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k-Regular Trees

T = (V ,E ):

• planted

• ordered

• unlabelled

• k-regular, k ≥ 2.

Leaves labelled as encountered in
DFS.

Interior nodes and edges labelled
by leaf descendants.

Edge length function
ℓ : E −→ R+ .
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Figure: 2-regular tree example.



Phylogenetic Covariance Matrices
(a.k.a. Cophenetic Matrices)

Phylogenetic covariance is a
function of shared path length:

C (i , v) = ℓ(e1);

C (i , j) = ℓ(e2) + ℓ(e1);

C (i , i) = ℓ(e3) + ℓ(e2) + ℓ(e1).

Phylogenetic covariance matrix:

C =
(
C (i , j)

)
i,j∈L

.
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Figure: 3-regular tree with interior
nodes colored cyan.



Phylogenetic Covariance
[Harmon (2019)]

If traits evolve as a Brownian Motion (BM) along each edge, i.e.:
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Figure: BM representation of phy-
logenetic covariance matrices.

Xv := trait value at a leaf v

U,V := Gaussian variables

then U, V , and B(∆t1 + ∆t2) are
independent, hence

Xi = B(∆t1 +∆t2) + U

Xj = B(∆t1 +∆t2) + V

⇓
Cov(Xi ,Xj) = Var

(
B(∆t1 +∆t2)

)
= (∆t1 +∆t2) · σ2

= ℓ(e1) + ℓ(e2).



Phylogenetic covariance matrices are typically dense

Figure: (Left) Circular layout of reference binary phylogenetic tree
with ≈100,000 leaves. (Right) Heatmap of associated covariance
matrix. 94% of its ≈10 billion entries are non-zero.a

aFigures from [Gorman & Lladser (2023)].



The Haar-like Wavelets
[Gavish, Nadler & Coifman (2010)]

• Orthonormal basis for the linear space of functions L → R.

• As many wavelets as leaves.

• The wavelet associated with the root is constant.

For each v ∈ I \ {◦}

• there are associated wavelets ϕv ,j , j = 1, 2, . . . , |children(v)| − 1,

• ∀j , supp(ϕv ,j) ⊂ L(v), and

• ∀j , ϕv ,j takes a single positive and single negative value.



The Haar-like Wavelets
[Gavish, Nadler & Coifman (2010)]
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Figure: Haar-like wavelets associated with a 3-regular tree.



Sparsification of phylogenetic covariance matrices

Trace branch length is defined ∀e ∈ E , ℓ∗(e) := |L(e)| · ℓ(e).

Theorem.a Let Φ be the matrix with Haar-like wavelets as
columns. If u, v ∈ I then(

Φ′CΦ
)
(u, v) =

∑
i∈L

φu(i) · ℓ∗(i , v) · φv (i).

In particular, L(u) ∩ L(v) = ∅ =⇒
(
Φ′CΦ

)
(u, v) = 0.

a[Gorman & Lladser (2023)], [Svihla & Lladser (2024)].



Many wavelet pairs have disjoint support

Recall: ∀φu wavelet associated with u ∈ I , supp(φu) ⊂ L(u).
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Figure: L(u) ∩ L(v) ̸= ∅ ⇐⇒ “u is an ancestor of v or vice versa”.



Sparsification of phylogenetic covariance matrices

Theorem.b For a k-regular tree T , if ζ denotes the fraction of
vanishing entries of Φ′CΦ, then

(1− ζ) ≤ (k − 1)2

|I |
+ 2(k − 1)2

IPL(T )

|I |2
.

In particular, if IPL(T ) ≪ |I |2 then ζ = 1− o(1).

b[Svihla & Lladser (2024)].



There’s no reason why IPL(T ) ≪ |I |2 should happen!

...

IPL(T )
|I |2 ∼ 1

2

Figure: 3-regular caterpillar tree.

What about a typical k-regular tree?



Generating function for k-regular trees

Let Tn be a uniformly at random k-regular tree of size n.

Goal: Find asymptotic formulas for E
[
IPL(Tn)

]
and V

[
IPL(Tn)

]
.

Definition. Let Q(z , u) be the (bivariate) generating func-
tion of the class of k-regular trees, where z marks the size
and u marks the internal path length of each tree.

To address the goal, we need to understand the singularities of

Q(z) :=Q(z,u)
∣∣∣u=1;

Qu(z) := ∂Q
∂u (z , u)

∣∣∣
u=1

; Quu(z) := ∂2Q
∂u2

(z , u)
∣∣∣
u=1

.



Radius of convergence of Q(z)

By the symbolic method:

Q(z) = 1 + z
{
Q(z)

}k

By Lagrange inversion:

[zn]Q(z) =
1

(k − 1)n + 1

(
kn

(k − 1)n

)
.

So, Q(z) has radius of conver-
gence and a singularity at:

zk :=
(k − 1)k−1

kk
.

Figure: Plot of Q(z) and boundary
of disk of convergence |z | < zk
when k = 3. Plot is colored by
argument; contour lines denote
modulus.



