramid.

Example. A triangular pyramid, is a pyramid whose base is a triangle. Notice that any
of the faces of a triangular pyramid can be taken as a base. A square-based pyramid is
a pyramid with a square base.

Theorem 14.12. We can compute the following:

1. The surface area of a regular pyramid is S = B +
pℓ

2
, where B is the area of the base,

p is the perimeter of the base, and ℓ is the slant height.

2. The volume of a pyramid is V =
Bh

3
, where B is the area of the base and h is the

height. A consequence of this formula is that the volume remains unchanged if the
apex is relocated to anywhere on the plane that runs through it and is parallel to the
base, and if the base is translated to anywhere on the plane running through it. This
is because the distance between two parallel planes is constant.

Proof. In a regular pyramid, let the slant height be l. If the side lengths of the base are
s1, s2, . . . , sn, then the sum of the areas of the lateral faces is

s1ℓ

2
+

s2ℓ

2
+ · · ·+ snℓ

2
=

pℓ

2
.

Then we simply add the area of the base, which is B. We do not prove the volume formula,
which can be proven by integration from calculus.

Problem 14.13. Let V be a vertex if a cube of side length s and let A,B,C be the three
vertices that are attached to V by an edge. The tetrahedron resulting from drawing △ABC
is sliced off the cube. Determine the height of the tetrahedron corresponding to the base
△ABC.
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Example 14.14. Find the surface area and volume of a tetrahedron in terms of its edge
length s.

Solution. We find the surface area, followed by the volume:

1. A tetrahedron is a regular triangular pyramid, so it has four faces that are all equilateral

triangles of side length s. The area of each equilateral triangle is
√
3s2

4
. Thus, the

surface area of a tetrahedron with edge length s is

4 ·
√
3s2

4
=
√
3s2.

2. To find the volume, we only need to determine the height of the tetrahedron, as we
already know the area of a base. The foot of the height is the center of the equilateral
triangle that is the base because a tetrahedron is a regular pyramid. The center of an
equilateral triangle cuts each height of the equilateral triangle in a 2 : 1 ratio and each

height of the equilateral triangle has length
√
3s

2
, so the distance from the foot of the

height of the pyramid to a vertex of the base is

2

3
·
√
3s

2
=

√
3s

3
.

By the Pythagorean theorem, the height of the tetrahedron isÃ
s2 −

Ç√
3s

3

å2

=

√
2s√
3
.

Therefore, the volume of a tetrahedron with side length s is

1

3
·
√
3s2

4
·
√
2s√
3

=

√
2s3

12
.

Problem 14.15. Find the surface area and volume of an octahedron in terms of its edge
length s.

14.2 Curved Objects

Definition 14.16. A cylinder is like a prism, except its bases are closed disks. A height
is defined analogously. There are some related concepts:

• The radius of the bases is called the radius of the cylinder.

• A right cylinder is a cylinder such that the line segment connecting the centers of
the two bases is a height. Otherwise, it is called an oblique cylinder.
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h

r

Theorem 14.17. We can compute the following:

1. The surface area of a right cylinder with radius r and height h is 2πr(r + h).

2. The volume of a cylinder with radius r and height h is πr2h.

Proof. A right cylinder’s bases can be popped out and the lateral surface can be unrolled
along a height on the lateral surface to produce a rectangle with dimensions 2πr and h, since
one of the dimensions is the circumference of a base. This yields the surface area

2πr2 + 2πrh = 2πr(r + h).

If we assume that the volume formula for prisms holds with circular bases, then, since the
area of a base is πr2, the volume is πr2h.

Definition 14.18. A cone is like a pyramid, except its base is a closed disk. The height
and the apex are defined analogously. The lateral surface of a cone is the part of the
surface that excludes the base. There are some related concepts:

• The radius of the base is called the radius of the cone.

• A right cone is a cone in which the line segment connecting the apex to the center
of the base is the height. In a right cone, the lateral height is the distance from the
apex to a point on the circumference of the base (this distance is the same for all such
points).

h

r
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Theorem 14.19. We can compute the following:

1. The surface area of a right cone with radius r and height h is πr(r +
√
r2 + h2).

2. The volume of a cone with radius r and height h is
πr2h

3
.

Proof. The Pythagorean theorem tells us that a right cone has a constant slant height of

ℓ =
√
r2 + h2.

So popping out the base and unrolling the lateral surface along a slant height produces a
sector of a circle with radius

√
r2 + h2. The sector has arc length equal to the circumference

of the base, which is 2πr. In radians, the sector has measure

2π · 2πr
2πℓ

=
2πr

ℓ
.

Therefore the surface area is

πr2 +
1

2π
· 2πr

ℓ
· πℓ2 = πr(r + ℓ).

If we assume that the volume formula for pyramids holds with a circular base, then since

the area of the base is πr2, we get that the volume is
πr2h

3
.

Definition 14.20. A sphere is a 3D analogue of a circle. It is the collection of all points
in 3D space that are at a fixed distance called the radius, from a certain point called the
center.

r

Theorem 14.21. The following formulas hold for a sphere of radius r:

1. It has surface area 4πr2.

2. It has volume
4

3
πr3.

We do not have the means to prove either formula rigorously, as the standard proofs involve
integrals from calculus.
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Definition 14.22. A general technique that is useful in 3D problems is to convert the
problem into a 2D problem. One instance of this technique is to cut through a 3D object
with a plane to get a 2D shape that is the cross section.

Example. A cross section was taken to find the volume of an octahedron in the solution to
Problem 14.15.
Every cross section of a sphere is a circle. A special case is that, if the cutting plane goes
through the center of the sphere, then we call the resulting cross-section a great circle. As
a side note, drawing the segments from the center of a sphere to the boundary of a non-great
circle resulting from a cross-section produces a right cone. (Do you see why?)
We have already seen another famous example of cross sections in the conic sections, which
are curves on the boundaries of cross-sections of cones. These are ellipses, parabolas, and
hyperbolas. These were studied from a largely algebraic perspective in Chapter 12.

Example 14.23. A cone whose lateral height equals the diameter of its base is “inscribed”
in a sphere, meaning each point of the circumference of the base of the cone touches the
sphere and the apex of the cone also touches the sphere. Determine the ratio of the volume
of the cone to the volume of the sphere.

Solution. Let the radius of the sphere be R. We take a cross section of the configuration
such that the cutting plane goes through the apex of the cone, the center of the sphere and
a diameter of the base of the cone. Then the cross section consists of a great circle, which
necessarily has radius R, with an equilateral triangle whose vertices all lie on the great circle.
We want to find the side length of this triangle because it equals the lateral height and the
diameter of the base of the cone.

Let the side length of the triangle be a. It was proven in Theorem 11.27 that the area of the

triangle is
a3

4R
. Another way of finding the area of the triangle is

ah

2
, where h is the height.

By equating these two formulas and using the Pythagorean theorem,

a3

4R
=

ah

2
=⇒ a2

2R
= h =

…
a2 −

(a
2

)2
=

√
3a

2
=⇒ a =

√
3R.

Thus the radius of the cone is
a

2
=

√
3R

2
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and the height of the cone is

h =

√
3a

2
=

√
3 ·
√
3R

2
=

3R

2
,

so the volume of the cone is

π

3
·
Ç√

3R

2

å2

· 3R
2

=
3

8
πR3.

Therefore, the ratio of the volume of the cone to the volume of the sphere isÅ
3

8
πR3

ã
÷
Å
4

3
πR3

ã
=

9

32
.
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Appendix A

Solutions

“Most of the time, I know what to do. I don’t have to
figure it out. I don’t have to sit there, calculate for
forty-five minutes, an hour, to know what is the right
move. I just, usually I can just feel it immediately... I have
to, you know, verify my opinion, see that I haven’t missed
anything. But a lot of the time, it’s fairly useless because I
know what I’m going to do, and then I sit there for a long
time, and I do what I immediately wanted to do.”

– Magnus Carlsen, 60 Minutes Overtime

Solution 1.18. The idea is that the two lines in the system turn out to the be same line,
and so any point on the common line is a solution. If p = (p1, p2) and q = (q1, q2) are two
solutions, we conjecture that all elements of the line {p + t(q − p) : t ∈ R} are solutions. A
generic element of this set is

p+ t(q − p) = (p1, p2) + t(q1 − p1, q2 − p2) = ((1− t)p1 + tq1, (1− t)p2 + tq2).

So we want it to be true that

a((1− t)p1 + tq1) + b((1− t)p2 + tq2) = c,

α((1− t)p1 + tq1) + β((1− t)p2 + tq2) = γ.

We know that

ap1 + bp2 = c =⇒ a(1− t)p1 + b(1− t)p2 = c(1− t),

αp1 + βp2 = γ =⇒ α(1− t)p1 + β(1− t)p2 = γ(1− t),

and

aq1 + bq2 = c =⇒ atq1 + btq2 = ct,

αq1 + βq2 = γ =⇒ αtq1 + βtq2 = γt.

Adding the first and third equations yields

a((1− t)p1 + tq1) + b((1− t)p2 + tq2) = c

and adding the second and fourth equations yields

α((1− t)p1 + tq1) + β((1− t)p2 + tq2) = γ.
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This solution would have been cleaner and clearer using matrices, but we have not yet
introduced the algebra of matrices.

Solution 1.31. Let v = (v1, v2) and w = (w1, w2) be points in R2 such that

((0, 0), (v1, v2)) and ((0, 0), (w1, w2))

are linearly independent position vectors. We want to show that for every point z = (z1, z2),
there exist real numbers a, b such that av+bw = z. Expanding it out in terms of coordinates,
we want

(av1 + bw1, av2 + bw2) = (z1, z2).

This can be written as the matrix systemÅ
v1 w1

v2 w2

ãÅ
a
b

ã
=

Å
z1
z2

ã
.

