
Tree walks and the spectrum of random graphs

Eva-Maria Hainzl, Élie de Panafieu
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Motivations

Applications of the spectrum of random matrices / adjacency matrices of
graphs

▶ wireless communication (MIMO)

▶ dimensionality reduction (Principal Component Analysis)

▶ clustering

Our main result. Information on the spectrum of a G(n, p = c/n) graph as
n→ +∞ and c is large.

Tools

▶ exact enumeration of exhaustive walks on trees

▶ analytic combinatorics

▶ moment method



Wigner semicircle law

Random G(n, p) graph. n vertices, each pair of distinct vertices is linked by
an edge with probability p.

[Wigner 1958] Convergence of the empirical spectral distribution of G(n, p)

µn,p :=
1

n

∑
λ∈Sp

(
Adj(G(n,p))√

p(1−p)n

) δλ −→
n→+∞

√
4− x2

2π
1x∈[−2,2]dx

µ200,0.3



Sparse graphs

[Khorunzhy Shcherbina Vengerovsky 2004] Convergence for G(n, p = c/n)

µn,c/n :=
1

n

∑
λ∈Sp

(
Adj(G(n,c/n))√

c

) δλ −→
n→+∞

µc

Strange properties
Atomic part dense in R
Continuous part if and only if c > 1 [Bordenave Sen Virág 2017]

Rank (µc({0})) is known [Bordenace Lelarge 2010, Costello Tao Vu 2006]

µc known for regular graphs [McKay 1981] and trees [Bhamidi Evans Sen 2009]

We study µc as c→ +∞ following [Bauer Golinelli 2001, Enriquez Ménard 2016]



Moment method

[Wigner 1958] m2ℓ(µn,p) =
1

n

∑
λ∈Sp

(
Adj(G(n,p))√

p(1−p)n

)λ2ℓ =
n→+∞

Catℓ + O(n−1)

[Bauer Golinelli 2001, Enriquez Ménard 2016]

m2ℓ(µn,c/n) =
1

n

∑
λ∈Sp

(
Adj(G(n,c/n))√

c

)λ2ℓ =
n→+∞

Catℓ + O(c−1)

Same main asymptotics, but different error terms!



From moments to tree walks

mℓ(µn,c/n) = E

(
1

n

∑
λ∈Sp

(
A√
c

)λℓ

)
=

c−ℓ/2

n
E(Tr(Aℓ)) =

c−ℓ/2

n

∑
(v1,...,vℓ)∈[n]ℓ

e distinct edges

(c/n)e

Contribution of closed walks with m vertices, e edges, length ℓ bounded by

c−ℓ/2

n
nmℓℓ(c/n)e = ce−ℓ/2ℓℓnm−e−1

tends to 0 with n unless e = m− 1, i.e. unless the walk spans a tree.
Thus, odd moments tend to 0.

wm,2ℓ = number of closed walks of length 2ℓ spanning a tree with m vertices

m2ℓ(µc) =

ℓ+1∑
m=1

cm−ℓ−1wm,2ℓ

m!



Tree walks

Tree walk of size m

▶ walk on the complete graph Km

▶ starting and ending at the same
vertex

▶ visiting each vertex

▶ and spanning a tree. 3
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Excess of an edge visited 2k times = k − 1.

Simple edge: excess 0.

Excess of a tree walk ξ(W ) = length
2
− edges

Tree walks of excess 0
bij←→ labeled Catalan trees



Generating functions

Generating function of tree walks W (v, z) =
∑

ℓ,m≥0

wm,2ℓ
vm

m!
zℓ

Generating function by excess Wξ(z) =
∑
ℓ≥0

wℓ−ξ+1,2ℓ

(ℓ− ξ + 1)!
zℓ

Ordinary moment generating function (linked to the Stieltjes transform)

Mµc(z) =
∑
ℓ≥0

m2ℓ(µc)z
2ℓ =

1

c
W

(
c,

z2

c

)
=
∑
ξ≥0

c−ξWξ(z
2)

Theorem 1. (conjectured by [Bauer Golinelli 2001]) Set C(z) = 1−
√
1−4z

2z
.

There exist polynomials Kξ,s(x) such that

Wξ(z) = C(z)

2ξ−2∑
s=0

Kξ,s(zC(z)2)

(1− zC(z)2)s+1
.



Proof of Theorem 1

Inspired by the enumeration of connected graphs with fixed excess
(# edges - # vertices) by [Wright 1977].

