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Bit-array-based-alternatives to HyperLoglog

* A fundamental problem in data science
¢ Simple, elegant and efficient solutions
* A simple-algorithm

* HyperBitBit

* Memory vs. accuracy comparisons



Cardinality counting: a fundamental problem in data science

Q. In a given stream of data values, how many different values are present?

Reference application. How many unique visitors in a web log ?

log.07.f3.txt _

Ivvv- u - u — I W = I e’ %1 I Y e B Wi 1§ vw = W Y § I o W B § H § § W SN

117.222.48.163

pool-71-104-94-246.1sanca.dsl-w.verizon.net UNIX (1970s-present)
1.23.193.58 % sort@1og.07.f3.txt | wc -1
188.134.45.71 1112365 o }
1.23.193.58 unique
gsearch.CS.Princeton.EDU

pool-71-104-94-246.1sanca.dsl-w.verizon.net SQL (1970s-present)
81.95.186.98.freenet.com.ua

81.95.186.98.freenet.com.ua SELECT |
81.95.186.98.freenet.com.ua DATE_TRUNC(‘day’,event_time),
CPE-121-218-151-176.1nse3.cht.bigpond.net.au COUNT(DISTINCT user_id),
117.211.88.36 COUNT(DISTINCT url)

- | 6 million strings FROM weblog

State of the art in the wild for decades. Sort, then count.

"Optimal” solution. Use a hash table. <«— order of magnitude faster than sort-based solution

Q. | can’t use a hash table. The stream is much too big to fit all values in memory. Now what?



Cardinality estimation

A. Look for a way to estimate the value of N, the number of distinct values in the stream.

Practical cardinality estimation problem
e Make one pass through the stream.
e Use as few operations per value as possible
e Use as little memory as possible.
e Produce as accurate an estimate as possible.

typical applications ~How many unique How many different cars
where exact count is visitors to my website? passed here this year?
not really necessary
How many different IP How many different values
addresses h|t th|S nOde? for a database Jo|n?

To fix ideas on scope (202x): Think of billions of streams each having trillions of values.

Q. How much memory is needed to estimate N to within, say, 10% accuracy?

A. Much less than you might think!



Timeline of milestones in cardinality estimation

introduction of
the idea of
data streaming

l

1983 1985 1999 2003 | 2007/ 2024
0 ® O O O O

numerous complexity results
little impact on practical computing

various approaches, more
operations, different statistics

Adaptive Complexity of Approximating
Sampling Frequency Moments
(Wegman) (Alon, Matias, Szegedy) HyperLoglLog
(Flajolet-Fusy-
Gandouet-Meunier)
Probabilistic Counting Log-Log Counting HyperBit* _
(Flajolet-Martin) (Durand-Flajolet) (Janson-Lumbroso-Sedgewick)

For some details, see "The Story of HyperLoglLog: How Flajolet Processed Streams with Coin Flips" J. Lumbroso, 201 3.
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Simple, elegant, and efficient solutions
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This extended abstract describes and analyses a near-optimal probabilistic algorithm, HYPERLOGLOG, dedicated to
estimating the number of distinct elements (the cardinality) of very large data ensembles. Using an auxiliary memory
of m units (typically, “short bytes”), HYPERLOGLOG performs a single pass over the data and produces an estimate
of the cardinality such that the relative accuracy (the standard error) is typically about 1.04/,/m. This improves on
the best previously known cardinality estimator, LOGLOG, whose accuracy can be matched by consuming only 64%
of the original memory. For instance, the new algorithm makes it possible to estimate cardinalities well beyond 10°
with a typical accuracy of 2% while using a memory of only 1.5 kilobytes. The algorithm parallelizes optimally and
adapts to the sliding window model.

Introduction

The purpose of this note is to present and analyse an efficient algorithm for estimating the number of
distinct elements, known as the cardinality, of large data ensembles, which are referred to here as multisets
and are usually massive streams (read-once sequences). This problem has received a great deal of attention
over the past two decades, finding an ever growing number of applications in networking and traffic
monitoring, such as the detection of worm propagation, of network attacks (e.g., by Denial of Service),
and of link-based spam on the web [3]. For instance, a data stream over a network consists of a sequence
of packets, each packet having a header, which contains a pair (source—destination) of addresses, followed
by a body of specific data; the number of distinct header pairs (the cardinality of the multiset) in various
time slices is an important indication for detecting attacks and monitoring traffic, as it records the number
of distinct active flows. Indeed, worms and viruses typically propagate by opening a large number of
different connections, and though they may well pass unnoticed amongst a huge traffic, their activity
becomes exposed once cardinalities are measured (see the lucid exposition by Estan and Varghese in [11]).
Other applications of cardinality estimators include data mining of massive data sets of sorts—natural
language texts [4, 5], biological data [17, 18], very large structured databases, or the internet graph, where
the authors of [22] report computational gains by a factor of 5007 attained by probabilistic cardinality
estimators.

