Sparsification of Phylogenetic Covariance Matrices of k-Regular Trees

Sean Svihla

Department of Applied Mathematics University of Colorado - Boulder

AofA 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

k-Regular Trees

- T = (V, E):
 - planted
 - ordered
 - unlabelled
 - k-regular, $k \ge 2$.

Leaves labelled as encountered in DFS.

Interior nodes and **edges** labelled by leaf descendants.

Edge length function $\ell: E \longrightarrow \mathbb{R}_+$.

Figure: 2-regular tree example.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Phylogenetic Covariance Matrices

(a.k.a. Cophenetic Matrices)

Phylogenetic covariance is a function of shared path length:

$$C(i, v) = \ell(e_1);$$

$$C(i, j) = \ell(e_2) + \ell(e_1);$$

$$C(i, i) = \ell(e_3) + \ell(e_2) + \ell(e_1)$$

Phylogenetic covariance matrix:

$$C = \left(C(i,j)\right)_{i,j\in L}$$

Figure: 3-regular tree with interior nodes colored cyan.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Phylogenetic Covariance [Harmon (2019)]

If traits evolve as a Brownian Motion (BM) along each edge, i.e.:

Figure: BM representation of phylogenetic covariance matrices.

 $X_v :=$ trait value at a leaf vU, V := Gaussian variables

then U, V, and $B(\Delta t_1 + \Delta t_2)$ are independent, hence

$$X_i = B(\Delta t_1 + \Delta t_2) + U$$
$$X_j = B(\Delta t_1 + \Delta t_2) + V$$
$$\Downarrow$$
$$Cov(X_i, X_j) = Var(B(\Delta t_1 + \Delta t_2))$$
$$= (\Delta t_1 + \Delta t_2) \cdot \sigma^2$$
$$= \ell(e_1) + \ell(e_2).$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Phylogenetic covariance matrices are typically dense

Figure: (Left) Circular layout of reference binary phylogenetic tree with $\approx 100,000$ leaves. (Right) Heatmap of associated covariance matrix. 94% of its ≈ 10 billion entries are non-zero.^a

^aFigures from [Gorman & Lladser (2023)].

The Haar-like Wavelets

[Gavish, Nadler & Coifman (2010)]

- Orthonormal basis for the linear space of functions *L* → ℝ.
- As many wavelets as leaves.
- The wavelet associated with the root is constant.

For each $v \in I \setminus \{\circ\}$

- there are associated wavelets $\phi_{v,j}$, $j = 1, 2, \ldots, |\mathsf{children}(v)| 1$,
- $\forall j$, supp $(\phi_{v,j}) \subset L(v)$, and
- $\forall j, \phi_{v,j}$ takes a single positive and single negative value.

The Haar-like Wavelets

[Gavish, Nadler & Coifman (2010)]

Figure: Haar-like wavelets associated with a 3-regular tree.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Sparsification of phylogenetic covariance matrices

Trace branch length is defined $\forall e \in E$, $\ell^*(e) := |L(e)| \cdot \ell(e)$.

Theorem.^{*a*} Let Φ be the matrix with Haar-like wavelets as columns. If $u, v \in I$ then

$$(\Phi'C\Phi)(u,v) = \sum_{i\in L} \varphi_u(i) \cdot \ell^*(i,v) \cdot \varphi_v(i).$$

(日)、(周)、(日)、(日)、(日)、(0)、(0)

In particular, $L(u) \cap L(v) = \emptyset \Longrightarrow (\Phi' C \Phi)(u, v) = 0.$

^a[Gorman & Lladser (2023)], [Svihla & Lladser (2024)].

Many wavelet pairs have disjoint support

Recall: $\forall \varphi_u$ wavelet associated with $u \in I$, $\operatorname{supp}(\varphi_u) \subset L(u)$.

Figure: $L(u) \cap L(v) \neq \emptyset \iff$ "*u* is an ancestor of *v* or vice versa".