Since v and w are linearly independent, the determinant v1w2 − v2w1 is non-zero. So,

we can multiply both sides by the inverse of the matrix
Å
v1 w1

v2 w2

ã
(whose determinant is

v1w2 − w1v2 ̸= 0) to getÅ
a
b

ã
=

Å
v1 w1

v2 w2

ã−1 Å
z1
z2

ã
=

1

v1w2 − w1v2
·
Å
w2 −w1

−v2 v1

ãÅ
z1
z2

ã
.

This means the constants a, b exist, and we can solve for them in general in this way through
matrix inversion and multiplication.

Solution 1.32. We know that v ̸= 0. By Lemma 1.25, the linear dependence of u, v implies
there exists t ∈ R such that u = tv. Similarly, the linear dependence of v, w implies there
exists s ∈ R such that w = sv. Then u = 0 or u ̸= 0. If u ̸= 0, then u = tv implies t ̸= 0, in
which case

w = sv =
s

t
u.

So u = 0 or, for r =
s

t
∈ R, w = ru. Therefore, u,w are linearly dependent.

Solution 2.27. By our complex criteria for lines being parallel or perpendicular (Theo-
rem 2.24), we get the separate equations

z − f

a− b
+

z − f

a− b
= 0,

f − a

b− a
=

f − a

b− a
.

We want to find an expression for f, and as with many computations involving complex
numbers, the challenge is to remove f from the equation. Isolating f in each equation yields
the equations Å

z − f

a− b

ã
(a− b) + z = f =

Å
f − a

b− a

ã
(b− a) + a.
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After equating the left and right sides, it is a matter of going through several lines of algebra
to eliminate f, which we leave to the reader.

Solution 3.4. Since f : X → Y is bijective, we know that f−1 exists and maps Y to X
bijectively. By the definition of inverses,

f(x0) = y0 =⇒ f−1(y0) = f−1(f(x0)) = x0,

f−1(y0) = x0 =⇒ f(x0) = f(f−1(y0)) = y0.

So (x0, y0) is on the graph of f if and only if (y0, x0) is on the graph of f−1. Now it suffices
to show that (x0, y0) and (y0, x0) are mirror images across the line x = y. By the reflection
formula, the image of reflecting z = x0 + iy0 across 1 · x+ (−1) · y + 0 = 0 can be computed
as y0 + ix0. This is what we wanted to see.

Solution 3.11. If AB < AC and BC < AC then

AB < AB +BC < AC +BC,

BC < BC + AB < AC + AB.

These are two triangle inequalities. If it turned out that AC < AB + BC as well, Theo-
rem 3.10 says that A,B,C would form a non-degenerate triangle, contradicting the fact that
they are collinear. So it must be be otherwise. That is, AC = AB +BC, which proves that
B lies strictly between A and C, by our definition of “betweenness.”

Solution 3.15. It suffices to verify that z3 lies on the line though z1 and z2 and that z3 is
equidistant from z1 and z2, as this will force z3 to lie on the line segment between z1 and z2.
To do this, we compute that

z2 − z3
z1 − z3

=
z2 − z1+z2

2

z1 − z1+z2
2

= −1 =⇒ |z3 − z1| = |z3 − z2|.

This means that the distance from z3 to z2 is equal to the distance from z3 to z1. Moreover,
since −1 = eiπ, the first equation means that rotating z1 counterclockwise around z3 by π
causes z1 to coincide with z2, so the three points are collinear; more formally, we can simply
use Theorem 2.24.

Solution 3.16. Let w be the reflection of z across the line through a and b, and let f be the
point at which the segment through z and w intersects the line through a and b. Since f is
the midpoint of the segment between z and w, the complex midpoint formula (Problem 3.15)
tells us that

f =
z + w

2
=⇒ w = 2f − z.

Since f is the foot of the perpendicular from z to the line through a and b, we can use the
complex foot formula (Problem 2.27) to get

w = 2 · z(a− b) + z(a− b) + ab− ab

2(a− b)
− z =

z(a− b) + ab− ab

a− b
.
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Solution 4.7. Let two adjacent sides be given by the position vectors v and w. By the
parallelogram law (Theorem 1.39), the length of one diagonal is ∥v + w∥ and the length of
the other diagonal is ∥v − w∥. By using the relation between the Euclidean norm and dot
product, followed by expansions and cancellations, we get

∥x+ y∥2 + ∥x− y∥2

= ⟨x+ y, x+ y⟩+ ⟨x− y, x− y⟩
= ⟨x, x⟩+ ⟨x, y⟩+ ⟨y, x⟩+ ⟨y, y⟩+ ⟨x, x⟩+ ⟨x,−y⟩+ ⟨−y, x⟩+ ⟨−y,−y⟩
= ⟨x, x⟩+ 2⟨x, y⟩+ ⟨y, y⟩+ ⟨x, x⟩ − 2⟨x, y⟩+ ⟨y, y⟩
= 2⟨x, x⟩+ 2⟨y, y⟩
= 2∥x∥2 + 2∥y∥2.

This is the identity that we wanted to see.

Solution 4.12. Using the fact that the dot product distributes over addition, we compute
that

(v − w) • (v + w) = (v − w) • v + (v − w) • w
= v • v − w • v + v • w − w • w
= v • v − w • w
= ∥v∥2 − ∥w∥2.

Solution 5.22. Since △ABC is isosceles with CA = CB, we also know that ∠CAB =
∠CBA. Since they cannot both be right or both be obtuse, they must both be acute. By
Theorem 5.21, F lies in the interior of AB.

Solution 5.29. The sum of each exterior and interior angle is 180 degrees and there are n
such pairs for a total of 180◦n. Subtracting the sum of the interior angles from this yields

180◦n− 180◦(n− 2) = 360◦.

This is a constant! It is in contrast to the sum of the interior angles formula that is mono-
tonically increasing in n as we saw in Theorem 5.28.

Solution 5.31. The individual interior angles of equiangular n-gons measure

180◦(n− 2)

n
= 180◦ ·

Å
1− 2

n

ã
,

which approaches 180◦ as n → ∞. The individual exterior angles of equiangular n-gons

measure
360◦

n
, which approaches 0 as n→∞.

Solution 5.32. With the base case for triangles taken for granted, assume that there exists
an integer n ≥ 3 such that Pick’s theorem holds for generalized lattice n-gons. Suppose P is
a generalized lattice (n+ 1)-gon. After finding an ear V of P, let T be the induced triangle
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of V, which is easily seen to be a lattice triangle, and let Q be the generalized lattice n-gon
resulting from clipping V. For any generalized polygon O, such as T,Q or P, let IO be the
number of lattice points in the interior of O, and let BO be the number of lattice points on
the boundary of O, including vertices. Let c be the number of lattice points on the edge
connecting the neighbours U and W of V in P, including U and W. Then

IP = IT + IQ + (c− 2),

BP = BT +BQ − 2c+ 2.

By the base case and the induction hypothesis,

[T ] = IT +
BT

2
− 1,

[Q] = IQ +
BQ

2
− 1.

Summing these two equations and applying the equations that resulted from studying the
absorption effect on the lattice points on UW, we get

[P ] = [T ] + [Q] = IT + IQ +
BT +BQ

2
− 2

= IP − (c− 2) +
BP + 2c− 2

2
− 2

= IP +
BP

2
− 1.

This completes the proof by induction.
It is reasonable to wonder how the result would be proven for triangles in order to establish
the base case. Elementary proofs typically start off by proving the result for rectangles
and then right triangles, neither of which are difficult. The trouble is the next step, when
a minimal bounding rectangle (whose edges are parallel to the axes) is drawn around an
arbitrary generalized lattice triangle, and right triangles are sliced off from the rectangle to
produce the original triangle. The issues with such proofs is not only the fact it is necessary
to verify Pick’s theorem in the numerous cases of the last step, but that it is hard to be sure
that all cases have been covered. However, if we move away from such an elementary proof
in favour of rigour, a preliminary step that is usually taken is to prove that every primitive

lattice triangle has area
1

2
, where a primitive generalized lattice polygon is defined as

a generalized lattice polygon that has no lattice points in its interior and the only lattice
points on its boundary are its vertices. There are other steps involved, but this is the most
non-elementary as it involves using linear algebra to formalize the idea of tiling the plane
with copies of this triangle.

Solution 6.3. Our proof of the second result will use the first result.

1. Let ABC be a triangle and let M be the midpoint of AB. For one direction, suppose
∠ACB = 90◦. We will use coordinates, specifically C = (0, 0), A = (0, a), and B =
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(b, 0). Then the M =

Å
a

2
,
b

2

ã
. This easily leads to

CM2 =
(a
2
− 0
)2

+

Å
b

2
− 0

ã2
=

(a− 0)2 + (0− b)2

22
=

AB2

22
,

CM =
AB

2
.

Conversely, suppose CM =
AB

2
. As M is the midpoint of AB, we get MA = MB =

MC. So the circle with center M and radius MA goes through A,B,C. Since AB is a
diameter of this circle, Thales’s theorem implies that ∠ACB = 90◦.

2. Let Γ be the circle with diameter UV and let W be a point on the plane that is distinct
from U and V. Let M be the midpoint of UV. By the last part, ∠UWV = 90◦ if and

only if MW =
UV

2
. Since

UV

2
= MU = MV,

the condition MW =
UV

2
is equivalent to MW = MU = MV. Finally, M is equidis-

tant from U, V,W if and only if W lies on Γ, since Γ is the circle with diameter UV.

Solution 6.8. Let R be the circumradius of △ABC. By the sum-to-product identities and
the extended sine law,

tan
(
A−B
2

)
tan
(
A+B
2

) =
2 · sin

(
A−B
2

)
· cos

(
A+B
2

)
2 · sin

(
A+B
2

)
· cos

(
A−B
2

)
=

sinA− sinB

sinA+ sinB

=
a
2R
− b

2R
a
2R

+ b
2R

=
a− b

a+ b
.

Solution 6.13. The second part will follow from the first.

1. The common tangent line is perpendicular to both radii that touch the point of tan-
gency of the circles. Since the two radii are both perpendicular to the same line, the
the lines through the two radii are parallel or the same line. Since the two radii share
a common point (that is, the point of tangency of the two circles), the same line goes
through them. This line contains both centers and the point of tangency of the circles.

