Limit Laws for Critical Dispersion on Complete Graphs

Annika Steibel

Ludwig-Maximilians-University Munich

Joint work with U. De Ambroggio, T. Makai and K. Panagiotou

AofA 2024
Dispersion Process - The Model

The dispersion process introduced by [Cooper et al., 2018]:

[Graph of a connected graph G with vertices and edges]
Dispersion Process - The Model

The dispersion process introduced by [Cooper et al., 2018]:

- particles moving on the vertices of a connected graph G.
Dispersion Process - The Model

The dispersion process introduced by [Cooper et al., 2018]:

- particles moving on the vertices of a connected graph G.

- a particle is
 - happy if there are no other particles occupying the same vertex,
 - unhappy otherwise.
Dispersion Process - The Model

The dispersion process introduced by [Cooper et al., 2018]:

- **initially**: $M \geq 2$ (unhappy) particles are placed on some vertex of G.
Dispersion Process - The Model

The dispersion process introduced by [Cooper et al., 2018]:

- **initially**: $M \geq 2$ (unhappy) particles are placed on some vertex of G.
Dispersion Process - The Model

The dispersion process introduced by [Cooper et al., 2018]:

- **initially**: \(M \geq 2 \) (unhappy) particles are placed on some vertex of \(G \).

- **at discrete** time steps:
 - unhappy particles move simultaneously and independently to a neighbouring vertex (chosen uniformly at random),
 - happy particles remain in place.
Dispersion Process - The Model

The dispersion process introduced by [Cooper et al., 2018]:

- **initially**: $M \geq 2$ (unhappy) particles are placed on some vertex of G.

- **at discrete** time steps:
 - **unhappy** particles move **simultaneously** and **independently** to a neighbouring vertex (chosen uniformly at random),
 - **happy** particles remain in place.
Dispersion Process - The Model

The *dispersion process* introduced by [Cooper et al., 2018]:

- **initially**: $M \geq 2$ (unhappy) particles are placed on some vertex of G.

- **at discrete** time steps:
 - unhappy particles move *simultaneously* and *independently* to a neighbouring vertex (chosen uniformly at random),
 - happy particles remain in place.

- **terminates** at the first time step at which all particles are happy.
 \[\Rightarrow \text{dispersion time!} \]
Dispersion Process - Quantities of Interest

In our setting:

- G: complete graph with n vertices.
Dispersion Process - Quantities of Interest

In our setting:

- **\(G \):** complete graph with \(n \) vertices.
- **\(U_t \):** number of unhappy particles at time \(t \in \mathbb{N}_0 \).

\[U_0 = M \geq 2. \]

We are interested in...

- the dispersion time, i.e. the number of time steps until all particles become happy:
 \[T_{n, M} = \inf \{ t \in \mathbb{N}_0 : U_t = 0 \} \]
- the total number of jumps performed by the particles:
 \[\sum_{t \geq 0} U_t = T_{n, M}. \]
Dispersion Process - Quantities of Interest

In our setting:

- G: complete graph with n vertices.
- U_t: number of unhappy particles at time $t \in \mathbb{N}_0$.
- $U_0 = M \geq 2$.
Dispersion Process - Quantities of Interest

In our setting:

- **G**: complete graph with n vertices.
- **U_t**: number of unhappy particles at time $t \in \mathbb{N}_0$.
- **$U_0 = M \geq 2$**.

We are interested in...

...the dispersion time, i.e. the number of time steps until all particles become happy:

$$T_n, M = \inf \{ t \in \mathbb{N}_0 : U_t = 0 \}.$$

...the total number of jumps performed by the particles:

$$\sum_{t \geq 0} U_t = T_n, M \sum_{t=0}^{\infty} U_t.$$
Dispersion Process - Quantities of Interest

In our setting:

- G: complete graph with n vertices.
- U_t: number of unhappy particles at time $t \in \mathbb{N}_0$.
- $U_0 = M \geq 2$.

We are interested in...

- ... the dispersion time, i.e. the number of time steps until all particles become happy:

$$T_{n,M} := \inf \{ t \in \mathbb{N}_0 : U_t = 0 \}.$$
Dispersion Process - Quantities of Interest

In our setting:

- \(G \): complete graph with \(n \) vertices.
- \(U_t \): number of unhappy particles at time \(t \in \mathbb{N}_0 \).
- \(U_0 = M \geq 2 \).

We are interested in...

