Bit-array-based alternatives to HyperLogLog

Svante Janson
Uppsala University

Jérémie Lumbroso
University of Pennsylvania

Robert Sedgewick
Princeton University
This work is dedicated to the memory of Philippe Flajolet
Bit-array-based alternatives to HyperLogLog

• A fundamental problem in data science
• Simple, elegant and efficient solutions
• A simple algorithm
• HyperBitBit
• Memory vs. accuracy comparisons
Cardinality counting: a fundamental problem in data science

Q. In a given stream of data values, how many different values are present?

Reference application. How many unique visitors in a web log?

log.07.f3.txt

pool-71-104-94-246.lsanca.dsl-w.verizon.net 117.222.48.163
pool-71-104-94-246.lsanca.dsl-w.verizon.net 1.23.193.58
188.134.45.71
1.23.193.58
gsearch.CS.Princeton.EDU
pool-71-104-94-246.lsanca.dsl-w.verizon.net
81.95.186.98.freenet.com.ua
81.95.186.98.freenet.com.ua
81.95.186.98.freenet.com.ua
CPE-121-218-151-176.lnse3.cht.bigpond.net.au
117.211.88.36
81.95.186.98.freenet.com.ua
150.156.169.111
117.211.88.36
81.95.186.98.freenet.com.ua
81.95.186.98.freenet.com.ua
6 million strings

UNIX (1970s-present)

% sort -u log.07.f3.txt | wc -l
1112365

"unique"

SQL (1970s-present)

SELECT
DATE_TRUNC('day',event_time),
COUNT(DISTINCT user_id),
COUNT(DISTINCT url)
FROM weblog

State of the art in the wild for decades. Sort, then count.

"Optimal" solution. Use a hash table. order of magnitude faster than sort-based solution

Q. I can't use a hash table. The stream is much too big to fit all values in memory. Now what?
Cardinality estimation

A. Look for a way to estimate the value of N, the number of distinct values in the stream.

Practical cardinality estimation problem

- Make one pass through the stream.
- Use as few operations per value as possible.
- Use as little memory as possible.
- Produce as accurate an estimate as possible.

Typical applications where exact count is not really necessary

- How many unique visitors to my website?
- How many different IP addresses hit this node?
- How many different cars passed here this year?
- How many different values for a database join?

To fix ideas on scope (202x): Think of billions of streams each having trillions of values.

Q. How much memory is needed to estimate N to within, say, 10% accuracy?

A. Much less than you might think!
Timeline of milestones in cardinality estimation

1983 1985

- **Adaptive Sampling** (Wegman)
- **Probabilistic Counting** (Flajolet-Martin)

1999

- **Complexity of Approximating Frequency Moments** (Alon, Matias, Szegedy)
- **Log-Log Counting** (Durand-Flajolet)

2003

- **HyperLogLog** (Flajolet-Fusy-Gandouet-Meunier)

2007

- numerous complexity results
- little impact on practical computing

2024

- various approaches, more operations, different statistics

For some details, see "The Story of HyperLogLog: How Flajolet Processed Streams with Coin Flips" J. Lumbroso, 2013.
Bit-array-based alternatives to HyperLogLog

- A fundamental problem in data science
- Simple, elegant and efficient solutions
- A simple algorithm
- HyperBitBit
- Memory vs. accuracy comparisons
Simple, elegant, and efficient solutions

1983
Flajolet and Martin
Probabilistic Counting Algorithms for Data Base Applications

2003
Durand and Flajolet
LogLog Counting of Large Cardinalities

2007
Flajolet, Fusy, Gandouet, and Meunier
HyperLogLog: Analysis of a near-optimal cardinality estimation algorithm

Key steps

- **Hash** each item so as to work with "random" values.
- Develop a **sketch** that enables cardinality estimation.
- **Split** stream into M substreams and record their estimates.
- Average the estimates and precisely **analyze** the bias.

Probabilistic counting sketches are M **64-bit** values.

LogLog algorithm sketches are M 8-bit values.

21st century value

packing/unpacking 6-bit values generally not worth the trouble
First step: Hash the values

Transform value to a “random” computer word.
• Compute a *hash function* that transforms data value into a 32- or 64-bit value.
• Cardinality count is unaffected (with high probability).
• Built-in capability in modern systems.
• *Allows use of fast machine-code operations.*

State-of-the-art "Mersenne twister" uses only a few machine-code instructions.