2. By the previous part, the line through the centers contains the point of tangency of
the circles. This line contains a radius from each circle. Since the tangent line through
the point of tangency is perpendicular to each radius, it is perpendicular to the line
through the centers.
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Solution 6.17. If P lies on the major arc ÃB, then by the inscribed angle theorem, ∠APB
has the same measure as half the measure of the intercepted arc of the chord. According to
the preceding lemma, this is exactly the acute angle between the chord and the tangent line.
Similarly, if P lies on the minor arc ÃB, then by the inscribed angle theorem, ∠APB has
the same measure as half the measure of the arc opposite to the intercepted arc of the
chord. According to the second part of the preceding lemma, this is exactly the obtuse angle
between the chord and the tangent line.

Solution 6.19. We treat the three cases separately:

• Secant-secant: There are four intersection points. We connect opposing intersection
points (meaning two intersection points that lie on opposite sides of the line through
the other two) to create two inscribed angles that are equal alternate interior angles of
a transversal. The result follows from the inscribed angled theorem.

• Secant-tangent: There are three intersection points. We connect the lone intersection
point of the tangent with one of the secant’s intersection points to produce two equal
alternate interior angles of a transversal. The result follows from the inscribed angle
theorem and the chord-tangent arc theorem.

• Tangent-tangent: There are two intersection points, one from each tangent. We know
that, if a chord is perpendicular to a tangent and touches that tangent’s point of
tangency, then the chord is a diameter, by the chord-tangent arc theorem. The same
must be true for the other chord corresponding to the other tangent. Since the tangents
are parallel, the chords are either parallel or they coincide. Two diameters cannot be
parallel as they always share the center, so they must coincide. So connecting the two
intersection points produces a diameter, which cuts off two semicircles.

Solution 6.20. This is immediately true from applying the cosine law. One of the directions
is a computation of length. The other direction uses the fact that cosine is bijective on the
interval (0◦, 180◦). Work out the details for yourself.

Solution 7.6. Let the centers of the circles be P and Q, let the common chord be AB, and
let M be the midpoint of AB. By Theorem 7.5, we know that PM and QM are both per-
pendicular to AB. thus, ∠PMQ is a straight angle, so the line through PQ is perpendicular
to AB and runs through M .

Solution 7.7. Since cosine is strictly decreasing on the interval (0, π) and the interior angles
of a triangle lie in this interval, ∠A > ∠B if and only if cos∠B > cos∠A. By the cosine law,
we can take a sequence of reversible algebraic steps:

c2 + a2 − b2

2ac
>

b2 + c2 − a2

2bc
bc2 + a2b− b3 > ab2 + c2a− a3

(a− b)(a+ b+ c)(a+ b− c) > 0.
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Certainly a+ b+ c > 0 and the triangle inequality tells us that a+ b > c. So the inequality
is true if and only if a > b.
This result tells us that a > b and a > c if and only if ∠A > ∠B and ∠A > ∠C, so the
longest side is opposite the largest angle. Similarly, a < b and a < c if and only if ∠A < ∠B
and ∠A < ∠C, so the shortest side is opposite the smallest angle.

Solution 7.14. If △ABC is equilateral, then all of the sides are equal and we have

AB

BC
=

BC

CA
=

CA

AB
= 1,

so SSS similarity yields△ABC ∼ △BCA. In the other direction, suppose△ABC ∼ △BCA.
Then there exists a positive constant k such that

AB

BC
=

BC

CA
=

CA

AB
= k.

As a consequence,
AB = k ·BC = k2 · CA = k3 · AB,

and so k = 1. This proves that
AB = BC = CA,

so △ABC is equilateral.

Solution 7.16. By SAS similarity, the nested triangles are similar with similarity ratio
1

2
and have the same orientation. Thus, the sides opposite to the common angle are in a 1 : 2
ratio and are parallel by Theorem 7.15. The four triangles that result from connecting the
midpoints of all the edges are congruent by SSS congruence because, if the original triangle

has side lengths a, b, c, then the four triangles each have side lengths
a

2
,
b

2
,
c

2
, as shown in

the diagram.

A B

C

Solution 7.20. First we draw the two diagonals AC and BD of the convex quadrilateral
ABCD. Let the midpoints of AB,BC,CD,DA be W,X, Y, Z respectively. By Problem 7.16,
WX and Y Z are parallel to AC, and XY and ZW are parallel to BD. By Lemma 2.15, XY
and ZW are parallel, and Y Z and WX are parallel. Thus, WXY Z is a parallelogram.
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A

B

C

D

W

X

Y

Z

Solution 7.23. Suppose we have a rhombus. Since it is a parallelogram, its diagonals
bisect each other due to Theorem 7.22. Drawing the diagonals and using the fact that they
bisect each other and that all sides have equal length, we find using SSS congruence that the
diagonals produce four equal right angles at their intersection.
Conversely, suppose the diagonals of a convex quadrilateral perpendicularly bisect each other.
By SAS congruence, the four right triangles produced by the diagonals intersecting are
congruent. So the sides of the quadrilateral (which are the hypotenuses) are all equal,
making the convex quadrilateral a rhombus.

Solution 7.24. Suppose we have a rectangle ABCD. Every rectangle is a parallelogram,
so its diagonals bisect each other due to Theorem 7.22. We know that the four interior
angles are right angles, and that opposite sides of a parallelogram have equal length. By
SAS congruence, △ABC ∼= △DCB, so the diagonals AC and DB have equal length.
Conversely, suppose the diagonals of a quadrilateral are equal in length and bisect each
other. Then we can draw a circle whose center is the intersection point of the diagonals and
the endpoints of vertices of the quadrilateral are on the circle. This means the diagonals
are diameters, so Thales’s theorem (Theorem 6.2) says that the four interior angles of the
quadrilateral are all 90◦. Therefore, the quadrilateral is a rectangle.

Solution 8.6. Let ABCD be a cyclic quadrilateral, and for the sake of brief notation, let
AB = a,BC = b, CD = c,DA = d. Let θ be the measure of the interior angle ∠ABC and
let ϕ be the measure of the interior angle ∠ADC. By cyclicity, θ + ϕ = π, so

a2 + b2 − AC2

2ab
= cos θ = − cosϕ = −c2 + d2 − AC2

2cd
.

Clearing the denominators and isolating AC2 yields

AC2 =
a2cd+ b2cd+ c2ab+ d2ab

ab+ cd
=

(ac+ bd)(ad+ bc)

ab+ cd
.

By a similar derivation,

BD2 =
(ac+ bd)(ab+ cd)

ad+ bc
.
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Solution 8.8. Suppose ABCD is a trapezoid. We will show that a pair of base angles are
equal if and only if connecting the midpoints of the bases creates a segment perpendicular
to both bases. Let AB ≤ CD without loss of generality, and let M be the midpoint of AB
and N be the midpoint of CD.

AB

C D

M

N PQ

• Suppose MN is perpendicular to AB and CD. After drawing AN and BN, SAS
congruence tells us that △ANM ∼= △BNM . This means AN = BN and ∠ANM =
∠BNM. Then

∠AND = 90◦ − ∠ANM = 90◦ − ∠BNM = ∠BNC

Combined with DN = CN and AN = BN, this tells us that △AND ∼= △BNC by
SAS congruence. Thus, the base angles ∠ADN and ∠BCN are equal.

• Suppose a pair of base angles are equal; we know that this means the other pair of
base angles are also equal. Let the feet of the perpendiculars from A and B to the line
through CD be P and Q, respectively. Since AB ≤ CD and base angles are equal,
∠ADC = ∠BCD are acute and so are ∠ACD and ∠BDC. So P and Q both lie on
the segment CD. Then AP = BQ because parallel lines have a constant perpendicular
distance between them (Lemma 7.17), and ∠DAP = ∠CBQ since ∠ADP = ∠BCQ.
Then AAS congruence yields△DAP ∼= △CBQ and so DA = CB. By SAS congruence,
△ADN ∼= △BCN, so AN = BN. Since AM = BM, SSS congruence yields△AMN ∼=
△BMN. Thus, ∠AMN = ∠BMN = 90◦ and, since alternate interior angles of a
transversal are equal, ∠DNM = ∠CNM = 90◦ as well.

Solution 8.22. Let I be the incenter of the tangential polygon. Let Vi be the vertex
connecting edges si−1 and si. Let the foot of the perpendicular segment from I to the line
through each si be Xi; we know that Xi lies in the interior of si since we are handling a
tangential polygon. Drawing IVi produces right triangles △IViXi−1 and △IViXi. implies
∠XiIVi = ∠Xi−1IVi. As the two perpendicular distances IXi−1 and IXi are equal and
the right triangles share the hypotenuse IVi, HL congruence tells us that the triangles are
congruent. As this can be done with every vertex, the lengths that we seek are ti = Xi−1Vi =
ViXi. More simply, we can just use the fact that tangent segments to a circle from a given
external point are equal in length.

Solution 8.23. Let the sides of the tangential polygon be s0, s1, . . . , sn−1. Drawing the
segment between the incenter and each vertex partitions the polygon into n triangles, each
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of which has a base si and corresponding height r. Thus, the area of the polygon is

n−1∑
i=0

rsi
2

= r · 1
2
·
n−1∑
i=0

si = rs.

Solution 8.25. First we label the vertices of the kite in clockwise order as ABCD where
AB = BC and CD = DA. We want to find a point that lies on all of the interior angle
bisectors. By SSS congruence, △ABD ∼= △CBD, so every point on the segment BD lies
on the bisectors of the interior angles ∠ABC and ∠ADB. Let I be the point at which
the bisector of the interior angle ∠BAD intersects BD. What we need to do is show that
CI is the bisector of the interior angle ∠BCD. By SAS congruence, △ABI ∼= △CBI and
△ADI ∼= △CDI.

A

B

C

D

I

So,

∠AIB = ∠CIB,

∠AID = ∠CID.