- ... the dispersion time, i.e. the number of time steps until all particles become happy:
 \[
 T_{n,M} := \inf\{ t \in \mathbb{N}_0 : U_t = 0 \}.
 \]

- ... the total number of jumps performed by the particles:
 \[
 \sum_{t \geq 0} U_t = \sum_{t=0}^{T_{n,M}} U_t.
 \]
Dispersion Time - Phase Transition

The typical order of $T_{n,M}$ changes rather abruptly around $M = n/2$.
Dispersion Time - Phase Transition

The typical order of $T_{n,M}$ changes rather abruptly around $M = n/2$.

Let $M = (1 + \varepsilon)n/2 \in \mathbb{N}$ with $\varepsilon = \varepsilon(n) \in (-1, 1)$.
Dispersion Time - Phase Transition

The typical order of $T_{n,M}$ changes rather abruptly around $M = n/2$.

Let $M = (1 + \varepsilon)n/2 \in \mathbb{N}$ with $\varepsilon = \varepsilon(n) \in (-1, 1)$.

- [Cooper et al., 2018]: $T_{n,M}$ is typically ...
Dispersion Time - Phase Transition

The typical order of $T_{n,M}$ changes rather abruptly around $M = n/2$.

Let $M = (1 + \varepsilon)n/2 \in \mathbb{N}$ with $\varepsilon = \varepsilon(n) \in (-1, 1)$.

- [Cooper et al., 2018]: $T_{n,M}$ is typically ...
 ... at most logarithmic in n when $\limsup_{n \to \infty} \varepsilon < 0$,

⇒ The transition in and out of the critical window where $|\varepsilon| = O(n^{-1/2})$ is smooth.
Dispersion Time - Phase Transition

The typical order of $T_{n,M}$ changes rather abruptly around $M = n/2$.

Let $M = (1 + \varepsilon)n/2 \in \mathbb{N}$ with $\varepsilon = \varepsilon(n) \in (-1, 1)$.

- [Cooper et al., 2018]: $T_{n,M}$ is typically ...
 ... at most logarithmic in n when $\limsup_{n \to \infty} \varepsilon < 0$,
 ... at least exponential in n when $\liminf_{n \to \infty} \varepsilon > 0$.

⇒ The transition in and out of the critical window where $|\varepsilon| = O(n^{-1/2})$ is smooth.
Dispersion Time - Phase Transition

The typical order of $T_{n,M}$ changes rather abruptly around $M = n/2$.

Let $M = (1 + \varepsilon)n/2 \in \mathbb{N}$ with $\varepsilon = \varepsilon(n) \in (-1, 1)$.

- [Cooper et al., 2018]: $T_{n,M}$ is typically ...
 - ... at most logarithmic in n when $\limsup_{n \to \infty} \varepsilon < 0$,
 - ... at least exponential in n when $\liminf_{n \to \infty} \varepsilon > 0$.

- [De Ambroggio, Makai, Panagiotou, 2023]: Typical order of $T_{n,M}$ when $|\varepsilon| = o(1)$:
Dispersion Process

Dispersion Time - Phase Transition

The typical order of $T_{n,M}$ changes rather abruptly around $M = n/2$.

Let $M = (1 + \varepsilon)n/2 \in \mathbb{N}$ with $\varepsilon = \varepsilon(n) \in (-1, 1)$.

- [Cooper et al., 2018]: $T_{n,M}$ is typically ...
 ... at most logarithmic in n when $\limsup_{n \to \infty} \varepsilon < 0$,
 ... at least exponential in n when $\liminf_{n \to \infty} \varepsilon > 0$.

- [De Ambroggio, Makai, Panagiotou, 2023]: Typical order of $T_{n,M}$
 when $|\varepsilon| = o(1)$:

\[
\begin{array}{c|c|c|c|c}
|\varepsilon|^{-1} \ln(\varepsilon^2 n) & n^{1/2} & \varepsilon^{-1} \exp(\varepsilon^2 n) \\
-n^{-1/2}/4 & 0 & n^{-1/2}/4 \\
\end{array}
\]

$T_{n,M}$
The typical order of $T_{n,M}$ changes rather abruptly around $M = n/2$.

Let $M = (1 + \varepsilon)n/2 \in \mathbb{N}$ with $\varepsilon = \varepsilon(n) \in (-1, 1)$.

- [Cooper et al., 2018]: $T_{n,M}$ is typically ...
 ... at most logarithmic in n when $\limsup_{n \to \infty} \varepsilon < 0$,
 ... at least exponential in n when $\liminf_{n \to \infty} \varepsilon > 0$.

