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Motivations

Applications of the spectrum of random matrices / adjacency matrices of
graphs

> wireless communication (MIMO)

» dimensionality reduction (Principal Component Analysis)

» clustering

Our main result. Information on the spectrum of a G(n,p = ¢/n) graph as
n — 400 and c is large.

Tools
» exact enumeration of exhaustive walks on trees
» analytic combinatorics

» moment method



Wigner semicircle law

Random G(n,p) graph. n vertices, each pair of distinct vertices is linked by
an edge with probability p.

[Wigner 1958] Convergence of the empirical spectral distribution of G(n,p)
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Sparse graphs

[Khorunzhy Shcherbina Vengerovsky 2004] Convergence for G(n, p= C/’I’L)
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Strange properties

Atomic part dense in R

Continuous part if and only if ¢ > 1 [Bordenave Sen Virdg 2017]

Rank (1.({0})) is known [Bordenace Lelarge 2010, Costello Tao Vu 2006]

fe known for regular graphs [McKay 1981] and trees [Bhamidi Evans Sen 2009]

We study p. as ¢ — 4o following [Bauer Golinelli 2001, Enriquez Ménard 2016]



Moment method
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[Bauer Golinelli 2001, Enriquez Ménard 2016]
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Same main asymptotics, but different error terms!



From moments to tree walks
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Contribution of closed walks with m vertices, e edges, length ¢ bounded by
/2
c nmgé(c/n)e — Ce—€/2€£nm—e—1

tends to 0 with n unless e = m — 1, i.e. unless the walk spans a tree.
Thus, odd moments tend to 0.

W, 2¢ = number of closed walks of length 2¢ spanning a tree with m vertices
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Tree walks

Tree walk of size m 2
» walk on the complete graph K,, x‘ j//(
» starting and ending at the same 4 4 }//7/
vertex
» visiting each vertex 1 18
» and spanning a tree. @

Excess of an edge visited 2k times = k — 1.
Simple edge: excess 0.

Excess of a tree walk &(W) = % — edges

Tree walks of excess 0 <ﬂ> labeled Catalan trees



Generating functions

Generating function of tree walks W(v,z) = Z W, 20 L'ZZ
£,m>0 m:

Generating function by excess We(z) = Z Zﬂzg#ze
= =+

Ordinary moment generating function (linked to the Stieltjes transform)
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Theorem 1. (conjectured by [Bauer Golinelli 2001]) Set C(z) = I=%1=2=.
There exist polynomials K¢ s(z) such that
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Proof of Theorem 1

Inspired by the enumeration of connected graphs with fixed excess
(# edges - # vertices) by [Wright 1977].

Kernel walks. Obtained by
> iteratively removing simple edges at the leaves (including the root)

» merging consecutive simple edges sharing a degree 2 vertex

Excess is conserved.
Finite number of kernel walks of a given excess.



Proof of Theorem 1

Polynomial generating function
Ke¢(u,v, 2)
simple edges/ [ \half—length

vertices

The number of vertices is fixed by the excess and the length
K§ (u, 1, Z)

Replace each simple edge with a sequence and add a sequence of simple

edges before the root
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Add a Wy(z) = C(z) tree walk at the start of the walk and after each step

Welz) = 1 —CZ(CZEZ)Q Ke (1 - le(z)2 1, ZC(Z)2>




Expressing K¢(u, v, 2)

Superreduced walks. Kernel walks with no simple edge. GF S(v, z)
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Ke(u,v,2) = [y* 1K (u,y" v, yz) is expressed from S(v,z) by Lagrange
inversion.

Catalytic variable z: number of times the walk leaves the root
(idea already found by [Bauer Golinelli 2001] on a different tree walk family)

S(x,v,2) = vexp (ctzl <D(t, 22)S(t, v, z)))
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Computations

We compute the first terms of the GF S(v, 2) of superreduced walks,
then the GF K¢(u, v, z) of kernel walks of small excess &,
then the GF W¢(z) of tree walks of excess &.
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Extending (and correcting) results from [Enriquez Ménard 2016].



Surprising combinatorial identity

Recall M,.(z) = Z ¢S We(2)
) £20
and [¢7" M, (y/Z) is a rational function in 2C(z)%.

Extending [Enriquez Ménard 2016], we compute p(x) polynomial of degree 5

such that ‘
M (o)

is a polynomial in zC(z)2 for all 0 <7 <5.
Does not work if we change a coefficient of We(z)!

Conjecture. Degree of p(z) could be extended. Divergent series.



A better rescalling
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where o is the semicircle law and the (o;) are a signed measures of mass 0
with explicit densities.

Maybe for every bounded continuous function ¢
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sample
size

fo(z)

fo(2) + 3h1(2) | fo(2) + 5/1(2) + 55./2(2)

n=40
N=2500

n=200
N=500

n=1000
N=100
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