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Dispersion Process - The Model

The dispersion process introduced
by [Cooper et al., 2018]: ons
[ ]

» particles moving on the vertices ]
of a connected graph G. NEe
> a particle is VAN

¢ happy if there are no other
particles occupying the same
vertex,

e unhappy otherwise.
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Dispersion Process - The Model

The dispersion process introduced
by [Cooper et al., 2018]:
» initially: M > 2 (unhappy) i
particles are placed on some * RS
vertex of G. AW, B/ .

> at discrete time steps:

e unhappy particles move .

simultaneously and e &
independently to a 11 - .
neighbouring vertex (chosen
uniformly at random),

¢ happy particles remain in
place. A4

» terminates at the first time step
at which all particles are happy.
= dispersion time!
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In our setting:
» G: complete graph with n vertices.
> U:: number of unhappy particles at time ¢ € Ny.
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We are interested in...
> ... the dispersion time, i.e. the number of time steps until all particles
become happy:

Tpm =inf{t € Ng: Us = 0}.
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Dispersion Process - Quantities of Interest

In our setting:
» G: complete graph with n vertices.
> U:: number of unhappy particles at time ¢ € Ny.
> Up=M>2.

We are interested in...

> ... the dispersion time, i.e. the number of time steps until all particles
become happy:

Tpm =inf{t € Ng: Us = 0}.

> ... the total number of jumps performed by the particles:

Tam
Y U= Y U
t=0

t>0
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Dispersion Time - Phase Transition
The typical order of T}, s changes rather abruptly around M = n/2.

Let M =(1+¢€)n/2 e Nwith e =¢(n) € (-1,1).
» [Cooper et al.,, 2018]: T, s is typically ...
... at most logarithmic in n when limsup,,_,.. £ <0,
... at least exponential in n when liminf,_,.. € > 0.

> [De Ambroggio, Makai, Panagiotou, 2023]: Typical order of T, y
when |e| = o(1):

-1 2 -1 2
£ In(e<n 1/2 £ exp(E“n
| ‘ ( ) ‘ I'Il ‘ ( ) Tn,l\/l

I I I
—n1/2/4 0 n1/2/4

> when |e| = ©(n Y/2):
le|LIn(e%n) = ©(n/?) and e exp(e2n) = O(n'/?).

= The transition in and out of the critical window where |e| = O(n~1/?) is

smooth.
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Dispersion Process - Main Results

We analyse the dispersion process within the critical window, i.e. when
M = n/2+ O(n'/?).

Theorem [De Ambroggio, Makai, Panagiotou, S., 2024]

Let @ € R and M = M(n) = n/2+ an'/2 4+ o(n'/2) € N. Then there exists a
continuous and almost surely positive random variable T, such that, as
n— oo,

n~1/2 Th.m — T in distribution.
Furthermore, as n — oo,

(nin(n)) ™'Y U — 2 in distribution.
£0 7
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Dispersion Process - Main Results

We analyse the dispersion process within the critical window, i.e. when
M = n/2+ O(n'/?).

Theorem [De Ambroggio, Makai, Panagiotou, S., 2024]

Let @ € R and M = M(n) = n/2+ an'/2 4+ o(n'/2) € N. Then there exists a
continuous and almost surely positive random variable T, such that, as
n— oo,

n~Y2T, p — Tq in distribution.

Furthermore, as n — o,

(nin(n)) ™'Y U — 2 in distribution.
£0 7

» Each of the M ~ n/2 particles performes on average typically
~4/7In(n) jumps.
> We can say a lot about the distribution of Ty, e.g.
E[To] = n%/2/v/7, so that E[T, p] ~ n*/2 - %2 /\/7.

> Main tool used in the proof: Diffusion Approximation.
29/57



Diffusion Approximation
@0000000

Dispersion Process - Simulation

30/57



Diffusion Approximation
@0000000

Dispersion Process - Simulation

The number of unhappy particles U; fluctuates strongly:
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Three sample runs of the dispersion process with n =107 and M = n/2, i.e. & = 0.

The trajectory is revealed only after ¢ = 500, where Uy ~ 10* in all cases.

31/57



Diffusion Approximation
0@000000

Diffusion Approximation - Idea

> Approximate the behaviour of a discrete-time Markov chain (here:
number of unhappy particles) by a (simpler) continuous-time Markov
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Diffusion Approximation - Idea

> Approximate the behaviour of a discrete-time Markov chain (here:

number of unhappy particles) by a (simpler) continuous-time Markov
process with continuous paths.

> Scale time and space to obtain a continuous process.
> The limiting process satisfies a stochastic differential equation

dXs = b(Xs)ds+o(Xs)dBs, s>0, Xp=x€R,
where B is a Brownian motion and b,0 : R — R.

> The coefficients b and o are derived from the transition probabilities
of the Markov chain.

= Analyse the behaviour of the system using results from stochastic
calculus.
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Suppose that

> v = (v{"),.y, is a discrete-time Markov chain with values

in S(M C R (here: Y = n=112),
> h:N— Ry isasequence with lim, .. h(n) =0 (here: h(n) = n—1/2),
» b,o:R— R are continuous functions such that the SDE

dXs = b(Xs)ds+0(Xs)dBs, s>0, Xo=x€eR,
has a (weakly) unique (weak) solution for all initial values x € R.