1365-8050 (© 2007 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France



First step: Hash the values

Transform value to a “random” computer word.
e Compute a hash function that transforms
data value into a 32- or 64-bit value. e
e Cardinality count is unaffected (with high probability).
e Built-in capability in modern systems.
e Allows use of fast machine-code operations.

20th century: use 32 bits (millions of values)
21st century: use 64 bits (quintillions of values)

State-of-the-art-"Mersenne twister" uses only a few machine-code instructions.

Bottom line: Do cardinality estimation on streams of (binary) integers, not arbitrary value types.

01111000100111110111000111001000
01111000100111110111000111001000
01110101010110110000000011011010
00110100010001111100010100111010
00010000111001101000111010010011
00001001011011100000010010010111
00001001011011100000010010010111
00111000101001001011010101001100
00111000101001001011010101001100
01101001001000011100110100110011

NNNNTNANNANATTITINATTINANTTINTTINANTNATNANTN

“‘Random” except for the fact
that some values are equal.



Second step: Focus on the trailing 1s

Let X be the max number of trailing 1s in a random stream of random distinct binary values.

Pr{ no value has k trailing 1s } = (1 )N ~ e_N/2k= Pr{X <=k}

2k
~]1 when kis small

—N/2K
PriX>k }~1—e ~0 when k is large

E(X) ~ Z (1 _ e‘mk)

k>0
1 -
N=1024
1___6—%W2k
O | | | | | | | |
0 10 30
k
2(1—e_N/z)=l+l+l+l+l+l+l+l+l+l+l+ ... + 0+0+0+0+0+0+0+0+0+...
k>0 ~lg N terms are ~1 the rest are all ~0
a few are not close
to O or 1

Takeaway. E(X) is slightly larger than Ig N

111100111111110010. . .
111100010100111010. . .
011100110100110@11) . .
0110000111010011@1) . .
110000000011011010. . .
001001110010100000. . .
111100010100111010. . .
1111010101101100@1) . .
000111000111001000. . .
110000000011011010. . .
01100011101001011) . .
100000010010010111) . .

001011010101001100. ..

10



Third step: stochastic splitting

Goal: Perform M independent experiments.

Alternative 1: M independent hash functions? No, too expensive.

Alternative 2: M-way alternation? No, bad results for certain inputs. / 01 01 01

02 02 02
01 02 03 04 01 02 03 04 01 02 03 04 =—

? 03 03 03
04 04 04
Alternative 3 (Flajolet-Martin): Stochastic splitting.

Use second hash to divide stream into 27 independent streams key point: equal values
all go to the same stream

_/—09 07 07

1110 11
11 09 07 23 31 07 22 22 10 11 39 21 =—

?23 22 22 21
31 39



Fourth step: average and analyze

LogLog: Use arithmetic mean of max # trailing 1s in the substreams.

bias: e ’\/2 = .794028

std error: ~ CM/\/M where ¢, ~ \/(ln 2)2/12 + 7%/6 ~ 1.30

memory: 8M bits (M numbers, each about lg N and stored in an 8-bit byte)

HyperLoglLog: Use geometric mean of max # trailing 1s in the substreams.

1
bias: = .]2134
2In?2

std error: ~ 3 /\/M where f ~1/3In2—1 ~ 1.04

memory: 8M bits (M numbers, each about Ig N and stored in an 8-bit byte)

12



Goal: Optimal use of memory

HyperLoglLog

1
bias: = 72134
2In2

std error: ~ 3 /\/M where f ~1/3In2—1 ~ 1.04

memory: 8M bits (M numbers, each about Ig N and stored in an 8-bit byte)

HyperBit?

bias: 227?
std error: 272?

memory: M bits (one bit per stream)

|3
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A simple algorithm: HyperBitT

Idea: Start with a rough estimate T of Ig(N/M)

Compute fraction beta of M substreams with no values having > T trailing 1s.
Use 2T to estimate N/M, modified by the bias factor In(1/beta) (proof to follow).

public static long
estimate(Iterable<String> stream, int M, int T)

{
bit[] sketch = new bit[M];
for (String s : stream)
{
long x = hashl(s); // 64-bit hash
int k = hash2(s, M); // (19 M) b1t hash
1f (r(x) >= T) sketch[k] =
¥
double beta = 1.0 - 1.0*p(sketch) /M;
return (long) (Math.pow(2, T)*M*Math.log(l/beta));
¥

Effective only when T is not large or small (stay tuned).

