
Statistics of parking functions and labeled forests

Mei Yin1

Department of Mathematics, University of Denver

June 21, 2024

1Joint work with Stephan Wagner. Presentation supported by NSF-AWM.

Parking functions: An introduction

Parking functions were introduced by Konheim and Weiss (1966)
under the name of “parking disciplines,” in their study of the hash
storage structure, and have since found many applications in
combinatorics, probability, algebra, and computer science.

Consider a parking lot with n parking spots placed sequentially
along a one-way street. A line of m ≤ n cars enters the lot, one by
one. The ith car drives to its preferred spot πi and parks there if
possible; if the spot is already occupied then the car parks in the
first available spot after that. The list of preferences
π = (π1, . . . , πm) is called a parking function if all cars successfully
park. (This generalizes the term classical parking function where
m = n.)

ENUMERATION OFPARKING FUNCTIONS
...

...

n 2 1
ππ1 π2 n

Car Ci prefers space ai. If ai is oc-cupied, then Ci takes the next availablespace. We call (a1; : : : ; an) a parkingfunction (of length n) if all cars canpark.
n = 2 : 11 12 21n = 3 : 111 112 121 211 113 131 311 122212 221 123 132 213 231 312 321

2

n = 1: 1

n = 2: 11, 12, 21

n = 3: 111, 112, 121, 211, 113, 131, 311, 122,
212, 221, 123, 132, 213, 231, 312, 321

We denote by PF(m, n) the set of parking functions π with m cars
and n parking spots, and by F(m, n) the set of rooted forests F
with n + 1 vertices and m edges (equivalently, n −m + 1 distinct
tree components) such that a specified set of n −m + 1 vertices
are the roots of the different trees. We label the roots of F by
{01, 02, . . . , 0(n −m + 1)} and the non-root vertices by
{1, 2, . . . ,m}. We further denote by T (n) the set of rooted trees
T on the vertex set {0, 1, . . . , n} with root 0.

Note that |PF(n, n)| = |T (n)| and more generally
|PF(m, n)| = |F(m, n)|.

Many bijections between the two combinatorial objects exist; we
will explore one later!

Pigeonhole principle

It is well-known and easy to see that π is a parking function if and
only if

#{k : πk ≤ i} ≥ m − n + i , for i = n −m + 1, . . . , n.

Equivalently, if λ1 ≤ · · · ≤ λm is the (weakly) increasing
rearrangement of π1, . . . , πm, then π is a parking function if and
only if λi ≤ n −m + i for 1 ≤ i ≤ m.

Two immediate observations:

• Parking functions are invariant under the action of the
symmetric group Sm permuting the m cars, that is,
permuting the list of preferences π.

• When some πi takes values in the set {1, 2, . . . , n −m + 1},
changing πi to any other value in the set {1, 2, . . . , n−m+1}
has no effect on π being a parking function.

One less immediate observation:

• Every parking function π in PF(m, n) can be uniquely
decomposed into an arbitrary function πa : A→ [n −m + 1]
on a set A ⊆ [m] of cardinality s and a function that is
equivalent to a parking function πp in PF(m − s,m − 1).

Circular symmetry

Pollak’s ingenious circle argument: Assign m ≤ n cars on a circle
with n + 1 spots. Those car assignments where spot n + 1 is left
empty after circular rotation give valid parking functions.

Theorem (Pyke, 1959; Konheim andWeiss, 1966). Let f (n) be the num-ber of parking functions of length n.Then f (n) = (n + 1)n�1.Proof (Pollak, c. 1974). Add an ad-ditional space n + 1, and arrange thespaces in a circle. Allow n+ 1 also as apreferred space.
ππ1

π2

...
n

1

n2

3

n+1

4

Significance of our approach

Unlike Pollak’s original argument where the parking statistics are
studied after all cars have parked, we investigate the individual
parking statistics for each car the moment it is parked on the
circle. This “seemingly small step ahead” provides a lot more
useful information about the parking scenario.

Main Theorem (parking functions)

∑
π∈PF(m,n)

xslev(π)y lel(π)

= (n −m + 1)xy
[
(m − 1)((n −m + 1)x + y +m − 1)m−2

+(xy + (n −m)x + 1)(xy + (n −m)x +m)m−2
]
.