- [De Ambroggio, Makai, Panagiotou, 2023]: Typical order of $T_{n,M}$ when $|\varepsilon| = o(1)$:

\[
\begin{array}{ccc}
|\varepsilon|^{-1} \ln(\varepsilon^2 n) & n^{1/2} & \varepsilon^{-1} \exp(\varepsilon^2 n) \\
-n^{-1/2}/4 & 0 & n^{-1/2}/4
\end{array}
\]

- when $|\varepsilon| = \Theta(n^{-1/2})$:

$T_{n,M}$ is smooth.
Dispersion Time - Phase Transition

The typical order of $T_{n,M}$ changes rather abruptly around $M = n/2$.

Let $M = (1 + \varepsilon)n/2 \in \mathbb{N}$ with $\varepsilon = \varepsilon(n) \in (-1, 1)$.

- [Cooper et al., 2018]: $T_{n,M}$ is typically ...
 ... at most logarithmic in n when $\limsup_{n \to \infty} \varepsilon < 0$,
 ... at least exponential in n when $\liminf_{n \to \infty} \varepsilon > 0$.

- [De Ambroggio, Makai, Panagiotou, 2023]: Typical order of $T_{n,M}$
 when $|\varepsilon| = o(1)$:

$$|\varepsilon|^{-1} \ln(\varepsilon^2 n) \quad n^{1/2} \quad \varepsilon^{-1} \exp(\varepsilon^2 n) \quad T_{n,M} \quad \varepsilon$$

- $-n^{-1/2}/4 \quad 0 \quad n^{-1/2}/4$

- when $|\varepsilon| = \Theta(n^{-1/2})$:
 $|\varepsilon|^{-1} \ln(\varepsilon^2 n) = \Theta(n^{1/2})$ and $\varepsilon^{-1} \exp(\varepsilon^2 n) = \Theta(n^{1/2})$.
Dispersion Time - Phase Transition

The typical order of $T_{n,M}$ changes rather abruptly around $M = n/2$.

Let $M = (1 + \varepsilon)n/2 \in \mathbb{N}$ with $\varepsilon = \varepsilon(n) \in (-1, 1)$.

- [Cooper et al., 2018]: $T_{n,M}$ is typically ...
 ... at most logarithmic in n when $\limsup_{n \to \infty} \varepsilon < 0$,
 ... at least exponential in n when $\liminf_{n \to \infty} \varepsilon > 0$.

- [De Ambroggio, Makai, Panagiotou, 2023]: Typical order of $T_{n,M}$ when $|\varepsilon| = o(1)$:

 \[
 T_{n,M} \sim \begin{cases}
 |\varepsilon|^{-1} \ln(\varepsilon^2 n) & \text{when } |\varepsilon| = O(n^{-1/2}), \\
 n^{1/2} & \text{when } |\varepsilon| = \Theta(n^{-1/2}), \\
 \varepsilon^{-1} \exp(\varepsilon^2 n) & \text{when } |\varepsilon| = \Theta(n^{-1/2}).
 \end{cases}
 \]

 ⇒ The transition in and out of the critical window where $|\varepsilon| = O(n^{-1/2})$ is smooth.
Dispersion Process - Main Results

We analyse the dispersion process within the critical window, i.e. when
\[M = n/2 + O(n^{1/2}). \]
Dispersion Process - Main Results

We analyse the dispersion process within the critical window, i.e. when $M = n/2 + O(n^{1/2})$.

Theorem [De Ambroggio, Makai, Panagiotou, S., 2024]

Let $\alpha \in \mathbb{R}$ and $M = M(n) = n/2 + \alpha n^{1/2} + o(n^{1/2}) \in \mathbb{N}$. Then there exists a continuous and almost surely positive random variable T_α such that, as $n \to \infty$,

$$n^{-1/2} T_{n,M} \to T_\alpha \text{ in distribution.}$$

Furthermore, as $n \to \infty$,

$$(n \ln(n))^{-1} \sum_{t \geq 0} U_t \to \frac{2}{7} \text{ in distribution.}$$
Dispersion Process - Main Results

We analyse the dispersion process within the critical window, i.e. when
\(M = n/2 + O(n^{1/2}) \).

Theorem [De Ambroggio, Makai, Panagiotou, S., 2024]

Let \(\alpha \in \mathbb{R} \) and \(M = M(n) = n/2 + \alpha n^{1/2} + o(n^{1/2}) \in \mathbb{N} \). Then there exists a
continuous and almost surely positive random variable \(T_\alpha \) such that, as
\(n \to \infty \),

\[n^{-1/2} T_{n,M} \to T_\alpha \text{ in distribution.} \]

Furthermore, as \(n \to \infty \),

\[(n \ln(n))^{-1} \sum_{t \geq 0} U_t \to \frac{2}{7} \text{ in distribution.} \]

▶ Each of the \(M \sim n/2 \) particles performs on average typically
\(\sim 4/7 \ln(n) \) jumps.
Dispersion Process - Main Results

We analyse the dispersion process within the critical window, i.e. when \(M = n/2 + O(n^{1/2}) \).

