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Cardinality counting: a fundamental problem in data science

Q. In a given stream of data values, how many different values are present?

Reference application. How many unique visitors in a web log ?

State of the art in the wild for decades. Sort, then count.

SELECT 
DATE_TRUNC(‘day’,event_time), 
COUNT(DISTINCT user_id), 
COUNT(DISTINCT url) 
FROM weblog

SQL (1970s-present) 

log.07.f3.txt

6 million strings

% sort -u log.07.f3.txt | wc -l 
1112365

UNIX (1970s-present) 

“unique”

"Optimal" solution. Use a hash table. order of magnitude faster than sort-based solution

Q. I can’t use a hash table. The stream is much too big to fit all values in memory. Now what?



typical applications 
where exact count is 
not really necessary
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Cardinality estimation

Practical cardinality estimation problem 

• Make one pass through the stream. 

• Use as few operations per value as possible 

• Use as little memory as possible. 

• Produce as accurate an estimate as possible.

How many unique 
visitors to my website?

How many different IP 
addresses hit this node?

How many different values 
for a database join?

To fix ideas on scope (202x): Think of billions of streams each having trillions of values.

How many different cars 
passed here this year?

A. Look for a way to estimate the value of N, the number of distinct values in the stream.

Q. How much memory is needed to estimate N to within, say, 10% accuracy?

A. Much less than you might think!
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Timeline of milestones in cardinality estimation

2003

Log-Log Counting 
(Durand-Flajolet)

2024

HyperBit* 
(Janson-Lumbroso-Sedgewick)

2007

HyperLogLog 
(Flajolet-Fusy-

Gandouet-Meunier)

1999

Complexity of Approximating 
Frequency Moments 

(Alon, Matias, Szegedy)

numerous complexity results 
little impact on practical computing

various approaches, more 
operations, different statistics

For some details, see "The Story of HyperLogLog: How Flajolet Processed Streams with Coin Flips" J. Lumbroso, 2013.

Probabilistic Counting 
(Flajolet-Martin)

1983

Adaptive 
Sampling 
(Wegman)

1985

introduction of 
the idea of 

data streaming
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Simple, elegant, and efficient solutions

Key steps 

• Hash each item so as to work with "random" values.  

• Develop a sketch that enables cardinality estimation. 

• Split stream into M substreams and record their estimates. 

• Average the estimates and precisely analyze the bias.

Probabilistic counting sketches are  M 32-bit  values.

LogLog algorithm sketches are M 5-bit   values.

Flajolet and Martin  
Probabilistic Counting Algorithms 

for Data Base Applications

1983 2003

Durand and Flajolet  
LogLog Counting of Large Cardinalities

2007

64-bit

8-bit

21st century value

packing/unpacking 6-bit values 
generally not worth the trouble

Flajolet, Fusy, Gandouet, and Meunier 
HyperLogLog: Analysis of a near-optimal 

cardinality estimation algorithm



00011000011010111100111111110010 
00110100010001111100010100111010 
01101001001000011100110100110011 
01101001001000011100110100110011 
01101001001000011100110100110011 
01001110111100011000011101001101 
01101001001000011100110100110011 
01110101010110110000000011011010 
01101001001000011100110100110011 
01101001001000011100110100110011 
01100001000111001001110010100000 
00110100010001111100010100111010 
01000011110111111101010110110001 
01111000100111110111000111001000 
01111000100111110111000111001000 
01110101010110110000000011011010 
00110100010001111100010100111010 
00010000111001101000111010010011 
00001001011011100000010010010111 
00001001011011100000010010010111 
00111000101001001011010101001100 
00111000101001001011010101001100 
01101001001000011100110100110011 
00001000011101100110110010100101 
00001001011011100000010010010111 
00001001001011010110111101111110 
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First step: Hash the values

Transform value to a “random” computer word. 

• Compute a hash function that transforms  
data value into a 32- or 64-bit value. 

• Cardinality count is unaffected (with high probability). 

• Built-in capability in modern systems. 

• Allows use of fast machine-code operations.

21st century: use 64 bits (quintillions of values)
20th century: use 32 bits (millions of values)

Bottom line: Do cardinality estimation on streams of (binary) integers, not arbitrary value types.

“Random” except for the fact  
that some values are equal.

State-of-the-art-"Mersenne twister" uses only a few machine-code instructions.