• slev(π) (size of level set): total number of cars whose desired
spot is in the range {1, 2, . . . , n −m + 1}. (new statistic!)

• ones(π) (1’s): total number of cars whose desired spot is spot
1. (when m = n, slev(π) = ones(π).)

• lel(π) (leading elements): total number of cars whose desired
spot is the same as that of the first car. (new statistic!)

An equivalent formulation of Main Theorem
(parking functions)

Let s, t ≥ 1. We have

#{π ∈ PF(m, n) : slev(π) = s and lel(π) = t}

=

(
m − 2

s − 1, t − 1,m − s − t

)
(n −m + 1)s(m − 1)m−s−t+1

+

(
m − 1

t − 1, s − t,m − s

)
s(n −m + 1)(n −m)s−tmm−s−1.

Some immediate corollaries

Using standard probability tools, some asymptotic analysis of the
above parking statistics readily follows, approximated by normal or
Poisson distributions.

Take m = cn for some 0 < c < 1 as n→∞. Consider the parking
preference π ∈ PF(m, n) chosen uniformly at random. Then we
have

lel(π)− 1
d→ Poisson(c).

slev(π)− c(1− c)n√
c2(1− c)n

d→ N (0, 1).

Some immediate corollaries

Using standard probability tools, some asymptotic analysis of the
above parking statistics readily follows, approximated by normal or
Poisson distributions.

Take m = cn for some 0 < c < 1 as n→∞. Consider the parking
preference π ∈ PF(m, n) chosen uniformly at random. Then we
have

lel(π)− 1
d→ Poisson(c).

slev(π)− c(1− c)n√
c2(1− c)n

d→ N (0, 1).

Outline of proof

We set slev(π) = s and classify into two situations:
π1 ∈ {1, 2, . . . , n −m + 1} and π1 /∈ {1, 2, . . . , n −m + 1}. By
Pollak’s argument,

#{π ∈ PF(m, n) : π1 = 1} = (n −m + 2)(n + 1)m−2,

which implies that

#{π ∈ PF(m, n) : π1 ∈ {1, 2, . . . , n −m + 1}}
= (n −m + 1)(n −m + 2)(n + 1)m−2.

Generating function when π1 ∈ {1, 2, . . . , n −m + 1}:

m∑
s=1

(
m − 1

s − 1

)
y(n −m + 1)(n −m + y)s−1smm−s−1x s .

• x s : slev(π) = s.

• ∑m
s=1: s can be any value from 1 (only the first car is in the

level set) to m (all m cars are in the level set).

•
(m−1
s−1

)
: besides the first car, we choose s − 1 cars out of the

remaining m − 1 cars to constitute the level set.

• y(n −m + 1)(n −m + y)s−1: n −m + 1 choices for the spot
of any car in the level set. Each of the s − 1 later cars
independently has the same probability 1

n−m+1 of being
mapped to the same element as car 1, which combined

contributes (n −m + 1)sy
(

n−m
n−m+1 + y

n−m+1

)s−1
to lel(π).

• smm−s−1: cars that are not in the level set constitute a
parking function in PF(m − s,m − 1).

Applying identities from the binomial distribution:

m∑
s=1

(
m − 1

s − 1

)
y(n −m + 1)(n −m + y)s−1smm−s−1x s

=(n −m + 1)xy
m∑
s=1

(
m − 1

s − 1

)
s(xy + (n −m)x)s−1mm−s−1

=(n −m + 1)xy(xy + (n −m)x +m)m−2(xy + (n −m)x + 1).

Generating function when π1 /∈ {1, 2, . . . , n −m + 1}:

m−1∑
s=0

(
m − 1

s

)
(n −m + 1)sys(m − 1 + y)m−s−1x s

• x s : slev(π) = s.

• ∑m−1
s=0 : s can be any value from 0 (no car is in the level set)

to m − 1 (all remaining m − 1 cars are in the level set).

•
(m−1

s

)
: we choose s cars out of the remaining m − 1 cars to

constitute the level set.

• (n−m+ 1)s : n−m+ 1 choices for the spot of any car in the
level set.

• ys(m − 1 + y)m−s−1: cars that are not in the level set
constitute a parking function in PF(m − s,m − 1). Each of
the m− s− 1 later cars independently has the same probability
1
m of being mapped to the same element as car 1, which

combined contributes smm−s−1y
(
m−1
m + y

m

)m−s−1
to lel(π).

