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Dispersion Process Diffusion Approximation

Dispersion Process - The Model

The dispersion process introduced
by [Cooper et al., 2018]:

I particles moving on the vertices
of a connected graph G .

I a particle is
happy if there are no other

particles occupying the same
vertex,

unhappy otherwise.
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Dispersion Process Diffusion Approximation

Dispersion Process - The Model

The dispersion process introduced
by [Cooper et al., 2018]:
I initially: M ≥ 2 (unhappy)

particles are placed on some
vertex of G .

I at discrete time steps:
unhappy particles move

simultaneously and
independently to a
neighbouring vertex (chosen
uniformly at random),

happy particles remain in
place.

I terminates at the first time step
at which all particles are happy.
⇒ dispersion time!
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Dispersion Process Diffusion Approximation

Dispersion Process - Quantities of Interest

In our setting:
I G : complete graph with n vertices.

I Ut : number of unhappy particles at time t ∈ N0.
I U0 = M ≥ 2.

We are interested in...
I ... the dispersion time, i.e. the number of time steps until all particles

become happy:

Tn,M := inf{t ∈ N0 : Ut = 0}.

I ... the total number of jumps performed by the particles:

∑
t≥0

Ut =
Tn,M

∑
t=0

Ut .
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Dispersion Process Diffusion Approximation

Dispersion Time - Phase Transition

The typical order of Tn,M changes rather abruptly around M = n/2.

Let M = (1 + ε)n/2 ∈ N with ε = ε(n) ∈ (−1,1).
I [Cooper et al., 2018]: Tn,M is typically ...

... at most logarithmic in n when limsupn→∞ ε < 0,

... at least exponential in n when liminfn→∞ ε > 0.
I [De Ambroggio, Makai, Panagiotou, 2023]: Typical order of Tn,M

when |ε|= o(1):

|ε|−1 ln(ε2n) n1/2 ε−1 exp(ε2n)
Tn,M

ε

−n−1/2/4 0 n−1/2/4

I when |ε|= Θ(n−1/2):
|ε|−1 ln(ε2n) = Θ(n1/2) and ε−1 exp(ε2n) = Θ(n1/2).

⇒ The transition in and out of the critical window where |ε|= O(n−1/2) is
smooth.
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Dispersion Process Diffusion Approximation

Dispersion Process - Main Results
We analyse the dispersion process within the critical window, i.e. when
M = n/2 +O(n1/2).

Theorem [De Ambroggio, Makai, Panagiotou, S., 2024]
Let α ∈ R and M = M(n) = n/2 + αn1/2 +o(n1/2) ∈ N. Then there exists a
continuous and almost surely positive random variable Tα such that, as
n→ ∞,

n−1/2Tn,M → Tα in distribution.
Furthermore, as n→ ∞,

(n ln(n))−1 ∑
t≥0

Ut →
2

7
in distribution.

I Each of the M ∼ n/2 particles performes on average typically
∼ 4/7ln(n) jumps.

I We can say a lot about the distribution of Tα , e.g.

E[T0] = π
3/2/
√

7, so that E[Tn,M ]∼ n1/2 ·π3/2/
√

7.

I Main tool used in the proof: Diffusion Approximation.
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Dispersion Process Diffusion Approximation

Dispersion Process - Simulation

The number of unhappy particles Ut fluctuates strongly:

0 t ′ 1000 3000 5000 7000
0

1

2

4

6

8

t

U
t

1
0
0
0

Three sample runs of the dispersion process with n= 107 and M = n/2, i.e. α = 0.
The trajectory is revealed only after t ′ = 500, where Ut ′ ≈ 104 in all cases.
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Dispersion Process Diffusion Approximation

Diffusion Approximation - Idea

I Approximate the behaviour of a discrete-time Markov chain (here:
number of unhappy particles) by a (simpler) continuous-time Markov
process with continuous paths.

I Scale time and space to obtain a continuous process.
I The limiting process satisfies a stochastic differential equation

dXs = b(Xs)ds + σ(Xs)dBs , s > 0, X0 = x ∈ R,

where B is a Brownian motion and b,σ : R→ R.

I The coefficients b and σ are derived from the transition probabilities
of the Markov chain.

⇒ Analyse the behaviour of the system using results from stochastic
calculus.
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Dispersion Process Diffusion Approximation

Diffusion Approximation - e.g. [Durrett, 1996]

Suppose that
I Y (n) = (Y

(n)
t )t∈N0

is a discrete-time Markov chain with values
in S(n) ⊆ R (here: Y (n)

t = n−1/2Ut ),
I h : N→ R+ is a sequence with limn→∞ h(n) = 0 (here: h(n) = n−1/2),
I b,σ : R→ R are continuous functions such that the SDE

dXs = b(Xs)ds + σ(Xs)dBs , s > 0, X0 = x ∈ R,

has a (weakly) unique (weak) solution for all initial values x ∈ R.
I Y

(n)
0 → x ∈ R as n→ ∞,

I for all R < ∞

I limn→∞ supx∈S(n) ,|x |≤R

∣∣∣E[Y (n)
t+1−x | Y(n)

t = x
]
/h(n)−b(x)

∣∣∣= 0,
I limn→∞ supx∈S(n) ,|x |≤R

∣∣∣E[(Y (n)
t+1−x)2 | Y(n)
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Dispersion Process Diffusion Approximation

Logistic Branching Process - Absorption Time

The limiting process we get for M = n/2 + αn1/2 +o(n1/2) ∈ N, α ∈ R is a
logistic branching process:

dXs =

(
2αXs −

7

4
X 2
s

)
ds +

√
XsdBs , s > 0.

I Appears in the context of population dynamics: describes the
evolution of a population under the influences of birth, mortality and
inter-individual competition.

I Properties of X are well-studied (e.g. [Lambert, 2005]).
I Initial value: start at ′X0 = ∞′ possible.

We obtain that n−1/2Tn,M converges in distribution to the absorption time
of X :

Tα = inf{s ≥ 0 | Xs = 0}.
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Dispersion Process Diffusion Approximation

Logistic Branching Process - Paths
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Three sample runs of the dispersion process with n= 107 and M = n/2, i.e. α = 0.
The trajectory is revealed only after t ′ = 500, where Ut ′ ≈ 104 in all cases.
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Dispersion Process Diffusion Approximation

Summary - Outlook
For α ∈ R and M = n/2 + αn1/2 +o(n1/2):
I Diffusion approximation: Approximate the (scaled) number of

unhappy particles by a logistic branching process.

⇒ As n→ ∞, n−1/2Tn,M converges in distribution to the absorption time
Tα of the logistic branching process.

I Infer properties of Tα from results from stochastic calculus, e.g.
expressions for all moments.

Diffusion approximation indicates a stronger statement for the total
number of jumps than (n ln(n))−1 ∑t≥0Ut

d−→ 2
7 :

I There is a continuous random variable Aα such that, as n→ ∞,

n−1
(

∑
t≥0

Ut −
2

7
n lnn

)
d−→ Aα .

I Distribution of Aα can be described via the properties of
∫

∞

0 Xsds.
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Dispersion Process - Simulation
The number of unhappy particles Ut fluctuates strongly:
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Three sample runs of the dispersion process with n= 107 and M = n/2, i.e. α = 0.
The trajectory is revealed only after t ′ = 500, where Ut ′ ≈ 104 in all cases.
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Thank you!
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