111100111111110010... 
111100010100111010... 
011100110100110011... 
011100110100110011... 
011100110100110011... 
011000011101001101... 
011100110100110011 .. 
110000000011011010... 
011100110100110011... 
011100110100110011... 
001001110010100000... 
111100010100111010... 
111101010110110001... 
000111000111001000... 
000111000111001000... 
110000000011011010... 
111100010100111010... 
011000111010010011... 
100000010010010111... 
100000010010010111... 
001011010101001100...
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S

Pr { no value has k trailing 1s } = Pr { X <= k } 

Pr { X > k  }

= (1 −
1
2k )N ∼ e−N/2k

∼ 1 − e−N/2k

Takeaway. E(X) is slightly larger than lg N  

lgN 1 − e−N/2k

N = 1024

~1 when k is small 
~ 0 when k is large

E(X) ∼ ∑
k≥0

(1 − e−N/2k)

~lg N terms are ~1
a few are not close 

to 0 or 1

the rest are all ~0

Second step: Focus on the trailing 1s

1+1+1+1+1+1+1+1+1+1+1 +    .  .  .    +  0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + . . .∑
k≥0

(1 − e−N/2k) =

Let X be the max number of trailing 1s in a random stream of random distinct binary values.



11

Third step: stochastic splitting

Goal: Perform  M independent experiments.

Alternative 3 (Flajolet-Martin): Stochastic splitting.  
           Use second hash to divide stream into 2m independent streams key point: equal values 

all go to the same stream

Alternative 1: M independent hash functions? No, too expensive.

Alternative 2: M-way alternation? No, bad results for certain inputs.

01 02 03 04 01 02 03 04

01 01

02 02

03 03

04 04

01 02 03 04

01

02

03

04

10 11 39 21

09 07 07

11

23 22 22

31

11 09 07 23 31 07 22 22
21

39

10 11
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Fourth step: average and analyze

LogLog: Use arithmetic mean of max # trailing 1s in the substreams. 

bias:            e−γ 2 ≐ .794028

std error:  where ∼ cM/ M cM ∼ (ln 2)2/12 + π2/6 ≈ 1.30

HyperLogLog: Use geometric mean of max # trailing 1s in the substreams. 

bias:            
1

2 ln 2
≐ .72134

std error:  where ∼ β∞/ M β∞ ∼ 3 ln 2 − 1 ≈ 1.04

memory:     8M bits (M numbers, each about   and stored in an 8-bit byte)lg N

memory:     8M bits  (M numbers, each about   and stored in an 8-bit byte)     lg N
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Goal: Optimal use of memory

HyperBit? 

bias:           ???

std error:  ???

memory:     M bits (one bit per stream)       

bias:            e−γ 2 ≐ .794028

std error:  where ∼ cM / M cM ∼ (ln 2)2/12 + π2/6 ≈ 1.30

memory:     8M bits       

HyperLogLog 

bias:            
1

2 ln 2
≐ .72134

std error:  where ∼ β∞/ M β∞ ∼ 3 ln 2 − 1 ≈ 1.04

memory:     8M bits  (M numbers, each about   and stored in an 8-bit byte)     lg N
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A simple algorithm: HyperBitT

public static long 
estimate(Iterable<String> stream, int M, int T) 
{ 
   bit[] sketch = new bit[M]; 
   for (String s : stream) 
   { 
      long x = hash1(s);      // 64-bit hash 
      int  k = hash2(s, M);   // (lg M)-bit hash 
      if (r(x) >= T) sketch[k] = 1; 
   } 
   double beta = 1.0 - 1.0*p(sketch)/M; 
   return (long) (Math.pow(2, T)*M*Math.log(1/beta)); 
}

Details. 

• M is the number of substreams 

• T is an estimate of lg(N/M) 

• sketch is an M-bit array 
  (initialized to all 0s) 

• r(x)  is # of trailing 1s in x 

• p(x)  is # of 1s in x 

• beta is fraction of 0s in sketch

Idea:  Start with a rough estimate T of lg(N/M) 
          Compute fraction beta of M substreams with no values having > T trailing 1s. 
          Use 2T to estimate N/M, modified by the bias factor ln(1/beta) (proof to follow).

Notes. 