Sparsification of phylogenetic covariance matrices

Theorem.^{*b*} For a *k*-regular tree T, if ζ denotes the fraction of vanishing entries of $\Phi'C\Phi$, then

$$(1-\zeta) \leq \frac{(k-1)^2}{|I|} + 2(k-1)^2 \frac{\mathrm{IPL}(\mathcal{T})}{|I|^2}$$

In particular, if IPL(T) $\ll |I|^2$ then $\zeta = 1 - o(1)$.

^b[Svihla & Lladser (2024)].

There's no reason why $IPL(T) \ll |I|^2$ should happen!

Figure: 3-regular caterpillar tree.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What about a typical k-regular tree?

Generating function for k-regular trees

Let \mathbb{T}_n be a **uniformly at random** k-regular tree of size n.

Goal: Find asymptotic formulas for $\mathbb{E}[\operatorname{IPL}(\mathbb{T}_n)]$ and $\mathbb{V}[\operatorname{IPL}(\mathbb{T}_n)]$.

Definition. Let Q(z, u) be the (bivariate) generating function of the class of *k*-regular trees, where *z* marks the **size** and *u* marks the **internal path length** of each tree.

To address the goal, we need to understand the singularities of

$$Q(z) := Q(z,u) |_{u=1};$$

$$Q_u(z) := \frac{\partial Q}{\partial u}(z, u)\Big|_{u=1}; \quad Q_{uu}(z) := \frac{\partial^2 Q}{\partial u^2}(z, u)\Big|_{u=1};$$

(日)

Radius of convergence of Q(z)

So, Q(z) has radius of convergence and a singularity at:

$$z_k:=\frac{(k-1)^{k-1}}{k^k}$$

Figure: Plot of Q(z) and boundary of disk of convergence $|z| < z_k$ when k = 3. Plot is colored by argument; contour lines denote modulus.

-0.1

0.1

Interlude: Hypergeometric functions

Definition.
$$F(z) = \sum_{n=0}^{\infty} f_n z^n$$
 is called **hypergeometric** if
there are $a_1, \ldots, a_p, b_1, \ldots, b_q \in \mathbb{R}$ such that
$$\frac{f_{n+1}}{f_n} = \frac{(n+a_1)\cdots(n+a_p)}{(n+1)\cdot(n+b_1)\cdots(n+b_q)}.$$
In this case, we write:
 $F(z) = {}_pF_q \begin{bmatrix} a_1, \ldots, a_p \\ b_1, \ldots, b_q \end{bmatrix}.$

Theorem[†] If the balance $s := \left(\sum_{j=1}^{n} b_j - \sum_{j=1}^{n} a_j\right) > 0$ then ${}_{p}F_q(a_1, \ldots, a_p; b_1, \ldots, b_q; z)$ converges at z = 1.

[†][Evans & Stanton (1984)].

Q(z) is hypergeometric

Proposition.^c

$$Q(z) = {}_{k-1}F_{k-2}\left[\frac{\frac{1}{k}, \frac{2}{k}, \dots, \frac{k-1}{k}}{\frac{2}{k-1}, \frac{3}{k-1}, \dots, \frac{k-2}{k-1}, \frac{k}{k-1}}; \frac{z}{z_k}\right]$$

and it has balance s > 0. Furthermore, if we define

$$p(t) := t(1-t)^{k-1},$$

then

$$Q(p(t))=rac{1}{1-t}, ext{ for all } 0\leq t\leq rac{1}{k}.$$

^c[Weisstein (2023)], [Svihla & Lladser (2024)].

In particular, since $z_k = p\left(\frac{1}{k}\right)$, $Q(z_k) = \frac{k}{k-1}$.

Q(z) fits the smooth implicit function schema

$$Q(z_k)=\frac{k}{k-1}$$

Lemma.^{*d*} $z = z_k$ is the only singularity of Q(z) on $|z| \le z_k$, and

$$Q(z) = 1 + g(z) - h(z) \cdot \sqrt{1 - rac{z}{z_k}}$$

locally about z_k , with g(z) and h(z) analytic nearby. Additionally,

$$[z^{n}] Q(z) = \sqrt{\frac{k}{2\pi n^{3}(k-1)^{3}}} \cdot z_{k}^{-n} (1 + O(n^{-1})).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

^d[Drmota (2009)], [Svihla & Lladser (2024)].