Bottom line: Do cardinality estimation on streams of (binary) integers, not arbitrary value types.

```
011110001001111101110011100100
011100001001111101110011100100
011010110101110000000011011010
00100000001111101000100110110
001000011001101001110100100100
000100001111001101001110100111
0001001011011100000000100101011
0001001011011100000000100101011
0011000101001001011010100101011
00111000101001001011010100101011
00111000101001001011010100101011
0110100100100011110011010011011
0001000011110011010011101001011
```

“Random” *except* for the fact that some values are equal.

20th century: use 32 bits (millions of values)
21st century: use 64 bits (quintillions of values)
Second step: Focus on the trailing 1s

Let X be the max number of trailing 1s in a random stream of random distinct binary values.

\[
\Pr \{ \text{no value has } k \text{ trailing 1s} \} = (1 - \frac{1}{2^k})^N \sim e^{-N/2^k} = \Pr \{ X \leq k \}
\]

\[
\Pr \{ X > k \} \sim 1 - e^{-N/2^k} \quad \text{~1 when } k \text{ is small}
\]

\[
\text{~0 when } k \text{ is large}
\]

\[
\mathbb{E}(X) \sim \sum_{k \geq 0} \left(1 - e^{-N/2^k} \right)
\]

\[
\sum_{k \geq 0} (1 - e^{-N/2^k}) = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + \ldots + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + \ldots
\]

\[
\sim \lg N \text{ terms are } \sim 1 \quad \text{a few are not close to 0 or 1}
\]

\[
\text{the rest are all } \sim 0
\]

Takeaway. $\mathbb{E}(X)$ is slightly larger than $\lg N$
Third step: stochastic splitting

Goal: Perform M independent experiments.

Alternative 1: M independent hash functions? No, too expensive.

Alternative 2: M-way alternation? No, bad results for certain inputs.

Alternative 3 (Flajolet-Martin): Stochastic splitting.
Use second hash to divide stream into 2^m independent streams

key point: equal values all go to the same stream
Fourth step: average and analyze

LogLog: Use **arithmetic mean** of max # trailing 1s in the substreams.

bias: \(e^{-\gamma} \sqrt{2} \doteq 0.794028 \)

std error: \(\sim \frac{c_M}{\sqrt{M}} \) where \(c_M \sim \sqrt{(\ln 2)^2/12 + \pi^2/6} \approx 1.30 \)

memory: 8M bits (M numbers, each about \(\lg N \) and stored in an 8-bit byte)

HyperLogLog: Use **geometric mean** of max # trailing 1s in the substreams.

bias: \(\frac{1}{2 \ln 2} \doteq 0.72134 \)

std error: \(\sim \frac{\beta_\infty}{\sqrt{M}} \) where \(\beta_\infty \sim \sqrt{3 \ln 2 - 1} \approx 1.04 \)

memory: 8M bits (M numbers, each about \(\lg N \) and stored in an 8-bit byte)
Goal: Optimal use of memory

HyperLogLog

bias: \[
\frac{1}{2 \ln 2} \doteq 0.72134
\]

std error: \[
\sim \frac{\beta_{\infty}}{\sqrt{M}} \text{ where } \beta_{\infty} \sim \sqrt{3 \ln 2 - 1} \approx 1.04
\]

memory: \(8M\) bits (\(M\) numbers, each about \(\log N\) and stored in an 8-bit byte)

HyperBit?

bias: ???

std error: ???

memory: \(M\) bits (one bit per stream)
Bit-array-based alternatives to HyperLogLog

- A fundamental problem in data science
- Simple, elegant and efficient solutions
- A simple algorithm
- HyperBitBit
- Memory vs. accuracy comparisons
A simple algorithm: HyperBitT

Idea: Start with a rough estimate T of $\log(N/M)$
Compute fraction beta of M substreams with no values having $> T$ trailing 1s.
Use 2^T to estimate N/M, modified by the bias factor $\ln(1/\text{beta})$ (proof to follow).

```java
public static long estimate(Iterable<String> stream, int M, int T)
{
  bit[] sketch = new bit[M];
  for (String s : stream)
  {
    long x = hash1(s); // 64-bit hash
    int k = hash2(s, M); // (lg M)-bit hash
    if (r(x) >= T) sketch[k] = 1;
  }
  double beta = 1.0 - 1.0*p(sketch)/M;
  return (long) (Math.pow(2, T)*M*Math.log(1/beta));
}
```

Effective only when T is not large or small (stay tuned).