Theorem [De Ambroggio, Makai, Panagiotou, S., 2024]

Let \(\alpha \in \mathbb{R} \) and \(M = M(n) = n/2 + \alpha n^{1/2} + o(n^{1/2}) \in \mathbb{N} \). Then there exists a continuous and almost surely positive random variable \(T_\alpha \) such that, as \(n \to \infty \),

\[
n^{-1/2} T_{n,M} \to T_\alpha \text{ in distribution.}
\]

Furthermore, as \(n \to \infty \),

\[
(n \ln(n))^{-1} \sum_{t \geq 0} U_t \to \frac{2}{7} \text{ in distribution.}
\]

- Each of the \(M \sim n/2 \) particles performs on average typically \(\sim 4/7 \ln(n) \) jumps.
- We can say a lot about the distribution of \(T_\alpha \), e.g.

\[
\mathbb{E}[T_0] = \frac{\pi^{3/2}}{\sqrt{7}}, \text{ so that } \mathbb{E}[T_{n,M}] \sim n^{1/2} \cdot \frac{\pi^{3/2}}{\sqrt{7}}.
\]
Dispersion Process - Main Results

We analyse the dispersion process within the critical window, i.e. when $M = n/2 + O(n^{1/2})$.

Theorem [De Ambrogi, Makai, Panagiou, S., 2024]

Let $\alpha \in \mathbb{R}$ and $M = M(n) = n/2 + \alpha n^{1/2} + o(n^{1/2}) \in \mathbb{N}$. Then there exists a continuous and almost surely positive random variable T_α such that, as $n \to \infty$,

$$n^{-1/2} T_{n,M} \to T_\alpha \text{ in distribution}.$$

Furthermore, as $n \to \infty$,

$$\left(n \ln(n) \right)^{-1} \sum_{t \geq 0} U_t \to \frac{2}{7} \text{ in distribution.}$$

- Each of the $M \sim n/2$ particles performs on average typically $\sim 4/7 \ln(n)$ jumps.
- We can say a lot about the distribution of T_α, e.g.

$$\mathbb{E}[T_0] = \pi^{3/2}/\sqrt{7}, \text{ so that } \mathbb{E}[T_{n,M}] \sim n^{1/2} \cdot \pi^{3/2}/\sqrt{7}.$$

- Main tool used in the proof: Diffusion Approximation.
Dispersion Process - Simulation

The number of unhappy particles U_t fluctuates strongly:

<table>
<thead>
<tr>
<th>t</th>
<th>U_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>7000</td>
<td></td>
</tr>
</tbody>
</table>

Three sample runs of the dispersion process with $n = 10^7$ and $M = n/2$, i.e. $\alpha = 0$. The trajectory is revealed only after $t' = 500$, where $U_{t'} \approx 10^4$ in all cases.
Dispersion Process - Simulation

The number of unhappy particles U_t fluctuates strongly:

Three sample runs of the dispersion process with $n = 10^7$ and $M = n/2$, i.e. $\alpha = 0$. The trajectory is revealed only after $t' = 500$, where $U_{t'} \approx 10^4$ in all cases.
Diffusion Approximation - Idea

- Approximate the behaviour of a discrete-time Markov chain *(here: number of unhappy particles)* by a (simpler) continuous-time Markov process with continuous paths.

\[
dX_t = b(X_t) \, dt + \sigma(X_t) \, dB_t, \quad t > 0, \quad X_0 = x \in \mathbb{R},
\]

where \(B \) is a Brownian motion and \(b, \sigma : \mathbb{R} \to \mathbb{R} \).