> V() 5 xeRasn— o,
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Suppose that

> v = (v{"),.y, is a discrete-time Markov chain with values

in S(M C R (here: Y = n=112),
> h:N— Ry isasequence with lim, .. h(n) =0 (here: h(n) = n—1/2),
» b,o:R— R are continuous functions such that the SDE

dXs = b(Xs)ds+ 0 (Xs)dBs, s>0, Xo=x€cR,
has a (weakly) unique (weak) solution for all initial values x € R.
> V() 5 xeRasn— o,
> forall R< oo
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Diffusion Approximation - e.g. [Durrett, 1996]
Suppose that

> v = (v{"),.y, is a discrete-time Markov chain with values

in S(M C R (here: Y = n=112),
> h:N— Ry isasequence with lim, .. h(n) =0 (here: h(n) = n—1/2),
» b,o:R— R are continuous functions such that the SDE

dXs = b(Xs)ds+ 0 (Xs)dBs, s>0, Xo=x€cR,
has a (weakly) unique (weak) solution for all initial values x € R.
> V() 5 xeRasn— o,
> forall R< oo
> 1My SUP, . g(n) |X‘<R)1E m x| Y = ]/h(n)fb(x)lzo,
> limp e SUP, () ‘XKR‘E( m )2 |Y< —x}/h(n)fcﬂ(x)‘:(],

> iMoo SUP, c5(n) |4 <R [| t+1 x|P | Yt :X}/h(n):O for some p>2.

= The time-scaled process (YL(sn/)h(n)j )s>0 converges weakly to X as n — .
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Logistic Branching Process - Absorption Time

The limiting process we get for M = n/2 + an'/? + o(n'/?) e N, x c Ris a
logistic branching process:

7
dXs = (zaxs — fo) ds+/XsdBs, s> 0.

> Appears in the context of population dynamics: describes the
evolution of a population under the influences of birth, mortality and
inter-individual competition.

> Properties of X are well-studied (e.g. [Lambert, 2005]).
> Initial value: start at’ Xy = o' possible.

We obtain that n~1/2 Th,m converges in distribution to the absorption time
of X:

To =inf{s >0|Xs =0}.
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Logistic Branching Process - Paths
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Three sample runs of the dispersion process with n= 10" and M = n/2, i.e. « =0.
The trajectory is revealed only after ¢ = 500, where Uy ~ 10* in all cases.
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Summary - Outlook
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» Diffusion approximation: Approximate the (scaled) number of
unhappy particles by a logistic branching process.

= Asn— oo, n~1/2 Th,m converges in distribution to the absorption time
T of the logistic branching process.
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» Diffusion approximation: Approximate the (scaled) number of
unhappy particles by a logistic branching process.

= Asn— oo, n~1/2 Th,m converges in distribution to the absorption time
T of the logistic branching process.

» Infer properties of T, from results from stochastic calculus, e.g.
expressions for all moments.

Diffusion approximation indicates a stronger statement for the total
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» There is a continuous random variable A, such that, as n — o,
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t>0
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Summary - Outlook

For a e Rand M = n/2+ an'/2 4 o(n'/2):

» Diffusion approximation: Approximate the (scaled) number of
unhappy particles by a logistic branching process.

= Asn— oo, n~1/2 Th,m converges in distribution to the absorption time
T of the logistic branching process.

» Infer properties of T, from results from stochastic calculus, e.g.
expressions for all moments.

Diffusion approximation indicates a stronger statement for the total
number of jumps than (nin(n)) 1 Lo Ur 2 2:
» There is a continuous random variable A, such that, as n — o,
n 1 ( Z U — gnIn n) % Aqg.
£>0 7
» Distribution of Aq can be described via the properties of [5° Xsds.
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Dispersion Process - Simulation

The number of unhappy particles U; fluctuates strongly:

1000
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0 t 1000 3000 5000 7000 t

Three sample runs of the dispersion process with n =10 and M = n/2, i.e. & = 0.

The trajectory is revealed only after ¢ = 500, where Uy ~ 10* in all cases.
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Thank you!

57/57



References

[ De Ambroggio, U. and Makai, T. and Panagiotou, K. and Steibel, A.
(2024)
Limit Laws for Critical Dispersion on Complete Graphs
arXiv:2403.05372.

@ Cooper, C. and McDowell, A. and Radzik, T. and Rivera, N. and
Shiraga, T. (2018)
Dispersion processes
Random Structures Algorithms, 53(4):561-585.

[ De Ambroggio, U. and Makai, T. and Panagiotou, K. (2023)
Dispersion on the Complete Graph
arXiv:2306.02474. An extended abstract appeared in the Proceedings
of EUROCOMB '23.

[§ Durrett, R. (1996)
Stochastic calculus - a practical introduction
Probability and Stochastics Series. CRC Press, Boca Raton, FL.

[§ Lambert, A. (2005),
The branching process with logistic growth,
Ann. Appl. Probab., 15(2):1506- 1535.



	Dispersion Process
	Diffusion Approximation
	Appendix