• no bit array in Java, use shift/mask 
in arrays of integers 

• r(x)>=T is easily computed 

• p() computation is easily avoidedEffective only when T is not large or small (stay tuned).
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HyperBitT mean value analysis (elementary)

If there are  0s in the sketch, what is the expected number of values that have been processed?Mβ

In a data stream with v distinct values 

• Pr {a given value has at least T trailing 1s }   

• Pr {no item has at least T trailing 1s } 

= 1/2T

After Mv distinct values (approximately v per stream) have been processed 

• distribution of # of 0s in sketch is binomial    

• expected number of 0s in sketch is  

• Algorithm terminates with , or 

B(M, e−v/2T)

∼ Me−v/2T

Me−v/2T = Mβ v = 2T ln(1/β)

Theorem. Expected number of values processed is  ∼ Mv = M ⋅ 2T ⋅ ln(1/β)

corresponding bit in sketch is 0

= (1 −
1
2T )v ∼ e−v/2T
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HyperBitT distribution analysis (Janson)

1,243

𝛽

c𝜷
Ex. c𝜷 is < 1.5 for .043 < 𝛽 < .539 and always > 1.243 

Theorem. The distribution of the number of values processed is asymptotically normal with 

mean  and standard error  where .N = M ⋅ 2T ⋅ ln(1/β)
1/β − 1

M ⋅ ln(1/β)
=

cβ

M
cβ ≡

1/β − 1
ln 1/β
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Range of reasonable accuracy depends on M and T but is quite large

Expected number of values processed is   

"Reasonable accuracy": Standard error is less than   (when )

M ⋅ 2T ⋅ ln(1/β)

1.5/ M .043 < β < .539

T 2T 𝜷 = .539 𝜷 = .043

5 32 20251 103106

6 64 40503 206212

7 128 81007 412425

8 256 162015 824850

T = 6
T = 7

0 500000 1000000

range where std error is  for T = 5 < 1.5/ M

824850

T = 8

162015

Ex. M = 1024

T = 5

M ⋅ 2T ⋅ ln(1/β)
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Application example

How many different values in my web log (1 million entries)? 

Q. What's your rough guess?

A. Somewhere between 100,000 and 900,000.

Q. How accurate an answer do you want?

A. 95% sure to be within 10%.

Recomendation 1.  Take M = 1024 to get standard error  and 95% sure to be within 
1.5
32

1.96 ⋅
1.5
32

< 10 %

Recommendation 2.   Take T = 8 for result to be valid unless it is much smaller or larger than that.

95%

.8 1.21

1.96 standard errors

T = 8 range where std error is   < 1.5/ M

rough guess

0 500000 824850 1000000162015
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HyperBitT validation I (M=1024, T = 8)

Experiment. 1million inputs, 10000 trials 

50-interval histogram

height of each bar is # of 
estimates in its interval 

normal with std error 1.248/ M
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HyperbitT validation II (M=1024, T = 8)

Experiment. 100 trials for x*10000 inputs for x from 1 to 100 (10000 trials) with M = 1024 

one experiment 
average of 100 trials

exact cardinality
range where std error is   < 1.5/ M
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HyperBitBit

Unfortunate truth. While very useful in many contexts, HyperBitT is NOT a streaming algorithm.

Simple idea (HyperBitBit, RS, 2015): Make T a variable and increment as needed.  

• Start at T=1 

• Maintain a second sketch for T+1. 

• When sketch is half full, increment T 

• Then set sketch1 = sketch2 and set sketch2 to 0. 

• Try to estimate the error inherent in resetting sketch2 to 0.

Goal. Eliminate need to provide rough estimate of cardinality.

Questions. 

• Why half full? 

• Why T+1? 

• What's the bias? 

• What's the standard error?

Good news. HyperBitT analysis provides proper settings and the answers to these questions.
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HyperBitBit

Idea: Keep track of sketches for T and T+4.  When sketch for T fills, increment T by 4 and update sketches.

public static long estimate(Iterable<String> stream) 
{ 
   bit[] sketch1 = new bit[M]; 
   bit[] sketch2 = new bit[M]; 
  for (String s : stream) 
   { 
      long x = hash1(s);      // 64-bit hash 
      int  k = hash2(s, M);   // (lg M)-bit hash 
      if (r(x) >= T  ) sketch1[k] = 1; 
      if (r(x) >= T+4) sketch2[k] = 1; 
     if (p(sketch1) > .988*M) 
      { 
         T = T+4; 
         sketch1 = sketch2; 
         sketch2 = new bit[M]; 
      } 
   } 
   double beta = 1.0 - 1.0*p(sketch1)/M; 
   return (long) (Math.pow(2, T)*M*Math.log(1/beta)); 
}

Details. 