Applying identities from the binomial distribution:

m−1∑
s=0

(
m − 1

s

)
(n −m + 1)sys(m − 1 + y)m−s−1x s

=(n −m + 1)xy
m−1∑
s=0

(
m − 1

s

)
s((n −m + 1)x)s−1(m − 1 + y)m−s−1

=(n −m + 1)xy(m − 1)((n −m + 1)x + y +m − 1)m−2.

The mysterious pair (ones(π), lel(π))

For classical parking functions, the level set statistic slev(π)
reduces to the 1’s statistic ones(π), and is equidistributed with the
leading elements statistic lel(π). This feature of parking functions
is quite mysterious as these two parking function statistics seem
unrelated and are not of the same nature.

While the leading elements statistic is invariant under circular
rotation, it does not satisfy permutation symmetry as permuting
the entries might change the first element. On the other hand,
though the 1’s statistic is invariant under permuting all the entries,
it does not exhibit circular rotation invariance. Indeed, only 1 out
of n+ 1 rotations of an assignment of n cars on a circle with n+ 1
spots gives a valid parking function. It is thus intriguing what is
hidden behind the pair of statistics (ones(π), lel(π)).

The less mysterious pair (degT (0), degT (p))

Under the bijective correspondence induced by breadth first search
(BFS), the seemingly unrelated leading elements statistic and 1’s
statistic for classical parking functions both become degree
statistics for certain vertices in the tree: one records the degree of
a movable root (parent of a fixed vertex), while the other records
the degree of the fixed root.

(ones(π), lel(π))↔ (degT (0), degT (p)), where degT (0) is the
degree of the root vertex 0 and degT (p) is the degree of the parent
of vertex 1 in the tree T .

The BFS construction between parking functions and rooted trees
goes back to Foata and Riordan (1974). See Yan (2015) and also
Chassaing and Marckert (2001). There are many more interesting
statistics of rooted trees: descents in Eğecioğlu and Remmel
(1986), inversions in De Oliveira and Vergnas (2010), and runs in
Lackner and Panholzer (2020).

Main Theorem (BFS)

The breadth first search algorithm connecting parking functions
and rooted forests has some interesting implications:

• The number of times πi appears in a parking function
π ∈ PF(m, n) equals the degree of the parent of vertex i in
the corresponding forest F ∈ F(m, n).

• The number of times 1, 2, . . . , n −m + 1 appears in a parking
function π ∈ PF(m, n) respectively equals the degree of the
root vertex 01, 02, . . . , 0(n −m + 1) in the corresponding
forest F ∈ F(m, n).

Outline of proof

A forest F ∈ F(m, n) may be represented by an acyclic function f ,
where for a non-root vertex i , fi = j indicates that vertex j is the
parent of vertex i in a tree component of the forest.

01

1 4

3 9

02 03

6

04

2

5

7

8

i = 1 2 3 4 5 6 7 8 9
fi = 01 04 4 01 2 03 5 2 4

.

We read the vertices of the forest in breadth first search (BFS)
order. That is, read root vertices in order first, then all vertices at
level 1 (children of a root), then those at level 2 (distance 2 from a
root), and so on, where vertices at a given level are naturally
ordered in order of increasing predecessor, and, if they have the
same predecessor, increasing order. Applying BFS to the forest F ,
we have

v01, . . . , v04, v5, . . . , v13 = 01, 02, 03, 04, 1, 4, 6, 2, 3, 9, 5, 8, 7.

01

1 4

3 9

02 03

6

04

2

5

7

8

We let σ−1
f be the vertex ordering once we remove the root

vertices and σf be the inverse order permutation of σ−1
f .

i = 1 2 3 4 5 6 7 8 9

σ−1
f (i) = 1 4 6 2 3 9 5 8 7
σf (i) = 1 4 5 2 7 3 9 8 6

.

We further let t(f) = (r1, . . . , r12) with ri recording the degree of
vi , starting with v01 and ending with v12 (ignoring the final vertex
v13), that is,

t(f) = (2, 0, 1, 1, 0, 2, 0, 2, 0, 0, 1, 0).

The sequence t(f) is referred to as the forest specification of F .