Details.
e Mis the number of substreams
e T is an estimate of Ig(N/M)

e sketch is an M-bit array
(initialized to all 0s)

e r(x) is # of trailing 1s in x
e p(x) is#of 1sinx

e beta is fraction of Os in sketch

Notes.

e nO bit array in Java, use shift/mask
in arrays of integers

e r(x)>=T is easily computed

e p() computation is easily avoided
5



HyperBitT mean value analysis (elementary)

If there are Mf Os in the sketch, what is the expected number of values that have been processed?

In a data stream with v distinct values

e Pr {a given value has at least T trailing 1s} = 1/21
e Pr{no item has at least T trailing 1s} = (1 2T)" ~ e_"/zT
t

corresponding bit in sketch is O

After Mv distinct values (approximately v per stream) have been processed

e distribution of # of Os in sketch is binomial B(M, e“’/zT)

T
e expected number of Os in sketch is ~ Me™"'?

« Algorithm terminates with Me "2 = M, or v =2"In(1/p)

Theorem. Expected number of values processed is ~ My = M - 2" - In(1/5)

|6



HyperBitT distribution analysis (Janson)

Theorem. The distribution of the number of values processed is asymptotically normal with

_ 1/ —1 C 1/ —1
mean N = M - 2" - In(1//) and standard error V1P — " \Where Cp = V17b .
VM -In(1/p) /M In1/p

2.00 -

1.50 -
1.24 —

Ex. cgis < 1.5 for .043 <3 <.539 and always > 1.243

l
.043 .539

|7



Range of reasonable accuracy depends on M and T but is quite large

Expected number of values processed is M - 2" - In(1/p)

"Reasonable accuracy": Standard error is less than 1.5/4/M (when .043 < 8 < .539)

Ex. M= 1024

M- 2T - In(1/B)

T 2T B=.539 | B=.043
5 32 20251 103106
6 64 40503 | 206212
7 128 81007 | 412425
8 256 162015 | 824850

T=5 b4 <«—— range where std error is < 1.5/\/M for T=5
T =6 |—

T =7 p———

T -8 pbriin04»4aoomom—m—-orm—or«re— - ———r-nuome—

!
162015

|
500000

|
824850

1000000

18



Application example

How many different values in my web log (1 million entries)?

Q. How accurate an answer do you want?

.8 1 1.2
A. 95% sure to be within 10%. B S

1.96 standard errors

1.5 1.5
Recomendation 1. Take M = 1024 to get standard error 37 and 95% sure to be within 1.96 - %Y <10 %

Q. What's your rough guess?

A. Somewhere between 100,000 and 900,000.

Recommendation 2. Take T = 8 for result to be valid unless it is much smaller or larger than that.

<€« rough guess

T=8 | | «—— range where std error is < 1.5+/M

’ | | | ’
0 162015 500000 824850 1000000

19



HyperBitT validation | (M=1024, T = 8)

Experiment. 1 million inputs, 10000 trials

/ normal with std error 1.248/\/M

2000 I
1500 \
50-interval histogram 1 l
height of each bar is # of
estimates in its interval 1000 ‘ ‘
500 ‘
. 4 |

0O 100000 368217 1000000
HyperBit (M = 1024, T = 8) 10000 trials



HyperbitT validation Il (M=1024, T = 8)

Experiment. 100 trials for x*10000 inputs for x from 1 to 100 (10000 trials) with M= 1024

AT H
3.
:lu
- o
o478 range where std erroris < 1.5\/M = exact cardinality
/ ® oOne experiment
e average of 100 trials
O |
0 1000000

HyperBit (M = 1024, T = 8) 100 trials every 10000 inputs

21
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HyperBitBit

Unfortunate truth. While very useful in many contexts, HyperBitT is NOT a streaming algorithm.

Goal. Eliminate need to provide rough estimate of cardinality.

Simple idea (HyperBitBit, RS, 2015): Make T a variable and increment as needed.
e Start at T=1

e Maintain a second sketch for T+1.

e When sketch is half full, increment T

e Then set sketch1 = sketch2 and set sketch?2 to O.

e Try to estimate the error inherent in resetting sketch2 to O.

Questions.
e Why half full?
e Why T+17
e What's the bias?
e What's the standard error?

Good news. HyperBitT analysis provides proper settings and the answers to these questions.