⇒ Analyse the behaviour of the system using results from stochastic calculus.
Diffusion Approximation - Idea

- Approximate the behaviour of a discrete-time Markov chain (here: number of unhappy particles) by a (simpler) continuous-time Markov process with continuous paths.
- Scale time and space to obtain a continuous process.

\[
\begin{align*}
\frac{dX}{ds} &= b(X) ds + \sigma(X) dB_s, \\
X_0 &= x \in \mathbb{R},
\end{align*}
\]
Diffusion Approximation - Idea

- Approximate the behaviour of a discrete-time Markov chain (here: *number of unhappy particles*) by a (simpler) continuous-time Markov process with continuous paths.
- Scale time and space to obtain a continuous process.
- The limiting process satisfies a stochastic differential equation

\[
dX_s = b(X_s)\,ds + \sigma(X_s)\,dB_s, \quad s > 0, \quad X_0 = x \in \mathbb{R},
\]

where B is a Brownian motion and $b, \sigma : \mathbb{R} \to \mathbb{R}$.
Diffusion Approximation - Idea

- Approximate the behaviour of a discrete-time Markov chain (*here: number of unhappy particles*) by a (simpler) continuous-time Markov process with continuous paths.
- **Scale time and space** to obtain a continuous process.
- The limiting process satisfies a **stochastic differential equation**

\[
dX_s = b(X_s) \, ds + \sigma(X_s) \, dB_s, \quad s > 0, \quad X_0 = x \in \mathbb{R},
\]

where B is a Brownian motion and $b, \sigma : \mathbb{R} \to \mathbb{R}$.

- The coefficients b and σ are derived from the transition probabilities of the Markov chain.
Diffusion Approximation - Idea

- Approximate the behaviour of a discrete-time Markov chain (here: number of unhappy particles) by a (simpler) continuous-time Markov process with continuous paths.
- Scale time and space to obtain a continuous process.
- The limiting process satisfies a stochastic differential equation

\[dX_s = b(X_s)ds + \sigma(X_s)dB_s, \quad s > 0, \quad X_0 = x \in \mathbb{R}, \]

where \(B \) is a Brownian motion and \(b, \sigma : \mathbb{R} \to \mathbb{R} \).

- The coefficients \(b \) and \(\sigma \) are derived from the transition probabilities of the Markov chain.

⇒ Analyse the behaviour of the system using results from stochastic calculus.
Diffusion Approximation - e.g. [Durrett, 1996]

Suppose that $Y_n(t) = Y_n t$ for $t \in \mathbb{N}_0$ is a discrete-time Markov chain with values in $S_n \subseteq \mathbb{R}$ (here: $Y_n t = n - 1/2 u_t$), $h: \mathbb{N} \to \mathbb{R}^+$ is a sequence with $\lim_{n \to \infty} h(n) = 0$ (here: $h(n) = n - 1/2$), $b, \sigma: \mathbb{R} \to \mathbb{R}$ are continuous functions such that the SDE $dX_s = b(X_s) ds + \sigma(X_s) dB_s$, $s > 0$, $X_0 = x \in \mathbb{R}$, has a (weakly) unique (weak) solution for all initial values $x \in \mathbb{R}$.

$Y_n 0 \to x \in \mathbb{R}$ as $n \to \infty$, for all $R < \infty$, $\lim_{n \to \infty} \sup_{x \in S_n} |x| \leq R ||| E [Y_n(t + 1) - x | Y_n(t) = x] / h(n) - b(x) ||| = 0$, $\lim_{n \to \infty} \sup_{x \in S_n} |x| \leq R ||| E [(Y_n(t + 1) - x)^2 | Y_n(t) = x] / h(n) - \sigma^2(x) ||| = 0$, and $\lim_{n \to \infty} \sup_{x \in S_n} |x| \leq R ||| E [|Y_n(t + 1) - x|^{p} | Y_n(t) = x] / h(n) = 0$ for some $p \geq 2$.

The time-scaled process $(Y_n(\lfloor s / h(n) \rfloor)) s \geq 0$ converges weakly to X as $n \to \infty$.

Diffusion Process

Diffusion Approximation
Diffusion Approximation - e.g. [Durrett, 1996]

Suppose that

\[Y^{(n)} = (Y_t^{(n)})_{t \in \mathbb{N}_0} \]

is a discrete-time Markov chain with values in \(S^{(n)} \subseteq \mathbb{R} \) (here: \(Y_t^{(n)} = n^{-1/2} U_t \)),

\[\text{with} \quad Y_0^{(n)} = x \in \mathbb{R} \]

for all \(R < \infty \).
Diffusion Approximation - e.g. [Durrett, 1996]

Suppose that

- $Y^{(n)} = (Y^{(n)}_t)_{t \in \mathbb{N}_0}$ is a discrete-time Markov chain with values in $S^{(n)} \subseteq \mathbb{R}$ (here: $Y^{(n)}_t = n^{-1/2} U_t$),
- $h : \mathbb{N} \rightarrow \mathbb{R}_+$ is a sequence with $\lim_{n \rightarrow \infty} h(n) = 0$ (here: $h(n) = n^{-1/2}$),
Diffusion Approximation - e.g. [Durrett, 1996]