For a parking function π ∈ PF(m, n), the associated specification
is s(π) = (r1, . . . , rn), where rk = #{i : πi = k} records the
number of cars whose parking preference is spot k . The order
permutation τπ ∈ Sm, on the other hand, is defined by
τπ(i) = #{j : πj < πi , or πj = πi and j ≤ i}, and so is the
permutation that orders the list, without switching elements that
are the same. In words, τπ(i) is the position of the entry πi in the
non-decreasing rearrangement of π.

Example: for π = (3, 1, 3, 1), τπ(1) = 3, τπ(2) = 1, τπ(3) = 4, and
τπ(4) = 2.

We can easily recover a parking function π by replacing i in τπ
with the ith smallest term in the sequence 1r1 . . . nrn .

For a parking function π ∈ PF(m, n), the associated specification
is s(π) = (r1, . . . , rn), where rk = #{i : πi = k} records the
number of cars whose parking preference is spot k . The order
permutation τπ ∈ Sm, on the other hand, is defined by
τπ(i) = #{j : πj < πi , or πj = πi and j ≤ i}, and so is the
permutation that orders the list, without switching elements that
are the same. In words, τπ(i) is the position of the entry πi in the
non-decreasing rearrangement of π.

Example: for π = (3, 1, 3, 1), τπ(1) = 3, τπ(2) = 1, τπ(3) = 4, and
τπ(4) = 2.

We can easily recover a parking function π by replacing i in τπ
with the ith smallest term in the sequence 1r1 . . . nrn .

The breadth first search algorithm bijectively connects parking
functions and rooted forests, where (t(f), σf) = (s(π), τπ).
Continuing with our earlier example, we have

s(π) = (2, 0, 1, 1, 0, 2, 0, 2, 0, 0, 1, 0),

and
i = 1 2 3 4 5 6 7 8 9

τ−1
π (i) = 1 4 6 2 3 9 5 8 7
τπ(i) = 1 4 5 2 7 3 9 8 6

.

We form the non-decreasing rearrangement sequence associated
with s(π):

12, 31, 41, 62, 82, 111 = 1, 1, 3, 4, 6, 6, 8, 8, 11.

Replacing i in τπ with the ith smallest term in this sequence yields
the corresponding parking function π ∈ PF(9, 12) given below:

i = 1 2 3 4 5 6 7 8 9
πi = 1 4 6 1 8 3 11 8 6

.

The bijective formulas

From a forest F to a parking function π, we have

πi =

{
j fi = 0j for some j = 1, 2, . . . , n −m + 1,
(n −m + 1) + σf (fi) otherwise.

Conversely, from a parking function π to a forest F , we have

fi =

{
0j πi = j for some j = 1, 2, . . . , n −m + 1,
τ−1
π (πi − (n −m + 1)) otherwise.

Main Theorem (rooted forests)

∑
F∈F(m,n)

xdegF (0)ydegF (p)

= (n −m + 1)xy
[
(m − 1)((n −m + 1)x + y +m − 1)m−2

+(xy + (n −m)x + 1)(xy + (n −m)x +m)m−2
]
.

• degF (0): total degree of all root vertices 01, . . . , 0(n−m+1).

• degF (p): degree of the parent of vertex 1. (new statistic!)

By degree, we generally mean more precisely the number of
children of a vertex in a rooted tree, which is 1 less than the
degree in the graph-theoretical sense for non-root vertices.

An equivalent formulation of Main Theorem
(rooted forests)

Let s, t ≥ 1. We have

#{F ∈ F(m, n) : degF (0) = s and degF (p) = t}

=

(
m − 2

s − 1, t − 1,m − s − t

)
(n −m + 1)s(m − 1)m−s−t+1

+

(
m − 1

t − 1, s − t,m − s

)
s(n −m + 1)(n −m)s−tmm−s−1.

Some immediate corollaries

Using standard probability tools, some asymptotic analysis of the
above forest statistics readily follows, approximated by normal or
Poisson distributions.

Take m = cn for some 0 < c < 1 as n→∞. Consider the labeled
forest F ∈ F(m, n) chosen uniformly at random. Then we have

degF (p)− 1
d→ Poisson(c).

degF (0)− c(1− c)n√
c2(1− c)n

d→ N (0, 1).