Details.
- M is the number of substreams
- T is an estimate of $\log(N/M)$
- sketch is an M-bit array
 (initialized to all 0s)
- $r(x)$ is # of trailing 1s in x
- $p(x)$ is # of 1s in x
- beta is fraction of 0s in sketch

Notes.
- no bit array in Java, use shift/mask in arrays of integers
- $r(x) >= T$ is easily computed
- $p()$ computation is easily avoided
HyperBitT mean value analysis (elementary)

If there are $M\beta$ 0s in the sketch, what is the expected number of values that have been processed?

In a data stream with v distinct values

- $\Pr \{a \text{ given value has at least } T \text{ trailing 1s} \} = 1/2^T$
- $\Pr \{\text{no item has at least } T \text{ trailing 1s} \} = (1 - 1/2^T)^v \sim e^{-v/2^T}$

corresponding bit in sketch is 0

After Mv distinct values (approximately v per stream) have been processed

- distribution of # of 0s in sketch is binomial $B(M, e^{-v/2^T})$
- expected number of 0s in sketch is $\sim Me^{-v/2^T}$
- Algorithm terminates with $Me^{-v/2^T} = M\beta$, or $v = 2^T \ln(1/\beta)$

Theorem. Expected number of values processed is $\sim Mv = M \cdot 2^T \cdot \ln(1/\beta)$
Theorem. The distribution of the number of values processed is \textit{asymptotically normal} with

\[\bar{N} = M \cdot 2^T \cdot \ln(1/\beta) \]

and standard error

\[\frac{\sqrt{1/\beta - 1}}{\sqrt{M \cdot \ln(1/\beta)}} = \frac{c_\beta}{\sqrt{M}} \]

where \(c_\beta \equiv \frac{\sqrt{1/\beta - 1}}{\ln 1/\beta} \).

\[c_\beta \]

Ex. \(c_\beta < 1.5 \) for \(.043 < \beta < .539\) and always > 1.243
Range of reasonable accuracy depends on M and T but is quite large

Expected number of values processed is $M \cdot 2^T \cdot \ln(1/\beta)$

"Reasonable accuracy": Standard error is less than $1.5/\sqrt{M}$ (when $0.043 < \beta < 0.539$)

<table>
<thead>
<tr>
<th>T</th>
<th>2^T</th>
<th>$\beta = 0.539$</th>
<th>$\beta = 0.043$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>32</td>
<td>20251</td>
<td>103106</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>40503</td>
<td>206212</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>81007</td>
<td>412425</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>162015</td>
<td>824850</td>
</tr>
</tbody>
</table>

Ex. $M = 1024$

$T = 5$ \Rightarrow range where std error is $< 1.5/\sqrt{M}$ for $T = 5$

$T = 6$

$T = 7$

$T = 8$
Application example

How many different values in my web log (1 million entries)?

Q. How accurate an answer do you want?

A. 95% sure to be within 10%.

Recommendation 1. Take $M = 1024$ to get standard error $\frac{1.5}{32}$ and 95% sure to be within $1.96 \cdot \frac{1.5}{32} < 10\%$

Q. What's your rough guess?

A. Somewhere between 100,000 and 900,000.

Recommendation 2. Take $T = 8$ for result to be valid unless it is much smaller or larger than that.
HyperBitT validation I (M=1024, T = 8)

Experiment. 1 million inputs, 10 000 trials

50-interval histogram

height of each bar is # of estimates in its interval

normal with std error $1.248/\sqrt{M}$
HyperbitT validation II (M=1024, T = 8)

Experiment. 100 trials for \(x\times10000\) inputs for \(x\) from 1 to 100 (10000 trials) with \(M = 1024\)

range where std error is \(<1.5/\sqrt{M}\)
Bit-array-based alternatives to HyperLogLog

- A fundamental problem in data science
- Simple, elegant and efficient solutions
- A simple algorithm
- HyperBitBit
- Memory vs. accuracy comparisons
Unfortunate truth. While very useful in many contexts, HyperBitT is NOT a streaming algorithm.