Suppose that

- \(Y^{(n)} = (Y_{t}^{(n)})_{t \in \mathbb{N}_0} \) is a discrete-time Markov chain with values in \(S^{(n)} \subseteq \mathbb{R} \) (here: \(Y_{t}^{(n)} = n^{-1/2} U_t \)),
- \(h : \mathbb{N} \to \mathbb{R}_+ \) is a sequence with \(\lim_{n \to \infty} h(n) = 0 \) (here: \(h(n) = n^{-1/2} \)),
- \(b, \sigma : \mathbb{R} \to \mathbb{R} \) are continuous functions such that the SDE

\[
dX_s = b(X_s)ds + \sigma(X_s)dB_s, \quad s > 0, \quad X_0 = x \in \mathbb{R},
\]

has a (weakly) unique (weak) solution for all initial values \(x \in \mathbb{R} \).
Diffusion Approximation - e.g. [Durrett, 1996]

Suppose that

- \(Y^{(n)} = (Y^{(n)}_t)_{t \in \mathbb{N}_0} \) is a discrete-time Markov chain with values in \(S^{(n)} \subseteq \mathbb{R} \) (here: \(Y^{(n)}_t = n^{-1/2} U_t \)),
- \(h : \mathbb{N} \rightarrow \mathbb{R}_+ \) is a sequence with \(\lim_{n \to \infty} h(n) = 0 \) (here: \(h(n) = n^{-1/2} \)),
- \(b, \sigma : \mathbb{R} \rightarrow \mathbb{R} \) are continuous functions such that the SDE

\[
\begin{align*}
dX_s &= b(X_s) \, ds + \sigma(X_s) \, dB_s, \quad s > 0, \quad X_0 = x \in \mathbb{R},
\end{align*}
\]

has a (weakly) unique (weak) solution for all initial values \(x \in \mathbb{R} \).

- \(Y^{(n)}_0 \rightarrow x \in \mathbb{R} \) as \(n \to \infty \),
Diffusion Approximation - e.g. [Durrett, 1996]

Suppose that

- $Y^{(n)} = (Y_t^{(n)})_{t \in \mathbb{N}_0}$ is a discrete-time Markov chain with values in $S^{(n)} \subseteq \mathbb{R}$ (here: $Y_t^{(n)} = n^{-1/2} U_t$).
- $h : \mathbb{N} \rightarrow \mathbb{R}_+$ is a sequence with $\lim_{n \rightarrow \infty} h(n) = 0$ (here: $h(n) = n^{-1/2}$).
- $b, \sigma : \mathbb{R} \rightarrow \mathbb{R}$ are continuous functions such that the SDE
 \[
 dX_s = b(X_s) \, ds + \sigma(X_s) \, dB_s, \quad s > 0, \quad X_0 = x \in \mathbb{R},
 \]

has a (weakly) unique (weak) solution for all initial values $x \in \mathbb{R}$.

- $Y_0^{(n)} \rightarrow x \in \mathbb{R}$ as $n \rightarrow \infty$,
- for all $R < \infty$
 - $\lim_{n \rightarrow \infty} \sup_{x \in S(n), |x| \leq R} \mathbb{E}\left[Y_{t+1}^{(n)} - x \mid Y_t^{(n)} = x \right] / h(n) - b(x) = 0$,
 - $\lim_{n \rightarrow \infty} \sup_{x \in S(n), |x| \leq R} \mathbb{E}\left[(Y_{t+1}^{(n)} - x)^2 \mid Y_t^{(n)} = x \right] / h(n) - \sigma^2(x) = 0$,
 - $\lim_{n \rightarrow \infty} \sup_{x \in S(n), |x| \leq R} \mathbb{E}\left[|Y_{t+1}^{(n)} - x|^{p} \mid Y_t^{(n)} = x \right] / h(n) = 0$ for some $p \geq 2$.
Diffusion Approximation - e.g. [Durrett, 1996]

Suppose that

- $Y^{(n)} = (Y_t^{(n)})_{t \in \mathbb{N}_0}$ is a discrete-time Markov chain with values in $S^{(n)} \subseteq \mathbb{R}$ (here: $Y_t^{(n)} = n^{-1/2} U_t$),
- $h : \mathbb{N} \to \mathbb{R}_+$ is a sequence with $\lim_{n \to \infty} h(n) = 0$ (here: $h(n) = n^{-1/2}$),
- $b, \sigma : \mathbb{R} \to \mathbb{R}$ are continuous functions such that the SDE

$$dX_s = b(X_s) ds + \sigma(X_s) dB_s, \quad s > 0, \quad X_0 = x \in \mathbb{R},$$

has a (weakly) unique (weak) solution for all initial values $x \in \mathbb{R}$.