Kernel walks. Obtained by

▶ iteratively removing simple edges at the leaves (including the root)

▶ merging consecutive simple edges sharing a degree 2 vertex

Excess is conserved.
Finite number of kernel walks of a given excess.



Proof of Theorem 1

Polynomial generating function

The number of vertices is fixed by the excess and the length

Kξ(u, 1, z)

Replace each simple edge with a sequence and add a sequence of simple
edges before the root

1

1− z
Kξ

(
1

1− z
, 1, z

)
Add a W0(z) = C(z) tree walk at the start of the walk and after each step

Wξ(z) =
C(z)

1− zC(z)2
Kξ

(
1

1− zC(z)2
, 1, zC(z)2

)



Expressing Kξ(u, v, z)

Superreduced walks. Kernel walks with no simple edge. GF S(v, z)

K(u, v, z) =
1

1− uz(K(u, v, z)− v)
S

(
v,

z

(1− uz(K(u, v, z)− v))2

)
− uvz(K(u, v, z)− v)

Kξ(u, v, z) = [yξ−1]K(u, y−1v, yz) is expressed from S(v, z) by Lagrange
inversion.

Catalytic variable x: number of times the walk leaves the root
(idea already found by [Bauer Golinelli 2001] on a different tree walk family)

S(x, v, z) = v exp

(
Lt=1

(
D(t, xz)S(t, v, z)

))

where D(t, x) =
∑

k≥1
xk+1

(k+1)!
tk

k!
.



Computations

We compute the first terms of the GF S(v, z) of superreduced walks,
then the GF Kξ(u, v, z) of kernel walks of small excess ξ,
then the GF Wξ(z) of tree walks of excess ξ.

W1(z) =
z2C (z)5

1− zC (z)2

W2(z) = C (z)

(
z3C (z)6 + 4z4C (z)8 − 6z5C (z)10 + 2z6C (z)12(

1− zC (z)2
)3

)

W3(z) = z4C (z)9
(
1 + 16zC (z)2 + 11z6C (z)12 + 95z4C (z)8(

1− zC (z)2
)5

)

− z4C (z)9
(
54z5C (z)10 + 62z3C (z)6 + 5z2C (z)4(

1− zC (z)2
)5

)
,

...

Extending (and correcting) results from [Enriquez Ménard 2016].



Surprising combinatorial identity

Recall Mµc(z) =
∑
ξ≥0

c−ξWξ(z
2)

and [c−i]Mµc(
√
z) is a rational function in zC(z)2.

Extending [Enriquez Ménard 2016], we compute p(x) polynomial of degree 5
such that

[c−i]Mµc

(√
z

p(1/c)

)
is a polynomial in zC(z)2 for all 0 ≤ i ≤ 5.

Does not work if we change a coefficient of Wξ(z)!

Conjecture. Degree of p(x) could be extended. Divergent series.



A better rescalling

Set µ̃c := lim
n→+∞

1

n

∑
λ∈Sp

(
Adj(G(n,c/n))√

cp(1/c)

) δλ, then for all ℓ

mℓ(µ̃c) = mℓ(σ + c−1σ1 + · · ·+ c−5σ5) +O(c−6)

where σ is the semicircle law and the (σj) are a signed measures of mass 0
with explicit densities.

Maybe for every bounded continuous function φ
ˆ

φdµ̃c =

ˆ
φd(σ + c−1σ1 + · · ·+ c−5σ5) +O(c−6)



f1(z) =
1

2π

(
1− z2

)√
4− z2 1(−2,2)(z),

f2(z) =
1

2π

(
1− 6z2 + 5z4 − z6

)√
4− z2 1(−2,2)(z),

f3(z) =
1

2π

(
9− 140z2 + 358z4 − 299z6 + 98z8 − 11z10

)√
4− z2 1(−2,2)(z),

f4(z) =
1

2π

(
56 + 1602z2 − 8625z4 + 16004z6

− 13447z8 + 5624z10 − 1143z12 + 90z14
)√

4− z2 1(−2,2)(z),

f5(z) =
1

2π

(
442− 17946z2 + 171911z4 − 574676z6 + 904447z8

− 768354z10 + 373181z12 − 103622z14 + 15298z16 − 931z18
)√

4− z2 1(−2,2)(z).



sample
f0(z) f0(z) +

1
5
f1(z) f0(z) +

1
5
f1(z) +

1
25
f2(z)size

n=40
N=2500

n=200
N=500

n=1000
N=100

Table: Histograms (100 bins) of eigenvalues of N random adjacency matrices of
G(n, 5/n) compared to the densities f0(z), f1(z) and f2(z).



Thank you!