Goal. Eliminate need to provide rough estimate of cardinality.

Simple idea (HyperBitBit, RS, 2015): Make T a variable and increment as needed.

- Start at T=1
- Maintain a second sketch for T+1.
- When sketch is half full, increment T
- Then set sketch1 = sketch2 and set sketch2 to 0.
- Try to estimate the error inherent in resetting sketch2 to 0.

Questions.
- Why half full?
- Why T+1?
- What's the bias?
- What's the standard error?

Good news. HyperBitT analysis provides proper settings and the answers to these questions.
HyperBitBit

Idea: Keep track of sketches for T and T+4. When sketch for T fills, increment T by 4 and update sketches.

```java
public static long estimate(Iterator<String> stream) {
    bit[] sketch1 = new bit[M];
    bit[] sketch2 = new bit[M];
    for (String s : stream) {
        long x = hash1(s); // 64-bit hash
        int k = hash2(s, M); // (lg M)-bit hash
        if (r(x) >= T ) sketch1[k] = 1;
        if (r(x) >= T+4) sketch2[k] = 1;
        if (p(sketche1) > .988*M) {
            T = T+4;
            sketch1 = sketch2;
            sketch2 = new bit[M];
        }
    }
    double beta = 1.0 - 1.0*p(sketche1)/M;
    return (long) (Math.pow(2, T)*M*Math.log(1/beta));
}
```

Details.
- T is an estimate of $\lg(N/M)$
- sketch1/2 are bit arrays (initialized to all 0s)
- $r(x)$ is # of trailing 1s in x
- $p(x)$ is # of 1s in x
- beta is fraction of 0s in sketch
- Correct at end with bias factor
 \[
 (a \text{ function of } beta)
 \]

Notes.
- sketch for T+8 is likely all 0s
- $r(x) >= T$ is easily computed
- $p()$ computation is easily avoided

Key questions: Why 4? Why .988? Why $\ln(1/\beta)$?
Parameter values for HyperBitBit

Q1. How much to increment T?

$$M^{i+1}T \ln(1/\beta) = M^iT \ln(1/\beta_i)$$

- **estimated cardinality**
- fraction of 0s in sketch for T
- fraction of 0s in sketch for $T+i$

$$\beta_i = \exp\left(-\ln(1/\beta)/2^i\right)$$

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_i</td>
<td>.03</td>
<td>.17</td>
<td>.42</td>
<td>.64</td>
<td>.80</td>
<td>.90</td>
<td>.95</td>
<td>.97</td>
<td>.99</td>
</tr>
</tbody>
</table>

A1. With $T+4$, sketch for $T+8$ would be nearly all 0s even when sketch for T is 97% 1s. *HyperBitT analysis applies throughout.*

Q2. When to increment T?

A2. When std error for $T+4$ equals std error for T — (do the math) — when sketch is 98.8% full.

Q3. Reported cardinality count?

A3. $M^{i+1}T \ln(1/\beta)$.

Q4. Relative std error?

A4. About $1.46/\sqrt{M}$, on average.
Bit-array-based alternatives to HyperLogLog

• A fundamental problem in data science
• Simple, elegant and efficient solutions
• A simple algorithm
• HyperBitBit
 • Memory vs. accuracy comparisons
Algorithm comparisons: memory vs. accuracy

Q. Given M^* bits of memory, how do the algorithms compare?

A. Using b bits per item, the number of streams is M^*/b and the relative error is

$$\frac{c}{\sqrt{M^*/b}} = \frac{c\sqrt{b}}{\sqrt{M^*}}$$

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Memory Use</th>
<th>b</th>
<th>c</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>HyperLogLog</td>
<td>M bytes</td>
<td>8</td>
<td>1.05</td>
<td>2.35 $\sqrt{M^*}$</td>
</tr>
<tr>
<td>HyperBitT</td>
<td>M bits</td>
<td>1</td>
<td>1.32</td>
<td>1.32 $\sqrt{M^*}$</td>
</tr>
<tr>
<td>HyperBitBit</td>
<td>$2M$ bits</td>
<td>2</td>
<td>1.46</td>
<td>2.06 $\sqrt{M^*}$</td>
</tr>
</tbody>
</table>
HyperBitBitBit and HyperTwoBits

HyperBitBit Drawback. Too many nonzero bits in T+8 sketch for large M.

