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Fringe subtrees

A fringe subtree of a rooted tree is a subtree that consists of a vertex and
all its descendants.

v1

v2 v3
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v14 v15
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Identical and distinct fringe subtrees

v1

v2 v3

v4 v5 v6 v7

v8 v9 v10 v11 v12 v13

v14 v15

The fringe subtrees rooted at v2 and v6 are identical as unlabelled plane
trees.

There are five distinct equivalence classes of fringe subtrees:

v1 v3 v2, v6 v4, v7, v10 v5, v8, v9, v11, v12, v13, v14, v15
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Tree compression
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Tree compression

Tree compression plays a role in (among other things)

XML compression and querying,

symbolic model checking,

compiler construction.

The number of distinct fringe subtrees is a measure for how much a tree is
compressed by constructing the minimal DAG.
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Prior results: simply generated trees

Theorem (Flajolet/Sipala/Steyaert 1990; Seelbach Benkner/W 2022)

Let Xn be the number of distinct fringe subtrees in a random tree with n
vertices from a simply generated family (with some technical conditions).
Then we have

E(Xn) ∼
Cn√
log n

for some constant C . Moreover,

Xn

n/
√
log n

p→ C .

For example, in the special case of uniformly random binary trees with n
leaves (n − 1 internal vertices), we have E(Xn) ∼ 2n√

π log4 n
.

Stephan Wagner Distinct fringe subtrees 18 June 2024 6 / 18



Prior results: simply generated trees

Theorem (Flajolet/Sipala/Steyaert 1990; Seelbach Benkner/W 2022)

Let Xn be the number of distinct fringe subtrees in a random tree with n
vertices from a simply generated family (with some technical conditions).
Then we have

E(Xn) ∼
Cn√
log n

for some constant C . Moreover,

Xn

n/
√
log n

p→ C .

For example, in the special case of uniformly random binary trees with n
leaves (n − 1 internal vertices), we have E(Xn) ∼ 2n√

π log4 n
.

Stephan Wagner Distinct fringe subtrees 18 June 2024 6 / 18



Binary search trees

In a binary search tree, the labels of the internal vertices are such that

all numbers less than the root label are in the left branch,

while all numbers greater than the root label are in the right branch.

We will be interested in random binary search trees built from a random
permutation of {1, 2, . . . , n}.

It is well known that this random tree model is also essentially equivalent
to that of binary increasing trees, where vertex labels are increasing from
the root to the leaves.
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Binary search trees

5

2 8

41 7 9

3 6

Binary search tree resulting from the permutation (5, 2, 8, 4, 1, 7, 9, 3, 6).
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Prior results: binary search trees

F/G/M 1997:
4 log 2 ≈ 2.77259

D 1998:
log 3
2 ≈ 0.54931

SB/L 2018:
0.60178

SB/W 2022:
2.40713

?

Let Fn be the number of distinct fringe subtrees in a random binary search
tree with n internal vertices.

Flajolet/Gourdon/Mart́ınez 1997: E(Fn) ≤ (4 log 2)n
log n (1 + o(1))

Devroye 1998: E(Fn) ≥ (log 3)n
2 log n (1 + o(1))

Seelbach Benkner/Lohrey 2018: E(Fn) ≥ 0.60178 n
log n (1 + o(1))

Seelbach Benkner/W 2022: E(Fn) ≥ 2.40713 n
log n (1 + o(1))
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Main theorem

Theorem

Let Fn be the number of distinct fringe subtrees in a random binary search
tree with n internal vertices, and let c1 be the constant
4
∑

k≥1
log k

(k+1)(k+2) ≈ 2.40713. We have

E(Fn) ∼
c1n

log n

as n → ∞. Moreover, we also have convergence in probability:

Fn
n/ log n

p→ c1.
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Binary search tree distribution

1
6

1
6

1
6

1
6

1
3

The probability that a random binary search tree has a specific shape T
can be expressed as

p(T ) =
∏
v

1

Nv
,

where the product is over all internal vertices and Nv is the number of
internal vertices in the fringe subtree rooted at v .
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Shape functional

The negative logarithm of p(T ), which can be expressed as

− log p(T ) =
∑
v

logNv ,

is called the shape functional of T .

Theorem (Fill 1996)

Let the random variable Ln be defined by Ln = − log p(Tn), where Tn is a
random binary search tree of size n (n external vertices). We have

E(Ln) = µn + O(log n),

where µ =
∑∞

k=1
2 log k

(k+1)(k+2) . Moreover, V(Ln) = σ2n + O(1) for a

constant σ2 > 0, and the centred and normalised random variable Ln−µn
σ
√
n

converges in distribution to a standard normal distribution.
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Fringe subtrees of binary search trees

Facts about fringe subtrees of random binary search trees:

The expected number of fringe subtrees of size k in a random binary
search tree of size n is 2n

k(k+1) for all k < n.

Conditioned on its size, every fringe subtree is again a random binary
search tree.

So if pk =
∑

B∈Sk
p(B) is the probability that a random binary

search tree has a shape that belongs to some subset Sk of the set Bk

of all binary trees of size k , then the expected number of fringe
subtrees whose shape belongs to Sk is 2pkn

k(k+1) .

Moreover, the number in the previous statement is concentrated
around its mean.
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Proof sketch: lower bound

Focus on “large” trees whose size at least k0 :=
1
µ(log n + (log n)3/4),

where µ =
∑∞

k=1
2 log k

(k+1)(k+2) .

For k ≥ k0, choose Sk to be the subset of Bk consisting of those
trees B for which p(B) ≤ exp(−µk + k2/3), or equivalently
− log p(B) ≥ µk − k2/3.

Observe that binary search trees of size k belong to Sk with high
probability: pk = 1− O(k−1/3).

Show that most trees belonging to Sk for some k ≥ k0 only occur at
most once as a fringe subtree with high probability.

So the number of fringe subtrees whose size is at least k0 provides an
asymptotic lower bound:

Fn ≳
∑
k≥k0

2n

k(k + 1)
∼ 2n

k0
∼ 2µn

log n
.
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Proof sketch: upper bound

Split into “small”, “medium” and “large” fringe subtrees:

Small: k ≤ k1 :=
1
2 log4 n;

Medium: k1 < k ≤ k2 :=
1
µ (log n − (log n)3/4), with µ as before.

Large: k2 < k .

Bound the contribution of small fringe subtrees by the total number
of possible binary trees of size ≤ k1.

Show that medium-sized fringe subtrees can be divided further into
two parts:

a majority of trees with “large” shape functional—their probability to
occur is too low for them to contribute asymptotically;
and a minority of trees with “small” shape functional—there are not
enough of those to contribute asymptotically.

Bound the contribution of large fringe subtrees by their total number
(ignoring whether they are distinct or not).
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Entropy

The expected value of the shape functional can also be thought of as the
entropy of the shape of a random binary search tree Tn:

E(Ln) = E(− log p(Tn)) = −
∑
B∈Bn

p(B) log p(B).

So the growth constant for the number of distinct fringe subtrees is
directly connected to the growth constant for this entropy.
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Generalisations

The method is fairly general and also works for other types of random
trees and notions of distinctness, provided that we have two ingredients
available:

information on the distribution of the number of fringe subtrees of a
given size,

information on the distribution of a suitable analogue of the shape
functional.

Stephan Wagner Distinct fringe subtrees 18 June 2024 17 / 18



Thank you!
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