- $Y_0^{(n)} \to x \in \mathbb{R}$ as $n \to \infty$,
- for all $R < \infty$
 - $\lim_{n \to \infty} \sup_{x \in S^{(n)}, |x| \leq R} \left[\mathbb{E} \left[Y_{t+1}^{(n)} - x \mid Y_t^{(n)} = x \right] / h(n) - b(x) \right] = 0$,
 - $\lim_{n \to \infty} \sup_{x \in S^{(n)}, |x| \leq R} \left[\mathbb{E} \left[(Y_{t+1}^{(n)} - x)^2 \mid Y_t^{(n)} = x \right] / h(n) - \sigma^2(x) \right] = 0$,
 - $\lim_{n \to \infty} \sup_{x \in S^{(n)}, |x| \leq R} \left[\mathbb{E} \left[|Y_{t+1}^{(n)} - x|^p \mid Y_t^{(n)} = x \right] / h(n) = 0 \right.$ for some $p \geq 2$.

\Rightarrow The time-scaled process $(Y_{\lfloor s/h(n) \rfloor}^{(n)})_{s \geq 0}$ converges weakly to X as $n \to \infty$.
Logistic Branching Process - Absorption Time

The limiting process we get for \(M = n/2 + \alpha n^{1/2} + o(n^{1/2}) \in \mathbb{N}, \alpha \in \mathbb{R} \) is a logistic branching process:
Logistic Branching Process - Absorption Time

The limiting process we get for $M = n/2 + \alpha n^{1/2} + o(n^{1/2}) \in \mathbb{N}$, $\alpha \in \mathbb{R}$ is a logistic branching process:

$$dX_s = \left(2\alpha X_s - \frac{7}{4} X_s^2\right) ds + \sqrt{X_s} dB_s, \quad s > 0.$$
Logistic Branching Process - Absorption Time

The limiting process we get for $M = n/2 + \alpha n^{1/2} + o(n^{1/2}) \in \mathbb{N}$, $\alpha \in \mathbb{R}$ is a logistic branching process:

$$dX_s = \left(2\alpha X_s - \frac{7}{4} X_s^2\right) ds + \sqrt{X_s} dB_s, \quad s > 0.$$

- Appears in the context of population dynamics: describes the evolution of a population under the influences of birth, mortality and inter-individual competition.
Logistic Branching Process - Absorption Time

The limiting process we get for $M = n/2 + \alpha n^{1/2} + o(n^{1/2}) \in \mathbb{N}$, $\alpha \in \mathbb{R}$ is a logistic branching process:

$$
 dX_s = \left(2\alpha X_s - \frac{7}{4} X_s^2\right) ds + \sqrt{X_s} dB_s, \quad s > 0.
$$

- Appears in the context of population dynamics: describes the evolution of a population under the influences of birth, mortality and inter-individual competition.
- Properties of X are well-studied (e.g. [Lambert, 2005]).
Logistic Branching Process - Absorption Time

The limiting process we get for $M = n/2 + \alpha n^{1/2} + o(n^{1/2}) \in \mathbb{N}$, $\alpha \in \mathbb{R}$ is a logistic branching process:

$$dX_s = \left(2\alpha X_s - \frac{7}{4} X_s^2\right) ds + \sqrt{X_s} dB_s, \quad s > 0.$$

- Appears in the context of population dynamics: describes the evolution of a population under the influences of birth, mortality and inter-individual competition.
- Properties of X are well-studied (e.g. [Lambert, 2005]).
- Initial value: start at $'X_0 = \infty'$ possible.
Logistic Branching Process - Absorption Time

The limiting process we get for $M = \frac{n}{2} + \alpha n^{1/2} + o(n^{1/2}) \in \mathbb{N}$, $\alpha \in \mathbb{R}$ is a logistic branching process:

$$dX_s = \left(2\alpha X_s - \frac{7}{4} X_s^2\right) ds + \sqrt{X_s} dB_s, \quad s > 0.$$

- Appears in the context of population dynamics: describes the evolution of a population under the influences of birth, mortality and inter-individual competition.
- Properties of X are well-studied (e.g. [Lambert, 2005]).
- Initial value: start at $X_0 = \infty$ possible.