• T is an estimate of lg(N/M) 

• sketch1/2are bit arrays  
(initialized to all 0s) 

• r(x)  is # of trailing 1s in x 

• p(x)  is # of 1s in x 

• beta is fraction of 0s in sketch 

• Correct at end with bias factor 
(a function of beta)

Notes. 

• sketch for T+8 is likely all 0s 

• r(x)>=T is easily computed 

• p() computation is easily avoided

Key questions: Why 4? Why .988? Why  ?ln(1/β)
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Parameter values for HyperBitBit 

Q1. How much to increment T ?

i 0 1 2 3 4 5 6 7 8

.03 .17 .42 .64 .80 .90 .95 .97 .99

A1. With T+4, sketch for T+8 would be nearly all 0s even when sketch for T is 97% 1s. 

       HyperBitT analysis applies throughout.

βi = exp(−ln(1/β)/2i)

βi

Q2. When to increment T ?

A2. When std error for T+4 equals std error for T — (do the math) — when sketch is 98.8% full.

Q3. Reported cardinality count ?  

A3. .M2T ln(1/β)

Q4. Relative std error ?  

A4. About  , on average.1.46/ M

M2T ln(1/β) = M2T+i ln(1/βi)

 fraction of  0s 
in sketch for T

 fraction of  0s 
in sketch for T+i

estimated 
cardinality
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Algorithm comparisons: memory vs. accuracy

memory use b c std error

HyperLogLog M bytes 8 1.05

HyperBitT M bits 1 1.32

HyperBitBit 2M bits 2 1.46

Q. Given  bits of memory, how do the algorithms compare??M*

A. Using b bits per item, the number of streams is  and the relative error is M*/b c

M*/b
=

c b

M*

2.35

M*

1.32

M*

2.06

M*



28

HyperBitBitBit and HyperTwoBits

HyperBitBitBit Drawback. Uses 3M bits.

Fix. Use array of 2-bit values (#1s in corresponding position in sketches) instead.

Ex. (M = 64, increment = 4)

before

sketch for T 111111111110111011111111111111111111101110111111001111111111111

sketch for T+4 000100111010000000000001000011001011000000111100001000000000000

sketch for T+8 000000010000000000000000000000000001000000001100001000000000000

two-bit value 111211232120111011111112111122112123101110223311003111111111111

after T+=4

sketch for T 000100111010000000000001000011001011000000111100001000000000000

sketch for T+4 000000010000000000000000000000000001000000001100001000000000000

sketch for T+8 000000000000000000000000000000000000000000000000000000000000000

two-bit value 000100121010000000000001010011001012000000112200002000000000000

HyperBitBit Drawback. Too many nonzero bits in T+8 sketch for large M.

Fix. HyperBitBitBit.

Exercise in hacking. Implement with code on real machines (see appendix in paper)
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Algorithm comparisons: memory vs. accuracy

b c x = 2% x = 20%

HyperLogLog 8 1.05 21632 216

HyperBitT 1 1.32 4356 44

HyperTwoBits 2 1.46 10658 106

Q2. How many bits to achieve a given accuracy x ?

A1. With b bits per item, accuracy is .c/ M*/b

memory  for accuracy within M* = b(c/x)2 1 ± x

b c M*=128 M*=8K

HyperLogLog 8 1.05 26% 3.3%

HyperBitT 1 1.32 12% 1.5%

HyperTwoBits 2 1.46 18% 2.3%

accuracy  when using M* bitsx = c/ M*/b

Q1. Given  bits, what accuracy is expected?M*

A2. Solve  for  to get .x = c/ M*/b M* M* = b(c/x)2
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Still open: HyperBit

public static long 
estimate(Iterable<String> stream, int M) 
{ 
   int T = 1; 
   double beta; 
   bit[] sketch = new bit[M]; 
   for (String s : stream) 
   { 
      long x = hash1(s);      // 64-bit hash 
      int  k = hash2(s, M);   // (lg M)-bit hash 
      if (r(x) >= T) sketch[k] = 1; 
      beta = 1.0 - 1.0*p(sketch)/M; 
      if (beta > THRESHHOLD) 
      { 
          T += INCREMENT; 
          sketch = new sketch[]; 
      }       
   } 
 return (int) (Math.pow(2, T)*M*BIAS); 
}

Details. 

• M is the number of substreams 

• T is an estimate of lg(N/M) 

• sketch is an M-bit array 
  (initialized to all 0s)

Open: Analysis proving values for threshhold, increment, and bias

some choices test well empirically
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