Some immediate corollaries

Using standard probability tools, some asymptotic analysis of the
above forest statistics readily follows, approximated by normal or
Poisson distributions.

Take m = cn for some 0 < c < 1 as n→∞. Consider the labeled
forest F ∈ F(m, n) chosen uniformly at random. Then we have

degF (p)− 1
d→ Poisson(c).

degF (0)− c(1− c)n√
c2(1− c)n

d→ N (0, 1).

Outline of proof

We use the well-known result that the number of rooted forests
with vertex set [a] and b components whose root labels are given is
baa−b−1 (Cayley’s formula). Thus the number of such rooted
forests with one distinguished vertex (possibly one of the roots) is
baa−b, and by symmetry the number of such rooted forests where
a vertex in the first component is distinguished must be aa−b.

Key ingredient is a vertex splitting argument. Vertex p (parent of
vertex 1) and vertex 1 are first merged together to form a
distinguished vertex. This vertex later splits, and all former
children of p become children of 1.

There are(
m − 2

s − 1, t − 1,m − s − t

)
(n −m + 1)s(m − 1)m−s−t+1

possible forests where parent p of vertex 1 is not one of the roots.
• Choose a label r ∈ [m] \ {1} (m − 1 possibilities).
• Choose two disjoint sets of labels {x1, x2, . . . , xs−1} and
{y1, y2, . . . , yt−1} from [m] \ {1, r} (

(m−2
s−1,t−1,m−s−t

)
possibilities).
• Choose a rooted forest on [m] \ {1} with root labels
r , x1, x2, . . . , xs−1, y1, y2, . . . , yt−1 and a distinguished vertex p
in the first component ((m − 1)m−s−t possibilities).
• Split the distinguished vertex p into two vertices, labeled p

and 1 respectively, where p is the parent and 1 is the child,
and all former children of p now become children of 1.
• Add roots 01, 02, . . . , 0(n −m + 1), and connect each of the

vertices r , x1, x2, . . . , xs−1 with one of these roots by an edge
((n −m + 1)s possibilities).
• Add edges between vertex p and y1, y2, . . . , yt−1.

There are(
m − 1

t − 1, s − t,m − s

)
s(n −m + 1)(n −m)s−tmm−s−1

possible forests where parent p of vertex 1 is one of the roots.

• Select a set of labels {x1, x2, . . . , xs−1} from [m] \ {1} (
(m−1
s−1

)
possibilities).

• Construct a rooted forest with vertex set [m] and root labels
1, x1, x2, . . . , xs−1 (smm−s−1 possibilities).

• Among the labels x1, x2, . . . , xs−1, choose the siblings of
vertex 1 (

(s−1
t−1

)
possibilities).

• Pick one of the n−m+1 roots 01, 02, . . . , 0(n−m+1) as the
parent p of vertex 1, and connect it and all the siblings chosen
in the previous step to it by an edge (n −m + 1 possibilities).

• Pick one of the other n −m roots as parent for each of the
remaining vertices with label in the set {x1, x2, . . . , xs−1}
((n −m)s−t possibilities).

5 3 13 9

12 7 8 2 6 11

4 10

r x1 x2 y1

p

Illustration of the procedure: the rooted forest with the
distinguished vertex p indicated by a thick node, and the final tree

(next page).

0

5 3 13

9

12 7 8 2 6

11

1 10

4

An explicit bijection
degT (0)↔ degT (p) and ones(π)↔ lel(π)

To construct an explicit bijection in the tree T , we proceed in
steps.

• Remove the edge connecting vertices 1 and p.

• Connect vertices 0 and 1 by an edge.

• Interchange vertices 0 and p.

This map has the extra benefit of being an involution. Moreover,
the degrees of all vertices except 0 and p are preserved.

0

p

1

←→

p

0

1

0

4

5

3 8

1

6 7

2

9

←→

0

5

3 4

8

1 6 7

2

9

Some nice features are hence introduced in the corresponding
parking function bijection under BFS, where

π = (8, 4, 5, 1, 2, 1, 1, 5, 6)↔ π′ = (5, 8, 2, 2, 1, 5, 5, 4, 9).

We see that ones(π) and lel(π) are switched, but the frequencies
of the non-1 and non-leading elements are preserved up to
permutation.

There are other cool results that I’d love to share with you,
but let’s stop here for now!

Thank You! Questions?