Partial derivatives of Q(z, u) at u = 1

Again due to the symbolic method:

$$Q(z, u) = 1 + z \cdot \{Q(zu, u)\}^{k}.$$

Implicit differentiation then gives that $Q_u(z)$ and $Q_{uu}(z)$ are **linear combinations** of generating functions of the form

$$\frac{f(z)\{Q(z)\}^{a}}{(1-kz\{Q(z)\}^{k-1})^{b}}$$

Lemma.^e The equation $kz \{Q(z)\}^{k-1} = 1$, with $|z| \le z_k$, has only z_k as a solution.

^e[Svihla & Lladser (2024)].

Partial derivatives of Q(z, u) at u = 1

Lemma.^{*f*} If $f : \mathbb{C} \to \mathbb{C}$ is an entire analytic function such that $f(z_k) \neq 0$, and $a \ge 0$ and $b \ge 1$ are integers, then $[z^n] \frac{f(z) \{Q(z)\}^a}{(1-kz \{Q(z)\}^{k-1})^b} = \frac{f(z_k)}{2^{b/2} \Gamma(b/2)} \left(\frac{k}{k-1}\right)^{a+b/2} n^{(b-2)/2} z_k^{-n} \left(1 + O\left(n^{-1/2}\right)\right).$ $\overline{f[\text{Svihla \& Lladser (2024)}]}.$

Lastly, for our final and main result are the well-known formulas:

$$\mathbb{E}\left[\operatorname{IPL}(\mathbb{T}_n)\right] = \frac{[z^n]Q_u(z)}{[z^n]Q(z)};$$
$$\mathbb{V}\left[\operatorname{IPL}(\mathbb{T}_n)\right] = \frac{[z^n]Q_{uu}(z)}{[z^n]Q(z)} + \frac{[z^n]Q_u(z)}{[z^n]Q(z)} - \left(\frac{[z^n]Q_u(z)}{[z^n]Q(z)}\right)^2$$

900

Sparsification of a random k-regular tree

Theorem.^g If \mathbb{T}_n is a uniformly at random k-regular tree of size n then

$$\mathbb{E}\big[\mathrm{IPL}(\mathbb{T}_n)\big] \sim \sqrt{\frac{\pi k}{2(k-1)}} n^{3/2} \quad \text{and}$$
$$\mathbb{V}\big[\mathrm{IPL}(\mathbb{T}_n)\big] \sim \frac{k}{2(k-1)} \Big(\frac{10}{3} - \pi\Big) n^3.$$

In particular, if C_n and Φ_n are the phylogenetic covariance and Haar-like matrices associated with \mathbb{T}_n , respectively, and ζ_n denotes fraction of vanishing entries in $\Phi'_n C_n \Phi_n$ then

$$\lim_{n\to\infty}\zeta_n\stackrel{p}{=}1.$$

^g[Svihla & Lladser (2024)].

Does the sparsification work in practice?

Figure: Density/sparsity pattern of the phylogenetic covariance matrix of a random 3-regular tree with \approx 200,000 leaves. The dense matrix has over 40 billion non-zero entries, but 99.97% of these vanish after changing basis to the Haar-like wavelets of the tree.

Sparsification enables manipulating large dense matrices

Figure: With over 40 billion non-zero entries, everyday software cannot manipulate the dense matrix on the left. Nevertheless, it can compute the 500 largest eigenvalues from its sparsified version, as shown in the plot on the right.

Summary

- The Haar-like wavelets can be used to sparsify phylogenetic covariance matrices.
- We can derive a lower-bound on the number of vanishing entries after changing to the Haar-like basis by counting wavelets with disjoint support.
- With high probability, a large random *k*-regular tree has a covariance matrix which is highly sparsified by its Haar-like basis.
- This enables manipulating large and dense phylogenetic covariance matrices from their sparsified representation.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Acknowledgements

- Manuel Lladser (Ph.D. research advisor).
- Lladser Research Group.
- Work partially funded by the NSF grant No. 1836914.

Thank you!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