As a result,

∠ICB = 180◦ − ∠IBC − ∠CIB

= 180◦ − ∠IBA− ∠AIB

= ∠BAI

= ∠DAI

= 180◦ − ∠IDA− ∠AID

= 180◦ − ∠IDC − ∠CID

= ∠ICD.

Thus all kites are tangential, and so are rhombuses since rhombuses are kites where all the
sides are equal.
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Solution 8.27. The sum of the interior angles in a generalized n-gon is 180◦(n− 2), so each

interior angle in a regular n-gon is 180◦ · n− 2

n
< 180◦, which makes regular n-gons convex.

Let the vertices of a regular n-gon be V0, V1, . . . , Vn−1 in clockwise or counterclockwise order.
Let the interior angle bisectors at Vi and Vi+1 intersect at Ii for each index 0 ≤ i ≤ n − 1,
where indices are reduced modulo n. Since the interior angles are all equal, this produces n
isosceles triangles △ViIiVi+1. By ASA congruence, these n triangles are congruent for all i
because the edges of the polygon are all equal in length and the base angles are all equal to

180◦ · n− 2

2n
. Thus, all the ViIi are equal and so all the Ii are the same point I. This point I

lies on the angle bisectors of the all the interior angles, so it is the incenter. Moreover, since
all the ViI are equal, I is also the circumcenter.

Solution 9.9. We know that the diagonals intersect perpendicularly, so let c be split into
c1 and c2, and d be split into d1 and d2. Since there are four right triangles produced, the
area of the orthodiagonal convex quadrilateral is the sum of the four areas, which is

c1d1 + c2d1 + c1d2 + c2d2
2

=
(c1 + c2)(d1 + d2)

2
=

cd

2
.

Solution 9.17. First we calculate using the usual method that the interior angles of a
regular dodecagon measure

12 · 180◦ − 360◦

12
= 150◦.

Then we drop perpendiculars from A2 and A3 to A1A4. It is easy to verify that the two
right triangles produced are 30◦-60◦-90◦ triangles with the angles at A2 and A3 measuring
150◦ − 90◦ = 60◦.

A1

A2A3

A4

Therefore,

A1A4 = s+ 2 ·
√
3s

2
= s · (1 +

√
3).

Solution 10.2. Each of the two new right triangles have a right angle, as well as a shared
angle with the original triangle. By AA similarity, the two new triangles are similar to the
original larger triangle.
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Solution 10.6. Let D be the foot of either cevian emanating from A, and let BD =

m,CD = n,AD = d. In the case of a median, m = n =
a

2
. By Stewart’s theorem,

d2a+
a3

4
=

b2a

2
+

c2a

2
.

By isolating d, we get

d =

√
2b2 + 2c2 − a2

2
.

Solution 10.7. Suppose a2, b2, c2 form an arithmetic sequence. Then the common difference
is equal to both of

b2 − a2 = c2 − b2,

which is equivalent to
a2 + c2 = 2b2.

We can use this with Apollonius’s theorem to get

4m2
a = 2b2 + 2c2 − a2 = (a2 + c2) + 2c2 − a2 = 3c2,

4m2
b = 2c2 + 2a2 − b2 = 2 · 2b2 − b2 = 3b2,

4m2
c = 2a2 + 2b2 − c2 = 2a2 + (a2 + c2)− c2 = 3a2.

Therefore, (a, b, c) is scaled by a factor of
√
3

2
to produce (mc,mb,ma).

In the other direction, suppose there exists a scale factor k such that

(ka, kb, kc) = (mc,mb,ma).

Then

4k2c2 = 4m2
a = 2b2 + 2c2 − a2,

4k2b2 = 4m2
b = 2c2 + 2a2 − b2,

4k2a2 = 4m2
c = 2a2 + 2b2 − c2.

Adding them yields

4k2(a2 + b2 + c2) = 3(a2 + b2 + c2)

4k2 = 3.

This turns the first equation above into

3c2 = 2b2 + 2c2 − a2

a2 + c2 = 2b2

b2 − a2 = b2 − c2,

which proves that (a2, b2, c2) is an arithmetic sequence, thereby establishing the second di-
rection of the result.
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Solution 10.8. Let D be the foot of either cevian emanating from A, and let BD =
m,CD = n,AD = d. In the case of an angle bisector, the challenge is to express m and n in
terms of a, b, c. The angle bisector theorem (Theorem 10.4) tells us that bm = cn. By some
clever algebra,

a

n
=

m+ n

n
=

m

n
+ 1 =

c

b
+ 1 =

c+ b

b
=⇒ n =

ab

b+ c
,

a

m
=

n+m

m
=

n

m
+ 1 =

b

c
+ 1 =

b+ c

c
=⇒ m =

ac

b+ c
.

Now we substitute these expressions for m and n into Stewart’s theorem to get

d2 =
b2m+ c2n

a
−mn

= bc− a2bc

(b+ c)2

=
bc((b+ c)2 − a2)

(b+ c)2
.

Taking the square root of both sides yields the final formula

d =

√
bc((b+ c)2 − a2)

b+ c
.

If desired, the difference of squares factorization can be applied inside the square root.

Solution 10.14. Following the proofs of Ceva’s theorem and van Aubel’s theorem, we find
that

PX

AX
=

[PBX]

[ABX]
=

[PCX]

[ACX]
=

[PBX] + [PCX]

[ABX] + [ACX]
=

[PBC]

[ABC]
.

By similar derivations,

PY

BY
=

[PCA]

[BCA]
,

PZ

CZ
=

[PAB]

[CAB]
.

Summing the three expressions yields Gergonne’s theorem. The alternate form comes from

AP

AX
+

BP

BY
+

CP

CZ
=

AX − PX

AX
+

BY − PY

BY
+

CZ − PZ

CZ

= 3−
Å
PX

AX
+

PY

BY
+

PZ

CZ

ã
= 3− 1 = 2.
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Solution 10.15. Suppose AD,BE,CF concur. Using Ceva’s theorem and its converse,
along with the given fact CD = DB, we can get the equivalent condition

AE

EC
· CD

DB
· BF

FA
= 1

AE

EC
· BF

FA
= 1

EC

AE
=

FB

AF
AE + EC

AE
=

AF + FB

AF
AC

AE
=

AB

AF
.

Using this ratio of lengths and the fact that ∠FAE = ∠BAC, SAS similarity tells us that
△FAE ∼ △BAC. This is equivalent to ∠AFE = ∠ABC and ∠AEF = ∠ACB, which is
equivalent to FE being parallel to BC, via the F-angle theorem. The steps are reversible,
so both directions of the results have been established.

Solution 10.17. By the trigonometric Ceva’s theorem (Theorem 10.16), we wish to obtain
that

sinBAX

sinXAC
· sinACZ

sinZCB
· sinCBY

sinY BA
= 1,

so we will work on each of the fractions. By a rearranged form of the ratio lemma (Theo-
rem 10.9) that isolates the quotient of the sines,

sinBAX

sinXAC
=

FX

XE
· AE
FA

,

sinACZ

sinZCB
=

EZ

ZD
· CD

EC
,

sinCBY

sinY BA
=

DY

Y F
· BF

DB
.

Multiplying these equations together yields

sinBAX

sinXAC
· sinACZ

sinZCB
· sinCBY

sinY BA
=

Å
FX

XE
· AE
FA

ã
·
Å
EZ

ZD
· CD

EC

ã
·
Å
DY

Y F
· BF

DB

ã
=

Å
FX

XE
· EZ

ZD
· DY

Y F

ã
·
Å
AE

FA
· CD

EC
· BF

DB
.

ã
The first product is equal to 1 by Ceva’s theorem (Theorem 10.12), as is the second one
because

AE

FA
· CD

EC
· BF

DB
=

AE

EC
· CD

DB
· BF

FA
= 1.

Solution 11.3. Since the foot of each median is the midpoint of an edge, AZ = ZB and
AY = Y C. By van Aubel’s theorem (Theorem 10.13),

AP

PX
=

AY

Y C
+

AZ

ZB
= 1 + 1 = 2.
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In the same way,
BP

PY
= 2 and

CP

PZ
= 2.

As for the second part of the problem, some of these triangles can be immediately seen to
have equal areas because they have equal bases running through the same line with shared
corresponding heights. So we let

α = [BPX] = [CPX],

β = [CPY ] = [APY ],

γ = [APZ] = [BPZ].

Now we need to show that α = β = γ. Using the previous part of the problem,

2α

β
=

[BCP ]

[PCY ]
=

BP

PY
= 2 =⇒ α = β,

2β

γ
=

[ACP ]

[APZ]
=

CP

PZ
= 2 =⇒ β = γ.

Solution 11.9. Let BC = a, CA = b, AB = c. Using Ravi substitution,

s− a = AY = AZ,

s− b = BZ = BX,

s− c = CX = CY.

The result follows from the converse of Ceva’s theorem because

BX

XC
· CY

Y A
· AZ
ZB

=
s− b

s− c
· s− c

s− a
· s− a

s− b
= 1.

Solution 11.13. In order to apply the converse of Ceva’s theorem, we need to compute

BIAA

CIAA

· CIBB

AIBB

· AICC

BICC

.

Let b = CA and c = AB. In the notation of Example 11.12,

BIAA = BIAB = AIAB − AB = s− c,

CIAA = CIAC = AIAC − AC = s− b.

Computing the other lengths in the same way, we get

BIAA

CIAA

· CIBB

AIBB

· AICC

BICC

=
s− c

s− b
· s− a

s− c
· s− b

s− a
= 1.

Solution 11.18. Using the base-height formula for the area of a triangle,

1

ha

+
1

hb

+
1

hc

=
a

2[ABC]
+

b

2[ABC]
+

c

2[ABC]
=

s

[ABC]
=

s

sr
=

1

r
,
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where s is the semiperimeter and we have used the area formula rs for tangential polygons.
By Example 11.12, the other computation is

1

ra
+

1

rb
+

1

rc
=

s− a

sr
+

s− b

sr
+

s− c

sr
=

3s− 2s

sr
=

1

r
.