23



HyperBitBit

Idea: Keep track of sketches for T and T+4. When sketch for

public static long estimate(Iterable<String> stream)

{
bit[] sketchl new bit[M];

bit[] sketch? new bit[M];
for (String s : stream)

{

long X hashl(s); // 64-bi1t hash
int k = hash2(s, M); // (1g M)-bit hash
1f (r(x) >= T ) sketchl[k] = 1;

if (r(x) >= T+4) sketch2[k] = 1;
if (p(sketchl) > .988*M)

{
T = T+4;
sketchl = sketch?2;
sketch2 = new bi1t[M];
}

}
double beta = 1.0 - 1.0*p(sketchl) /M;

return (long) (Math.pow(2, T)*M*Math.log(l/beta));
}

Key questions: Why 4? Why .988? Why In(1/f) ?

fills, increment T by 4 and update sketches.

Details.
e T is an estimate of Ig(N/M)

e sketchl/2are bit arrays
(initialized to all Os)

e r(x) is # of trailing 1s in x
e p(x) is#of 1sinx
e beta is fraction of Os in sketch

e Correct at end with bias factor
(a function of beta)

Notes.
e sketch for T+8 is likely all Os
e r(x)>=T is easily computed
e p() computation is easily avoided

24



Parameter values for HyperBitBit

estimated

Q1. How much to increment T ? / cardinality

= —In(1/5)/2'
M2T ln(llﬁ) — M2T+i ln(l/ﬂl) ﬁz €XP( Il( IB) )

T T i Jo 12 3 4 5 6 7 8

fraction of Os fraction of Os
in sketch for T in sketch for T+i :Bi 03 .17 .42 .64 .80 .90 .95 .97 .99

A1l. With T+4, sketch for T+8 would be nearly all Os even when sketch for T is 97% 15.
HyperBitT analysis applies throughout.

Q2. When to increment T ?

A2. When std error for T+4 equals std error for T — (do the math) — when sketch is 98.8% full.

Q3. Reported cardinality count ? Q4. Relative std error ?

A3. M2 In(1/p5). A4. About 1.46/4/M, on average.

25
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Algorithm comparisons: memory vs. accuracy

Q. Given M* bits of memory, how do the algorithms compare??

¢ eb

A. Using b bits per item, the number of streams is M*/b and the relative error is =

\/ M*/b e

memory use b C std error

2.35

\/W

HyperLoglLog M bytes 8 1.05

2.06
itBi 2M bi 2 1.4
HyperBitBit bits 6 \/W

27



HyperBitBitBit and HyperTwoBits

HyperBitBit Drawback. Too many nonzero bits in T+8 sketch for large M.

Fix. HyperBitBitBit.

HyperBitBitBit Drawback. Uses 3M bits.

Fix. Use array of 2-bit values (#1s in corresponding position in sketches) instead.

Ex. (M= 64, increment = 4)
sketch forT 1111111111101110111111111111111311111101110111111001111111111111
before sketch for T+4 000100111010000000000001000011001011000000111100001000000000000
sketch for T+8 000000010000000000000000000000000001000000001100001000000000000
two-bit value 111211232120111011111112111122112123101110223311003111111111111

sketch for T 000100111010000000000001000011001011000000111100001000000000000

after T+=4 sketch for T+4 000000010000000000000000000000000001000000001100001000000000000
sketch for T+8 000000000000000000000000000000000000000000000000000000000000000

two-bit value 000100121010000000000001010011001012000000112200002000000000000

Exercise in hacking. Implement with code on real machines (see appendix in paper)

28



Algorithm comparisons: memory vs. accuracy

Q1. Given M* bits, what accuracy is expected?

A1l. With b bits per item, accuracy is c/r/M*/b.

b C M*=128 M*=8K
HyperLogLog 8 1.05 26% 3.3%
HyperTwoBits 2 1.46 18% 2.3%

accuracy x = c/\/M*/b when using M* bits

Q2. How many bits to achieve a given accuracy x ?

A2. Solve x = ¢/r/M*/b for M* to get M* = b(c/x)>.

b C x=2% x=20%
HyperLoglog S8 1.05 21632 216
HyperTwoBits 2 1.46 10658 106

memory M* = b(c/x)* for accuracy within 1 + x

29



Still open: HyperBit

public static long
estimate(Iterable<String> stream, int M)

g Details.
int T =1; e Mis the number of substreams
S?EEESEEEZ’I ~ new bit[M]: e T is an estimate of Ig(N/M)
for (String s : stream) e sketch is an M-bit array
{ (initialized to all 0s)
long x = hashl(s); // 64-bit hash

int k = hash2(s, M); // (19 M) bit hash
1f (r(x) >= T) sketch[k] =

beta = 1.0 - 1.0*% p(sketch)/M,

if (beta > THRESHHOLD)

{
T += INCREMENT:
sketch = new sketch[];
¥
}
return (int) (Math.pow(2, T)*M*BIAS);

}

Open: Analysis proving values for threshhold, increment, and bias

some choices test well empirically

30
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