Fix. HyperBitBitBit.

HyperBitBitBit Drawback. Uses $3M$ bits.

Fix. Use array of 2-bit values (#1s in corresponding position in sketches) instead.

Ex. ($M = 64$, increment = 4)

<table>
<thead>
<tr>
<th>before</th>
<th>after $T+4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>sketch for T</td>
<td>11111111111011101111111111111111101111011110011111111111</td>
</tr>
<tr>
<td>sketch for $T+4$</td>
<td>00010011110100000000001000110010110000001111000110000000000000</td>
</tr>
<tr>
<td>sketch for $T+8$</td>
<td>000000010000000000000000000000000100000000000000001000000000000</td>
</tr>
<tr>
<td>two-bit value</td>
<td>11121123212011110111111211122112123101110223311031111111111</td>
</tr>
<tr>
<td>sketch for T</td>
<td>00010011110100000000001000110010110000001111000110000000000000</td>
</tr>
<tr>
<td>sketch for $T+4$</td>
<td>000000010000000000000000000000000100000000000000001000000000000</td>
</tr>
<tr>
<td>sketch for $T+8$</td>
<td>000</td>
</tr>
<tr>
<td>two-bit value</td>
<td>000100121010000000000010100110010120000001122000020000000000</td>
</tr>
</tbody>
</table>

Exercise in hacking. Implement with code on real machines (see appendix in paper)
Algorithm comparisons: memory vs. accuracy

Q1. Given M^* bits, what accuracy is expected?

A1. With b bits per item, accuracy is $c/\sqrt{M^*/b}$.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>b</th>
<th>c</th>
<th>$M^*=$128</th>
<th>$M^*=$8K</th>
</tr>
</thead>
<tbody>
<tr>
<td>HyperLogLog</td>
<td>8</td>
<td>1.05</td>
<td>26%</td>
<td>3.3%</td>
</tr>
<tr>
<td>HyperBitT</td>
<td>1</td>
<td>1.32</td>
<td>12%</td>
<td>1.5%</td>
</tr>
<tr>
<td>HyperTwoBits</td>
<td>2</td>
<td>1.46</td>
<td>18%</td>
<td>2.3%</td>
</tr>
</tbody>
</table>

Q2. How many bits to achieve a given accuracy x?

A2. Solve $x = c/\sqrt{M^*/b}$ for M^* to get $M^* = b(c/x)^2$.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>b</th>
<th>c</th>
<th>$x = 2%$</th>
<th>$x = 20%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HyperLogLog</td>
<td>8</td>
<td>1.05</td>
<td>21632</td>
<td>216</td>
</tr>
<tr>
<td>HyperBitT</td>
<td>1</td>
<td>1.32</td>
<td>4356</td>
<td>44</td>
</tr>
<tr>
<td>HyperTwoBits</td>
<td>2</td>
<td>1.46</td>
<td>10658</td>
<td>106</td>
</tr>
</tbody>
</table>

accuracy $x = c/\sqrt{M^/b}$ when using M^* bits*

memory $M^ = b(c/x)^2$ for accuracy within $1 \pm x$*
public static long estimate(Iterable<String> stream, int M) {
 int T = 1;
 double beta;
 bit[] sketch = new bit[M];
 for (String s : stream) {
 long x = hash1(s); // 64-bit hash
 int k = hash2(s, M); // (lg M)-bit hash
 if (r(x) >= T) sketch[k] = 1;
 beta = 1.0 - 1.0*p(sketch)/M;
 if (beta > THRSHOLD) {
 T += INCREMENT;
 sketch = new sketch[];
 }
 }
 return (int) (Math.pow(2, T)*M*BIA);
}

Details.
- M is the number of substreams
- T is an estimate of lg(N/M)
- sketch is an M-bit array
 (initialized to all 0s)

Open: Analysis proving values for threshold, increment, and bias

some choices test well empirically
This work is dedicated to the memory of Philippe Flajolet

Philippe Flajolet 1948-2011
Bit-array-based alternatives to HyperLogLog

Svante Janson
Uppsala University

Jérémie Lumbroso
University of Pennsylvania

Robert Sedgewick
Princeton University