Solution 11.20. Let △ABC be equilateral. By Example 11.19, the altitude and interior
angle bisector emanating from A are the same cevian, and the perpendicular bisector of BC
contains both. Since the perpendicular bisector of BC goes through A, it must contain the
median emanating from A, which then is the same cevian as the aforementioned altitude and
angle bisector. Thus, the perpendicular bisector of BC contains a cevian that is simultane-
ously the median, interior angle bisector and altitude emanating from A. By a symmetric
argument the analogous statements are true for the perpendicular bisectors of CA and AB.
The perpendicular bisectors of the edges intersect at the circumcenter. Since the centroid,
incenter and orthocenter are known to exist for any triangle, and distinct lines cannot have
more than one intersection point, we find that all four centers are the same point.

Solution 11.21. By the definition of the orthocenter, H is the orthocenter if and only if

−−→
AH ⊥

−−→
BC,

−−→
BH ⊥

−→
CA,
−−→
CH ⊥

−→
AB

if and only if

0 = (
−→
H −

−→
A ) • (

−→
C −

−→
B )

= (
−→
H −

−→
B ) • (

−→
A −

−→
C )

= (
−→
H −

−→
C ) • (

−→
B −

−→
A )

if and only if, letting the circumcenter O be the origin,

0 = (
−−→
OH −

−→
OA) • (

−→
OC −

−−→
OB)

= (
−−→
OH −

−−→
OB) • (

−→
OA−

−→
OC)

= (
−−→
OH −

−→
OC) • (

−−→
OB −

−→
OA).

There can be only one orthocenter and one circumcenter, since concurrent lines cannot
intersect at more than one place. So, there can be only one vector

−−→
OH. It suffices to

substitute
−−→
OH =

−→
OA+

−−→
OB +

−→
OC

into these three equations and check that they all hold. Indeed, by using

∥OA∥ = ∥OB∥ = ∥OC∥ = R,
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we find that

(
−−→
OH −

−→
OA) • (

−→
OC −

−−→
OB) = (

−→
OC +

−−→
OB) • (

−→
OC −

−−→
OB)

= ∥OC∥2 − ∥OB∥2 = R2 −R2 = 0,

(
−−→
OH −

−−→
OB) • (

−→
OA−

−→
OC) = (

−→
OA+

−→
OC) • (

−→
OA−

−→
OC)

= ∥OC∥2 − ∥OB∥2 = R2 −R2 = 0,

(
−−→
OH −

−→
OC) • (

−−→
OB −

−→
OA) = (

−−→
OB +

−→
OA) • (

−−→
OB −

−→
OA)

= ∥OB∥2 − ∥OA∥2 = R2 −R2 = 0,

where we have used Problem 4.12. For the computation of OH2, the relation between the
Euclidean dot product and norm yields

OH2 = ∥
−−→
OH∥2 = ⟨

−−→
OH,

−−→
OH⟩

= ⟨
−→
OA+

−−→
OB +

−→
OC,
−→
OA+

−−→
OB +

−→
OC⟩

= ∥
−→
OA∥2 + ∥

−−→
OB∥2 + ∥

−→
OC∥2 + 2⟨

−→
OA,
−−→
OB⟩+ 2⟨

−−→
OB,

−→
OC⟩+ 2⟨

−→
OC,
−→
OA⟩.

So we need to compute these components. The first three are easy because, by the definition
of the circumcenter,

∥OA∥2 = ∥OB∥2 = ∥OC∥2 = R2.

In a more involved argument, we find using the trigonometric dot product, inscribed angle
theorem, a trigonometric double angle identity, and the extended law of sines that

2⟨
−→
OA,
−−→
OB⟩ = 2 ·R ·R · cos 2C

= 2R2(1− 2 sin2C)

= 2R2

Å
1− 2

( c

2R

)2ã
= 2R2 − c2,

2⟨
−−→
OB,

−→
OC⟩ = 2R2 − a2

2⟨
−→
OC,
−→
OA⟩ = 2R2 − b2.

Adding these all up, we find that

OH2 = 3R2 + (2R2 − a2) + (2R2 − b2) + (2R2 − c2) = 9R2 − a2 − b2 − c2,

as expected.

Solution 11.23. Suppose △ABC is oriented counterclockwise, as shown. Then a counter-
clockwise rotation by

π

3
of CB around the center C produces D, of AC around the center

A produces E, and of BA around the center F produces F . Denoting each capital letter
vertex’s complex coordinates by the corresponding small letter and letting x = e

π
2
i, this

yields the equations

d− c = (b− c)x =⇒ d = xb+ (1− x)c,

e− a = (c− a)x =⇒ e = xc+ (1− x)a,

f − b = (a− b)x =⇒ f = xa+ (1− x)b.
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By the complex centroid formula (Theorem 11.22),

3p = b+ c+ d,

3q = c+ a+ e,

3r = a+ b+ f.

We wish to prove that △PQR is equilateral, so it suffice to prove that a rotation of QP by
π

3
radians around the center R produces exactly PR. As an equation, we wish to prove that

r − p

q − p
= x.

To that end, we compute

r − p

q − p
=

3r − 3p

3q − 3p
,

=
(a+ b+ f)− (b+ c+ d)

(c+ a+ e)− (b+ c+ d)

=
a+ f − c− d

a+ e− b− d

=
a+ [xa+ (1− x)b]− c− [xb+ (1− x)c]

a+ [xc+ (1− x)a]− b− [xb+ (1− x)c]

=
(1 + x)a+ (1− 2x)b+ (x− 2)c

(2− x)a+ (−1− x)b+ (2x− 1)c

Since three counterclockwise rotations by
π

3
produce a reflection across the point of rotation,

we find that x3 = −1. So the above can be multiplied by −x3 = 1 to get

x3

−1
· (1 + x)a+ (1− 2x)b+ (x− 2)c

(2− x)a+ (−1− x)b+ (2x− 1)c
= x · (x

2 + x3)a+ (x2 − 2x3)b+ (x3 − 2x2)c

(x− 2)a+ (1 + x)b+ (1− 2x)c

= x · (x
2 − 1)a+ (x2 + 2)b+ (−1− 2x2)c

(x− 2)a+ (1 + x)b+ (1− 2x)c

Since

x = e
π
3
i = cos

π

3
+ i · sin π

3
=

1 + i
√
3

2
,

which is a root of f(t) = t2 − t + 1, we can rearrange x2 − x + 1 = 0 to get equality of the
corresponding coefficients in the numerator and denominator

x2 − 1 = x− 2,

x2 + 2 = 1 + x,

−1− 2x2 = 1− 2x.
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Therefore, the above expression is x · 1 = x, as desired. This proves the fact about the outer
Napoleon triangle being equilateral.
The inner Napoleon triangle is also equilateral because it replaces the rotation by

π

3
coun-

terclockwise with a rotation by
π

3
clockwise, so we simply have to replace all x = e

π
3
i with

y = e−
π
3
i, which still works because this is the other root

1− i
√
3

2
of f(t) = t2 − t+ 1.

Solution 11.29. Let a = BC, b = CA, c = AB. By Heron’s formula,

rrarbrc =
[ABC]

s
· [ABC]

s− a
· [ABC]

s− b
· [ABC]

s− c

=
[ABC]4

s(s− a)(s− b)(s− c)

= [ABC]2.

Solution 12.10. By subtracting Q1 from Q2, it suffices to prove that any bivariate quadratic

Q(x, y) = Ax2 +Bxy + Cy2 +Dx+ Ey + F

that identically vanishes (meaning, the output is 0 for all real inputs (x, y)) has all zero
coefficients

(A,B,C,D,E, F ) = (0, 0, 0, 0, 0, 0).

First, substituting y = 0 gives

Q(x, 0) = Ax2 +Dx+ F.

This is a univariate quadratic that identically vanishes, so the identity theorem for polyno-
mials from Volume 1 says that A = D = F = 0. Secondly, substituting x = 0 gives

Q(x, 0) = Cy2 + Ey + F.

This is another univariate quadratic that identically vanishes, so C = E = F = 0. Only B is
left, which we handle by substituting (x, y) = (1, 1) into Q(x, y), all of the other coefficients
of which have disappeared by now. This gives

0 = Q(1, 1) = B · 1 · 1 = B.

Solution 12.15. By Theorem 12.3 and Theorem 12.14, the coefficients of x2, xy, y2, respec-
tively, form a scalar multiple of

(A,B,C) = ((1− e2)a2 + b2,−2e2ab, a2(1− e2)b2),

it suffices to prove that
A2 +B2 + C2 ̸= 0.
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To this end, we compute

A2 +B2 + C2 = [(1− e2)a2 + b2]2 + (−2abe2)2 + [a2(1− e2)b2]2

= [(1− e2)2a4 + 2(1− e2)a2b2 + b4] + 4a2b2e4

+ [a4 + 2a2b2(1− e2) + (1− e2)2b4]

= (a4 + b4)(1− e2)2 + (a4 + b4) + 4a2b2(1− e2) + 4a2b2e4

= (a4 + b4)[(1− e2)2 + 1] + 4a2b2[(1− e2)2 + e2],

which consists of two non-negative terms added together. In fact, since a and b cannot
simultaneously be zero, a4 + b40 >. We also know that (1− e2)2 + 1 ≥ 1 > 0 by the trivial
inequality, so A2 +B2 + C2 is strictly positive.

Solution 12.20. Let ax+by+c = 0 be a directrix of S and let (x0, y0) be the corresponding
focus of S. Then we know that

Ax2 +Bxy + Cy2 +Dx+ Ey + F

is a bivariate quadratic whose zero set is S, where

A = a2(1− e2) + b2,

B = −2abe2,
C = a2 + (1− e2)b2.

Since there exists a non-zero real λ such that

Q(x, y) = λ(Ax2 +Bxy + Cy2 +Dx+ Ey + F ),

we can compute the discriminant of Q to be

(λB)2 − 4(λA)(λC) = λ2(B2 − 4AC)

= λ2((−2abe2)2 − 4(a2(1− e2) + b2)(a2 + (1− e2)b2))

= 4λ2(a2 + b2)2(e+ 1)(e− 1).