We obtain that $n^{-1/2} T_{n,M}$ converges in distribution to the absorption time of X:

$$T_\alpha = \inf\{s \geq 0 \mid X_s = 0\}.$$
Three sample runs of the dispersion process with \(n = 10^7 \) and \(M = n/2 \), i.e. \(\alpha = 0 \).
The trajectory is revealed only after \(t' = 500 \), where \(U_{t'} \approx 10^4 \) in all cases.
Summary - Outlook

For $\alpha \in \mathbb{R}$ and $M = n/2 + \alpha n^{1/2} + o(n^{1/2})$:

- **Diffusion approximation**: Approximate the (scaled) number of unhappy particles by a logistic branching process.

 \Rightarrow As $n \to \infty$, $n^{-1/2} T_{n,M}$ converges in distribution to the absorption time T_{α} of the logistic branching process.
Summary - Outlook

For $\alpha \in \mathbb{R}$ and $M = n/2 + \alpha n^{1/2} + o(n^{1/2})$:

- **Diffusion approximation**: Approximate the (scaled) number of unhappy particles by a logistic branching process.

 \Rightarrow As $n \to \infty$, $n^{-1/2} T_{n,M}$ converges in distribution to the absorption time T_α of the logistic branching process.

- Infer properties of T_α from results from stochastic calculus, e.g. expressions for all moments.
Summary - Outlook

For $\alpha \in \mathbb{R}$ and $M = n/2 + \alpha n^{1/2} + o(n^{1/2})$:

- **Diffusion approximation**: Approximate the (scaled) number of unhappy particles by a logistic branching process.

 \Rightarrow As $n \to \infty$, $n^{-1/2} T_{n,M}$ converges in distribution to the absorption time T_α of the logistic branching process.

- Infer properties of T_α from results from stochastic calculus, e.g. expressions for all moments.

Diffusion approximation indicates a **stronger statement for the total number of jumps** than $(n \ln(n))^{-1} \sum_{t \geq 0} U_t \xrightarrow{d} \frac{2}{7}$:
For $\alpha \in \mathbb{R}$ and $M = n/2 + \alpha n^{1/2} + o(n^{1/2})$:

- **Diffusion approximation**: Approximate the (scaled) number of unhappy particles by a logistic branching process.

 \[\Rightarrow \text{As } n \to \infty, \; n^{-1/2} T_{n,M} \text{ converges in distribution to the absorption time } T_\alpha \text{ of the logistic branching process.} \]

- Infer properties of T_α from results from stochastic calculus, e.g. expressions for all moments.

Diffusion approximation indicates a stronger statement for the total number of jumps than $(n \ln(n))^{-1} \sum_{t \geq 0} U_t \xrightarrow{d} \frac{2}{7}$:

- There is a continuous random variable A_α such that, as $n \to \infty$,

 \[
n^{-1} \left(\sum_{t \geq 0} U_t - \frac{2}{7} n \ln n \right) \xrightarrow{d} A_\alpha.
 \]
Summary - Outlook

For $\alpha \in \mathbb{R}$ and $M = n/2 + \alpha n^{1/2} + o(n^{1/2})$:

- **Diffusion approximation**: Approximate the (scaled) number of unhappy particles by a logistic branching process.

 \Rightarrow As $n \to \infty$, $n^{-1/2} T_{n,M}$ converges in distribution to the absorption time T_{α} of the logistic branching process.

- Infer properties of T_{α} from results from stochastic calculus, e.g. expressions for all moments.

Diffusion approximation indicates a stronger statement for the total number of jumps than $(n \ln(n))^{-1} \sum_{t \geq 0} U_t \overset{d}{\to} \frac{2}{7}$:

- There is a continuous random variable A_α such that, as $n \to \infty$,

 $$n^{-1} \left(\sum_{t \geq 0} U_t - \frac{2}{7} n \ln n \right) \overset{d}{\to} A_\alpha.$$

- Distribution of A_α can be described via the properties of $\int_0^\infty X_s ds$.
Dispersion Process - Simulation

The number of unhappy particles U_t fluctuates strongly:

Three sample runs of the dispersion process with $n = 10^7$ and $M = n/2$, i.e. $\alpha = 0$. The trajectory is revealed only after $t' = 500$, where $U_{t'} \approx 10^4$ in all cases.
Thank you!
References

De Ambroggio, U. and Makai, T. and Panagiotou, K. and Steibel, A. (2024)
Limit Laws for Critical Dispersion on Complete Graphs

Dispersion processes

De Ambroggio, U. and Makai, T. and Panagiotou, K. (2023)
Dispersion on the Complete Graph

Durrett, R. (1996)
Stochastic calculus – a practical introduction
Probability and Stochastics Series. CRC Press, Boca Raton, FL.

Lambert, A. (2005),
The branching process with logistic growth,