Interlude: Hypergeometric functions

Definition. F (z) =
∞∑
n=0

fn z
n is called hypergeometric if

there are a1, . . . , ap, b1, . . . , bq ∈ R such that

fn+1

fn
=

(n + a1) · · · (n + ap)

(n + 1) · (n + b1) · · · (n + bq)
.

In this case, we write:

F (z) = pFq

[
a1, . . . , ap
b1, . . . , bq

; z

]
.

Theorem† If the balance s :=
( q∑

j=1
bj −

p∑
j=1

aj

)
> 0 then

pFq(a1, . . . , ap; b1, . . . , bq; z) converges at z = 1.

†[Evans & Stanton (1984)].



Q(z) is hypergeometric

Proposition.c

Q(z) = k−1Fk−2

[ 1
k ,

2
k , . . . ,

k−1
k

2
k−1 ,

3
k−1 , . . . ,

k−2
k−1 ,

k
k−1

;
z

zk

]
and it has balance s > 0. Furthermore, if we define

p(t) := t(1− t)k−1,

then

Q(p(t)) =
1

1− t
, for all 0 ≤ t ≤ 1

k
.

c[Weisstein (2023)], [Svihla & Lladser (2024)].

In particular, since zk = p
(
1
k

)
, Q(zk) =

k

k − 1
.



Q(z) fits the smooth implicit function schema

Q(zk) =
k

k − 1

Lemma.d z = zk is the only singularity of Q(z) on |z | ≤ zk , and

Q(z) = 1 + g(z)− h(z) ·
√
1− z

zk
,

locally about zk , with g(z) and h(z) analytic nearby. Additionally,

[zn]Q(z) =

√
k

2πn3(k − 1)3
· z−n

k

(
1 +O

(
n−1

) )
.

d[Drmota (2009)], [Svihla & Lladser (2024)].



Partial derivatives of Q(z , u) at u = 1

Again due to the symbolic method:

Q(z , u) = 1 + z ·
{
Q(zu, u)

}k
.

Implicit differentiation then gives that Qu(z) and Quu(z) are
linear combinations of generating functions of the form

f (z){Q(z)}a

(1− kz{Q(z)}k−1)b
.

Lemma.e The equation kz {Q(z)}k−1 = 1, with |z | ≤ zk ,
has only zk as a solution.

e[Svihla & Lladser (2024)].



Partial derivatives of Q(z , u) at u = 1

Lemma.f If f : C → C is an entire analytic function such
that f (zk) ̸= 0, and a ≥ 0 and b ≥ 1 are integers, then

[zn] f (z){Q(z)}a
(1−kz{Q(z)}k−1)b

= f (zk )

2b/2 Γ(b/2)

(
k

k−1

)a+b/2
n(b−2)/2 z−n

k

(
1 +O

(
n−1/2

))
.

f[Svihla & Lladser (2024)].

Lastly, for our final and main result are the well-known formulas:

E
[
IPL(Tn)

]
=

[zn]Qu(z)

[zn]Q(z)
;

V
[
IPL(Tn)

]
=

[zn]Quu(z)

[zn]Q(z)
+

[zn]Qu(z)

[zn]Q(z)
−
(
[zn]Qu(z)

[zn]Q(z)

)2

.



Sparsification of a random k-regular tree

Theorem.g If Tn is a uniformly at random k-regular tree of size n
then

E
[
IPL(Tn)

]
∼

√
πk

2(k − 1)
n3/2 and

V
[
IPL(Tn)

]
∼ k

2(k − 1)

(10
3

− π
)
n3.

In particular, if Cn and Φn are the phylogenetic covariance and
Haar-like matrices associated with Tn, respectively, and ζn denotes
fraction of vanishing entries in Φ′

nCnΦn then

lim
n→∞

ζn
p
= 1.

g[Svihla & Lladser (2024)].



Does the sparsification work in practice?

(a) 200,000×200,000 dense matrix. (b) Sparsified matrix.

Figure: Density/sparsity pattern of the phylogenetic covariance matrix of
a random 3-regular tree with ≈200,000 leaves. The dense matrix has
over 40 billion non-zero entries, but 99.97% of these vanish after
changing basis to the Haar-like wavelets of the tree.



Sparsification enables manipulating large dense matrices

(a) 200,000×200,000 dense matrix. (b) Matrix spectrum.

Figure: With over 40 billion non-zero entries, everyday software cannot
manipulate the dense matrix on the left. Nevertheless, it can compute
the 500 largest eigenvalues from its sparsified version, as shown in the
plot on the right.



Summary

• The Haar-like wavelets can be used to sparsify phylogenetic
covariance matrices.

• We can derive a lower-bound on the number of vanishing
entries after changing to the Haar-like basis by counting
wavelets with disjoint support.

• With high probability, a large random k-regular tree has a
covariance matrix which is highly sparsified by its Haar-like
basis.

• This enables manipulating large and dense phylogenetic
covariance matrices from their sparsified representation.
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