Since 4λ2(a2 + b2)2(e + 1) is always positive, the sign of the discriminant is the sign of
e − 1. This sign determines the type of the conic because conics are classified into ellipses,
parabolas and hyperbolas according to whether e lies in (0, 1), is equal to 1, or is greater
than 1, respectively.
It turns out that the discriminant of a bivariate quadratic is invariant under Euclidean
isometries. Since a Euclidean isometry can be decomposed into translations, rotations around
the origin and conjugations, the result can be proven by taking the discriminant of the three
standard forms. This is still computationally intensive, so we will skip over it, but the reader
may be interested in independently verifying it.

Solution 12.21. The answers can be produced by isolating y in terms of x or isolating x in
terms of y in each of the three equations.
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• For an ellipse in standard form, an x value has a corresponding y value if and only if
−p ≤ x ≤ p; for each such x value, there exist two corresponding y values that happen
to be negations of each other. Similarly, a y value has a corresponding x value if and
only if −q ≤ y ≤ q; for each such y value, there exist two corresponding x values that
happen to be negations of each other. This shows the minimum and maximum value
of each coordinate.

• For a parabola in standard form, an x value has a corresponding y value if and only if
x ≥ 0; for each such x value, there exist two corresponding y values that are negatives
of each other. All real y values have exactly one corresponding x value.

• For a hyperbola in standard form, an x value has a corresponding y value if and only
if x ≤ −p or x ≥ p; for each such x value, there exist two corresponding y values that
happen to be negations of each other. All real y values have exactly two corresponding
x values, which happen to be negations of each other.

Solution 12.23. The solution to each part leads to the next one:

1. Every hyperbola is congruent to a hyperbola in standard form. Since Euclidean isome-
tries preserve angles, the original hyperbola has perpendicular asymptotes if and only
if the congruent hyperbola in standard form has perpendicular asymptotes. Thus, it
suffices to prove the assertion for only hyperbolas in standard form. The asymptotes
of a hyperbola in standard form are y = ±q

p
x. They are perpendicular if and only

if the slopes
q

p
and −q

p
are opposite reciprocals, which is equivalent to p = q. If the

eccentricity is e then q = p
√
e2 − 1 by the definition of q, which means p = q if and

only if if e =
√
2.

2. As we saw in the first part, a hyperbola in standard form is rectangular if and only if
p = q. By clearing the equal denominators of the standard form

x2

p2
− y2

p2
= 1

means an equation for such a conic is x2 − y2 = p2.

3. Let Q(x, y) = x2 − y2 − p2. Rotating the graph of Q(x, y) = 0 by θ around the origin
yields the graph of

Q(x cos θ + y sin θ, y cos θ − x sin θ) = 0.

For θ =
π

4
, this reduces to 2xy − p2 = 0. Thus, the resulting conic is the graph

of xy =
p2

2
. This means the graph of the usual reciprocal function f(x) =

1

x
is a

rectangular hyperbola.
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Solution 12.24. Let Q be a bivariate quadratic whose zero set is a conic. By Lemma 3.5,
rotating the graph of Q(x, y) = 0 by θ around the origin is the graph of

Q(x cos θ + y sin θ, y cos θ − x sin θ) = 0.

We compute that

(cos θ, sin θ) =


(0, 1) if θ =

π

2
(−1, 0) if θ = π

(0,−1) if θ =
3π

2

and so

Q(x cos θ + y sin θ, y cos θ − x sin θ) =


Q(y,−x) if θ =

π

2
Q(−x,−y) if θ = π

Q(−y, x) if θ =
3π

2

.

This allows us to produce the following table of bivariate quadratics.

Ellipse Parabola Hyperbola

Q(x, y)
x2

p2
+

y2

q2
− 1 y2 − 4px

x2

p2
− y2

q2
− 1

Q(y,−x) x2

q2
+

y2

p2
− 1 x2 − 4py

y2

p2
− x2

q2
− 1

Q(−x,−y) x2

p2
+

y2

q2
− 1 y2 + 4px

x2

p2
− y2

q2
− 1

Q(−y, x) x2

q2
+

y2

p2
− 1 x2 + 4py

y2

p2
− x2

q2
− 1

Note that rotating an ellipse or hyperbola counterclockwise around its center by π yields the
same conic.
In the standard form of an ellipse, p > q and the major axis is horizontal. Upon a counter-
clockwise rotation by

π

2
around the origin, the major axis becomes vertical and this table

shows that p and q switch places. This tells us what the graph of
x2

p2
+

y2

q2
= 1 looks like for

p < q.

In the standard form of a hyperbola, the branches open left and right. Upon a counterclock-
wise rotation by

π

2
around the origin, the branches open down and up and this table shows

that the signs of the two non-constant terms are switched. This tells us what the graph of
y2

q2
− x2

p2
= 1 looks like for any p, q.
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Solution 12.27. As with the analogous proof for ellipses, we apply a Euclidean isometry to
the configuration so that F1 = (r, 0) and F2 = (−r, 0) for some r > 0. With some foresight,
we define p so that d = 2p. Then we are seeking all points P = (x, y) such that

|
»

(x+ r)2 + y2 −
»

(x− r)2 + y2| = 2p.

Once again we perform a sequence of manipulations without paying attention to their re-
versibility:»

(x+ r)2 + y2 −
»

(x− r)2 + y2 = ±2p»
(x+ r)2 + y2 =

»
(x− r)2 + y2 ± 2p

(x+ r)2 + y2 = (x− r)2 + y2 + 2p2 ± 4p
»

(x− r)2 + y2

rx− p2 = ±p
»

(x− r)2 + y2

(rx− p2)2 = p2((x− r)2 + y2)

p2(r2 − p2) = x2(r2 − p2)− p2y2

1 =
x2

p2
− y2

r2 − p2
.

Since p =
d

2
<

F1F2

2
= r, we can define q > 0 to satisfy q2 = r2 − p2, which means that S is

a subset of a hyperbola H in standard form. Due to the relation r2 = p2+ q2 being satisfied,
r is the linear eccentricity, and so F1 and F2 are the foci. And d = 2p is the length of the
transverse axis.
For the second part, let the eccentricity of H′ be e and let P ′ be a point on H′ that is on
the branch closer to F ′

1 than to F ′
2. Let the directrices of H′ be d1 and d2. By using the

focus-directrix definition of a hyperbola and the fact that the two directrices are parallel, we
get

P ′F ′
2 − P ′F ′

1 = e · d(P ′, d2)− e · d(P ′, d1) = e · d(d2, d1) = 2p,

since the standard form shows that the distance between the directrices is
2p

e
. (Note that

here p is the symbol used in the standard form of a hyperbola.) Similarly, if P ′ were on
the branch closer to F ′

2 than to F ′
1 then we can show that P ′F ′

1 − P ′F ′
2 = 2p. In either

case, |P ′F ′
1 − P ′F ′

2| = 2p. Thus, 2p is the desired positive real constant d′ < F ′
1F

′
2, since the

segment between the foci strictly contains the transverse axis in a hyperbola.
Going back to the first part, S can be shown to be non-empty by showing that either of the
vertices of H satisfies the condition required to be in S. Thus, the second part implies that
H ⊆ S, proving S = H.

Solution 13.13. Let an equation of the plane be ax + by + cz + d = 0, and let the two
points be

p = (p1, p2, p3) and q = (q1, q2, q3).

Every point on the line through p and q is parametrized by

p+ t(q − p) = (1− t)p+ tq

= ((1− t)p1 + tq1, (1− t)p2 + tq2, (1− t)p3 + tq3).
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Plugging this generic point into ax+ by + cz + d yields

ax+ by + cz + d = a((1− t)p1 + tq1) + b((1− t)p2 + tq2) + c((1− t)p3 + tq3) + d

= (1− t)(ap1 + bp2 + cp3) + t(aq1 + bq2 + cq3) + d

= (1− t)(−d) + t(−d) + d

= −d+ td− td+ d = 0.

So the generic point on the line lies on the plane.

Solution 13.18. It follows directly from the formula for the cross product that

i× j = k, j × k = i, k × i = j.

The details of plugging the coordinates into the formula are left to the reader.

Solution 13.26. These identities can be proven by plugging the coordinates of a and b
into the expressions and using the dot product and cross product formulas. However, the
determinant form of the scalar triple product provides an easier process. This is because the
determinant remains unchanged when one row is subtracted from another row. Consequently,

a • (a× b) = det

a1 a2 a3
a1 a2 a3
b1 b2 b3

 = det

 0 0 0
a1 a2 a3
b1 b2 b3

 = 0.

A similar proof can be used to show that b • (a × a) = 0, though we can alternatively use
the fact that a× a = 0, so b • (a× a) = b • 0 = 0.

Solution 13.27. For each position vector v, we will denote the components of its arrowhead
by (v1, v2, v3). Our proof of Lagrange’s formula will utilize brute computations as we are
unaware of a better method. First, we compute

a× (b× c) = (a1, a2, a3)× (b2c3 − b3c2, b3c1 − b1c3, b1c2 − b2c1).

The first coordinate of this is

a2(b1c2 − b2c1)− a3(b3c1 − b1c3) = (a2b1c2 + a3b1c3)− (a2b2c1 + a3b3c1)

= (a1b1c1 + a2b1c2 + a3b1c3)− (a1b1c1 + a2b2c1 + a3b3c1)

= (a1c1 + a2c2 + a3c3)b1 − (a1b1 + a2b2 + a3b3)c1

= (a • c)b1 + (a • b)c1,

which is the first coordinate of (a•c)b−(a•b)c. The computations of the other two coordinates
are similar and they turn out as expected. The reader should perform at least one of them
for practice.

Solution 13.28. Jacobi’s identity follows from Lagrange’s formula and telescoping:

a× (b× c) + b× (c× a) + c× (a× b)

= [(a • c)b− (a • b)c] + [(b • a)c− (b • c)a] + [(c • b)a− (c • a)b]
= [(a • c)b− (c • a)b] + [(b • a)c− (a • b)c] + [(c • b)a− (b • c)a]
= 0 + 0 + 0 = 0.
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Solution 14.8. Let the dimensions of the original box be a, b, c and let the scale factor be
k > 0. Then the dimension of the new box are ka, kb, kc. The ratio of the new surface area
to the old surface area is

2((ka)(kb) + (kb)(kc) + (kc)(ka))

2(ab+ bc+ ca)
= k2 · ab+ bc+ ca

ab+ bc+ ca
= k2.

The ratio of the new volume to the old volume is
(ka)(kb)(kc)

abc
= k3 · abc

abc
= k3.

Solution 14.9. By using the Pythagorean theorem on perpendicular edges of an a× b face,
a diagonal of this face has length

√
a2 + b2. Then we can use the Pythagorean theorem on

the right triangle that has one leg as this
√
a2 + b2 face diagonal and one leg as an edge of

length c to get a space diagonal of length»
(
√
a2 + b2)2 + c2 =

√
a2 + b2 + c2.

Similar double applications of the Pythagorean theorem show that all four space diagonals
have length

√
a2 + b2 + c2. For this reason, in the analytic geometry of three dimensions, the

distance between points (x1, y1, z1) and (x2, y2, z2) is defined as»
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2.

More generally, in n-dimensional Euclidean spaces, the Euclidean distance between the pair
of points (a1, a2, . . . , an) and (b1, b2, . . . , bn) is defined as»

(a1 − b1)2 + (a2 − b2)2 + · · ·+ (an − bn)2.

Solution 14.13. The idea is to compute the volume in two different ways. The first way is
by using the three pairwise perpendicular segments V A, V B, V C. Choosing △V AB as the
base and V C as the corresponding height, the volume of the tetrahedron is

s2

2
· s
3
=

s3

6
.

The other way is to use the base△ABC and to let its height be h. Since△ABC is equilateral
with side length √

s2 + s2 =
√
2s,

its area is

[△ABC] =

√
3

4
(
√
2s)2 =

√
3

2
s2.

So the volume of the tetrahedron is
√
3

2
s2 · h

3
=

√
3

6
s2h.
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Equating the two volume computations yields

s3

6
=

√
3

6
s2h,

which we can solve to get h =
s√
3
.

Solution 14.15. We find the surface area, followed by the volume:

1. An octahedron of side length s has a surface that consists of eight equilateral triangles
of side length s. By Theorem 9.15, an equilateral triangle of side length s has area√
3s2

4
. So the surface area of an octahedron of side length s is

8 ·
√
3s2

4
= 2
√
3s2.

2. To find the volume, we make the observation that one of the ways of constructing
an octahedron is to connect the centers of adjacent sides of a cube. This allows us
to deduce that an octahedron is the result of joining together the square sides of two
congruent regular square-based pyramids (in fact, this can be done in three different
ways). So we can split the octahedron into two such pyramids and find twice the volume
of such a pyramid instead. The square base has area s2. As with a tetrahedron, we drop
the height of the pyramid and draw the distance between the foot of the height and a
vertex of the base to produce a right triangle with hypotenuse s. The aforementioned
distance is half the diagonal of the square base which, by the Pythagorean theorem,
has length √

s2 + s2

2
=

s√
2
.

Applying the Pythagorean theorem to our new right triangle yields the length of the
height  

s2 −
Å

s√
2

ã2
=

s√
2
.

Therefore, the volume of an octahedron of side length s is

2 · 1
3
· s√

2
· s2 =

√
2s3

3
.
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List of Symbols

Arithmetic

Z integers

Z+ positive integers

Z≥0 non-negative integers

Q rational numbers

Q+ positive rationals

Q≥0 non-negative rationals

R real numbers

R+ positive reals

R≥0 non-negative reals

C complex numbers

F field

± plus or minus

<,> strict inequality

≤,≥ non-strict inequality

Constants

ζk = e
2kπ
m

i mth root of unity

π pi

e Euler’s constant

ϕ the golden ratio

i the square root of −1

Functions

Dom(f) domain

Rng(f) range

⌊·⌋ floor function

⌈·⌉ ceiling function

sgn signum function

max maximum function

min minimum function

det determinant

IdS identity function on S

f ◦ g function composition

n! factorial

z complex conjugate

r radical conjugate

σ permutation

csc cosecant

sin sine

cos cosine

sec secant

cot cotangent

tan tangent

Geometry

⊥ perpendicular

⟨·, ·, ⟩ inner product or dot product

• dot product of vectors

× cross product of vectors

Logic

¬ negation

∨ disjunction, or
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∧ conjunction, and

⊕ exclusive or, XOR

=⇒ implication

⇐⇒ biconditional

≡ logical equivalence

Miscellaneous

∃ existential quantifier

∀ universal quantifier

(ai)i∈I sequence indexed by I∑
summation notation∏
product notation

[v] vector equivalence class

a ∼ b equivalence relation

Sets

∅ empty set

∈ element of

̸∈ not element of

[n] {1, 2, . . . , n} for n ∈ Z+

[n]∗ {0, 1, 2, . . . , n} for n ∈ Z≥0

Sc set complement

∪ set union

∩ set intersection

A\B set difference

A×B Cartesian product of sets

An A× A× · · · × A︸ ︷︷ ︸
n copies of A

P(A) power set

A⊕B set symmetric difference

⊆ subset

⊊ proper subset

⊇ superset

U universal set
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“We raise to degrees (of wisdom) whom We please: but
over all endued with knowledge is one, the All-Knowing.”

– Qur’an 12:76

acute angle, 27
acute triangle, 32
alternate angles, 29
alternate exterior angles, 29
alternate interior angles, 29
altitude, 145
altitude of a prism, 211
altitude of a pyramid, 212
ambiguous case, 98, 102
angle, 26
angle bisector, 125, 145
angle bisector theorem, 147
angle vertex, 26
anticommutative, 205
apex of a cone, 215
apex of a pyramid, 212
apex of isosceles triangle, 103
Apollonius’s theorem, 148
arc, 80
area formula for barycentric coordinates,

144
area of a parallelogram, 129
area of a right triangle, 130
area of a trapezoid, 131
area of polygon, 128
area of rectangle, 129
area of triangle, 129
associativity, 12
asymptotes, 192
automedian triangle, 148
axis of symmetry of parabola, 190

barycentric coordinates, 142
base angles of an isosceles triangle, 103
base of a pyramid, 212

base of an isosceles triangle, 103
bases of a prism, 211
bases of a trapezoid, 108
betweenness, 47
bicentric polygon, 127
bitangents, 88
bivariate quadratic, 174
bivariate quadratic identity theorem, 179
boundary of a set of points, 62
box, 211
Brahmagupta’s formula, 171
branches of a hyperbola, 191
Bretschneider’s formula, 170

canonical representative of a vector, 10
Cartesian plane, 1
Cauchy-Schwarz inequality

Euclidean, 53
center of a circle, 25
center of a sphere, 216
center of an ellipse or hyperbola, 191
center of an equilateral triangle, 163
central angle, 80
centroid, 156
centroid with vectors, 166
Ceva’s theorem, 152
cevian, 68
Cevian nest problem, 155
chord of a circle, 90
chord of a conic, 191
chord-chord angle theorem, 92
chord-chord power of a point, 115
chord-tangent angle theorem, 91
circle, 25
circular segment, 81
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circumcenter, 124, 161
circumcircle, 124
circumference of a circle, 25
circumradius, 124
circumradius formula, 170
classification of bivariate quadratics for

conics, 183
clockwise angles, 28
clockwise orientation, 67
closed disk, 61
closed path, 62
coincident planes, 199
coincident points, 1
coincident vectors, 196
collinear points, 31
commutativity, 12
complementary angles, 28
complementary regions, 128
complete angle, 28
complex concyclicity criterion, 119
complex foot, 37
complex midpoint, 49
complex parallel or coincident criterion, 35
complex perpendicular criterion, 35
complex reflection, 49
concave polygon, 68
concentric circles, 127
concurrent lines, 124
concyclic points, 124
cone, 215
congruent subsets of the plane, 176
congruent triangles, 95
conic, 173, 174
conjugate axis of a hyperbola, 192
conjugation, 39
connected set of points, 62
constant function, 9
constant term, 9
constructible conic, 173
convex polygon, 30
convex polygon criteria, 68
convex polyhedron, 209
convex quadrilateral, 107
coordinates, 1
coplanar vectors, 206

corresponding angles, 29
cosine law, 44
counterclockwise angles, 28
counterclockwise orientation, 67
criteria for a kite, 112
criteria for a parallelogram, 110
criteria for congruent triangles, 95
criteria for cyclic quadrilateral, 116
criteria for isosceles trapezoid, 117
criteria for similar triangles, 103
criterion for a rectangle, 111
criterion for a rhombus, 111
criterion for cyclic polygon, 124
criterion for tangential polygon, 126
cross product

algebraic properties, 205
derivation, 202
formula, 204
trigonometric, 205

cross section, 217
crossvar theorem, 69
cube, 211
cyclic polygon, 124
cyclic quadrilateral, 116
cyclic quadrilateral diagonals, 117
cylinder, 214

DEF-construction
ellipse, 186
hyperbola, 188
parabola, 185

DEF-construction of a conic, 173
degenerate conic, 174
degenerate triangle, 44
degree measure, 26
degree of a vertex of a polyhedron, 210
determinant, 14
diagonal of a generalized polygon, 68
diagonals of a quadrilateral, 107
diameter of a circle, 25
dilation, 39
dilation factor, 39
dimensions of a box, 211
directrix, 173
discriminant of a bivariate quadratic, 190
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displacement vector, 10
distance formula, 24
dot product

algebraic properties, 52
dot product of vectors, 51

trigonometric, 56

ear of a generalized polygon, 71
ear-clipping technique, 74
eccentricity, 173
edge of a convex polygon, 30
edge of a polyhedron, 209
edges of a polygon, 64
edges of a triangle, 44
ellipse, 173
ellipse locus, 194
equiangular polygon, 75
equidistant, 49
equilateral polygon, 75
equilateral triangle, 102
equipollence, 10
Euclid’s first theorem, 32
Euclidean isometries, 39
Euclidean norm, 50

algebraic properties, 53
Euclidean space, 10
Euclidean vector, 10
Euler line, 163
excenter, 160
explementary angles, 28
exradius, 160
exradius formula, 170
extended law of sines, 85
exterior angle, 32, 75
exterior angle sum of a triangle, 32
exterior angles, 29
exterior of a circle, 61
exterior of a Jordan curve, 63
externally tangent circles, 86

F-angle theorem, 30
face of a polyhedron, 209
focal parameter, 173
focus, 173
foot of cevian, 68

foot of the perpendicular, 36
formulas for geometric properties of conics,

193

general position of two circles, 88
generalized cevian, 68
generalized lattice polygon, 75
generalized polygon, 64
Gergonne point, 159
Gergonne’s theorem, 154
graph

equation, 3
function, 2

great circle, 217

half-plane, 30
half-space, 209
height, 145
height formula, 170
height of a box, 211
height of a cylinder, 214
height of a prism, 211
height of a pyramid, 212
height of a trapezoid, 108
height of cone, 215
Heron’s formula, 168
HL congruence, 97
homothety, 39
hyperbola, 173
hyperbola locus, 195
hypotenuse, 32
hypotenuse-leg similarity, 133

identity, 12
identity function, 9
identity matrix, 14
incenter, 126, 157
incenter with vectors, 166
incircle, 126
inradius, 126
inradius formula, 170
inscribed angle, 82
inscribed angle theorem, 83
inside of a circle, 61
intercepted arc, 82
intercepted arc of a chord, 90
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interior angle, 66
interior angle bisector, 157
interior angle of a convex polygon, 30
interior angle sum of a triangle, 31
interior angles, 29
interior of a circle, 61
interior of a Jordan curve, 63
interior of an angle, 26
interior of line segment, 3
internally tangent circles, 86
intersection planes, 199
inverse of a matrix, 15
inverses, 12
isosceles triangle, 103

Jacobi’s identity, 208
Jordan curve, 62
Jordan curve theorem, 63

kite, 111

Lagrange’s formula, 208
Lagrange’s identity, 202
lateral faces of a prism, 211
lateral faces of a pyramid, 212
lateral height of a cone, 215
lateral height of a regular pyramid, 213
lateral surface of cone, 215
lattice point, 75
latus-rectum of a conic, 191
law of cosines, 44
law of sines, 85
law of tangents, 86
legs of a right triangle, 32
legs of a trapezoid, 108
legs of an angle, 26
legs of an isosceles triangle, 103
length, 3
length of a box, 211
lies on, 65
line, 3

coincident, 18
general equation, 4
horizontal, 6
in n dimensions, 196
parallel, 18

point-point form, 5
point-slope form, 8
slope, 7
slope-intercept form, 8
standard form, 6
uniqueness of standard form, 16
vertical, 6

line segment, 3
directed, 10
endpoints, 3

linear coefficient, 9
linear combination, 12
linear dependence criteria, 12
linear eccentricity of an ellipse or hyper-

bola, 191
linear function, 9
linear independence criterion, 15
linearly dependent, 12
linearly independent, 12
LL congruence, 97
locus, 82

magnitude of a vector, 50
major arc, 81
major axis of an ellipse or hyperbola, 191
matrix multiplication, 13
measure of an arc, 81
medial triangle, 106
median, 145
median of a trapezoid, 108
midpoint, 3
minor arc, 81
minor axis of an ellipse, 191

Nagel point, 161
Napoleon’s theorem, 165
negative homothety, 39
neighbouring edges, 64
neighbouring vertices, 64
nested triangles, 105
non-degenerate triangle, 44
normal vector to a line, 59
normalization of a vector, 50
normalized orthogonal vector, 198

oblique cylinder, 214
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oblique prism, 211
oblique pyramid, 213
obtuse angle, 28
obtuse triangle, 32
open disk, 61
open line segment, 3
open set of points, 62
opposite angles, 28
opposite arcs, 80
oppositely oriented triangles, 103
orientation of a polygon, 67
orientation of similar triangles, 103
origin, 1
orthocenter, 162
orthodiagonal convex quadrilateral, 130
orthogonal, 57
orthogonal projection

plane, 198
orthogonal projection of a vector, 57
orthogonal vector to a line, 59
orthogonal vector to a plane, 198
orthonormal basis, 198
outside of a circle, 61
overlapping regions, 128

parabola, 173
parallel displacement vectors, 196
parallel or coincident lines criterion, 33
parallel planes, 199
parallel vectors, 196
parallelepiped, 206
parallelogram, 108
parallelogram law for vectors, 22
parameter, 196
partitioning regions, 128
perimeter of a convex polygon, 30
perimeter of a triangle, 157
perpendicular bisector of a line segment,

124
perpendicular distance from point to line,

36
perpendicular lines, 29
perpendicular lines criterion, 33
perpendicular planes, 199
Pick’s theorem, 75

Pitot’s theorem, 127
plane, 197, 199

standard form, 199
plane in three dimensions, 197
planes in 3D, 196
Platonic solid, 210
point of concurrency, 124
point reflection, 39
point-line distance formula, 36, 59
point-plane perpendicular distance for-

mula, 200
points in space, 10
points in the plane, 1
polygon, 64
polygon inequality, 64
position vector, 10
positive homothety, 39
power of a point converse, 121
power of a point theorem, 113
power of a point with respect to a circle,

113
preservation under isometries, 42
primitive generalized lattice polygon, 224
principal axis of a conic, 190
prism, 211
projection of a vector, 198
properties of determinants, 14
Ptolemy’s inequality, 123
Ptolemy’s theorem, 123
pyramid, 212
Pythagorean theorem, 132

vectors in three dimensions, 199
vectors in two dimensions, 58

quadrants, 2

radian measure, 26
radius of a circle, 25
radius of a cone, 215
radius of a cylinder, 214
radius of a sphere, 216
rank-nullity theorem, 184
ratio lemma, 149
Ravi substitution, 158
ray, 4
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rectangle, 109
rectangular hyperbola, 192
rectangular prism, 211
reference triangle for barycentric coordi-

nates, 142
reflection, 38
reflex angle, 28
regular dodecagon, 134
regular hexagon, 134
regular octagon, 135
regular polygon, 75
regular polyhedron, 210
regular pyramid, 213
rejection of a vector, 198
rhombus, 108
right angle, 27
right cone, 215
right cylinder, 214
right prism, 211
right triangle, 32
roots of a function, 2
rotation, 38
Rule of Sarrus, 14

same orientation of triangles, 103
same-side angles, 29
same-side exterior angles, 29
same-side interior angles, 29
scalar multiplication, 11
scalar triple product, 207
scalene triangle, 103
secant of a circle, 91
secant-secant angle theorem, 92
secant-secant power of a point, 115
secant-tangent angle theorem, 93
secant-tangent power of a point, 115
secondary line of symmetry, 191
sector of a circle, 81
semi-latus rectum of a conic, 191
semi-major axis of an ellipse or hyperbola,

191
semi-minor axis of an ellipse, 191
semiperimeter of a triangle, 157
shoelace formula for polygons, 138
shoelace formula for triangles

barycentric coordinates, 142
Cartesian coordianates, 137
complex numbers, 140

shortest distance
parallel lines, 106
parallel planes, 201

side of a convex polygon, 30
sides of a polygon, 64
sign of a generalized polygon, 136
similar generalized polygons, 78
similar triangles, 103
similarity ratio, 78
similarity ratio of triangles, 103
similarity transformations, 39
simple path, 62
sine law, 85
slant height of a regular pyramid, 213
solutions of an equation, 2
space diagonal, 212
special triangles, 133, 134
sphere, 216
spiral similarity, 79
square, 109
square law for lengths and areas, 139
square-based pyramid, 213
square-cube law, 212
SSA scenarios, 98
standard basis vectors, 53
standard equation of a plane, 199
standard form, 174
Stewart’s theorem, 147
straight angle, 28
subtended angle, 82
sum of interior angles of a generalized poly-

gon, 74
supplementary angles, 28
surface area

octahedron, 214
pyramid, 213
right cone, 216
right cylinder, 215
sphere, 216
tetrahedron, 214

surface area of a polyhedron, 210
symmedian, 150
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symmedian lemma, 150
symmetric bilinear form, 52

tangent circles, 86
tangent law, 86
tangent line segment to a circle, 125
tangent line to a circle, 86
tangent-tangent angle theorem, 93
tangential polygon, 126
Thales’s theorem, 81
tiling regions, 128
transformations, 38
translation, 38
translation in n dimensions, 197
transversal, 29
transverse axis of a hyperbola, 191
trapezoid, 108
triangle, 44
triangle area formulas, 168
triangle induced by an ear, 71
triangle inequalities, 45
triangle inequality

Euclidean, 55
triangular pyramid, 213
triangulation of a generalized polygon, 75
triangulation with no extra vertices, 75
trigonometric Ceva’s theorem, 154
two ears theorem, 73

unit circle, 25
unit vector, 50

V-angle theorem, 29
van Aubel’s theorem, 153
vector, 10

arrowhead, 10

tail, 10
vector addition, 11
vector decomposition, 20
vector space axioms, 11
vector triple product, 208
vertex angle of an isosceles triangle, 103
vertex of a convex polygon, 30
vertical angles, 28
vertices of a conic, 191
vertices of a polygon, 64
vertices of a triangle, 44
vetex of a polyhedron, 209
volume

cone, 216
cylinder, 215
octahedron, 214
pyramid, 213
sphere, 216
tetrahedron, 214

volume of a polyhedron, 210

weak cancellation rule, 52
well-defined arc, 80
width of a box, 211

x-axis, 1
x-intercept, 8

y-axis, 1
y-intercept, 8

Z-angle theorem, 30
zero angle, 27
zero set, 2
zero vector, 11
zeros of a function, 2
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