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e In preferential attachment models vertices arrive one-by-one
and attach themselves to existing vertices with a preference

for powerful vertices.

e In the classical models the power of a vertex is measured by
its current degree.

e Here we introduce a simpler model with this idea.

e A new vertex n attaches to earlier vertices m € {1,...n— 1}
with a probabilty propotional to m™7 fora 0 < v < 1.

e Then the expected degree of n behaves like:

nl=7
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Inhomogeneous random graph of preferential attachment type

e To make the model sparse the proportionality factor should be
of order n7~1.

e Let V,, ={1,...,n} and choose the connection probability of
two distinct vertices i # j as

pij =BG Vi)THiAf)TT,

where 0 < v < 1 parameterizes the strength of the preferences
of early vertices and 5 > 0 is an edge density parameter.

e This is an inhomogeneous random graph with connection
probabilities of preferential attachment type.



Inhomogeneous random graph of preferential attachment type

Theorem
In the inhomogeneous random graph of preferential attachment
type there exists a giant component if and only if

1

or B> fBci= %

> -
1= 4

N =

This is a simplification of the main result in the Paper of Dereich
and Morters (2013).

We are working here in the subcritical regime , i.e. when v < %
and 0 < 8 < fc.



Main result

Main Theorem
Let S,(/) be the size of the connected component of vertex
i € V), in the inhomogeneous random graph of preferential
attachment type in the subcritical regime. If o, € V,, is such that
% — u € (0,1], then

lim lim P (Sp(on) > u™"x) =P(W > x) ,

ul0 n—o0

for all x > 0, where

P:t—l:t\/ — 32+ 82y -1).
and W is a positive random variable satisfying

P(W > x) = x~(P+/p-)+o() 35 x -5 .



Local Coupling

For the inner limit we have
Proposition
If o, € Vi, is such that 22 — u € (0,1] and x > 0, then

lim P (Sp(on) > u™"~x) =P (T(u) > u"x),

n—oo

where T (u) is the number of particles in a killed branching
random walk.
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e The branching random walk is started in log u < 0 and the
displacements of the children of a vertex are given by an
independent Poisson point process with intensity
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Branching random walk with killing

e

4

log(u) 0

e The branching random walk is started in log u < 0 and the
displacements of the children of a vertex are given by an
independent Poisson point process with intensity

m(dy) = B(e 1,50 + e(l_v)yﬂy<o) dy.

e The process becomes extinct after a finite number of

generations in the subcritical phase.
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Coupling to the killed branching random walk

e To couple the graph and the branching random walk, we map
labels from {1,--- , n} to positions in (—o0,0]. We do this
using the following map

1
¢n: {L,...,n} = (=00,0] , im— > .
j=i+1

e Note that the youngest vertex is mapped to the origin, and
older vertices are placed to the left with decreasing intensity.

e Observe that typical vertices are placed to the left and strong
vertices a placed to the right.



Second step: Coupling to the killed branching random walk
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Second step: Coupling to the killed branching random walk

The coupling fails if
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Coupling to the killed branching random walk

e This effect allows to couple the Poisson offspring of the
projected tree with the Bernouli offspring of the (tree like)
Graph.
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Coupling to the killed branching random walk

e This effect allows to couple the Poisson offspring of the
projected tree with the Bernouli offspring of the (tree like)
Graph.

= There exists a coupling such that the projected tree coincides
with the connected component of a typical vertex with high
probabilty.
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Convergence of the number of total particles

For the outer limit we have:
Proposition
Under the conditions of the main Theorem, for every x > 0,

E?SP(T(U) >xuP") =P(W >x),

where W is a positive random variable satisfying

P(W > x) = x~(P/p=)F0(1) 35 x — 0.
The proof is based on the work of Aidekon et al
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Thank you for your attention.
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e Our aims is to find the size of the largest component in the
subcritical phase.
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e Our aims is to find the size of the largest component in the
subcritical phase.

e In rank one models it is known that the size is of the order of
the largest degree, in our language of order n”

e We heuristically derive a conjecture: Suppose we were allowed
to let n — oo and u — 0 simultaneously.

o At best we could be allowed u ~ . Then our hypothetic

result would give that the most powerful vertices would have a

connected component of size n”-

14



Branching random walks without killing

e Consider the marked tree we get from the branching random
walk (without killing) with displacements given by a Poisson
process [1 with intensity 7
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Branching random walks without killing

e Consider the marked tree we get from the branching random
walk (without killing) with displacements given by a Poisson
process [1 with intensity 7

e Define

Y(a) =E[ Z e .

xel

Y=

ii5)



The Nerman Setup

e Let £ be a point process on [0,00). We denote by . = E[¢]
the intensity measure of the point process.
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e Let £ be a point process on [0,00). We denote by . = E[¢]
the intensity measure of the point process.

e The following conditions have to be met:
(7) p is not concentrated on any lattice,
ii) there exists an o € (0,00) such that [~ e~ fy(dt) =1
0
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The Nerman Setup

e Let £ be a point process on [0,00). We denote by . = E[¢]
the intensity measure of the point process.
e The following conditions have to be met:
(7) p is not concentrated on any lattice,
(i) there exists an a € (0, 00) such that [;* e *fu(dt) =1
(iii) we have [* te™**p(dt) < oco.

I

0

The Crump-Mode-Jagers or general branching process.
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Convergence of the total number of particles

e The set-up of Nerman allows to also include a time dependent
characteristic for each particle x.
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Convergence of the total number of particles

e The set-up of Nerman allows to also include a time dependent

characteristic for each particle x.

e In our case it suffices to use a characteristic Xy, which may
depend on &, but is independent for each particle and
distributed like some real valued X.

e We sum X, over all particles born before time t,

Zi= . X

xET ,ox<t
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Convergence of the total number of particles

The following result is the work of Nerman formulated in our
set-up.

Theorem

Suppose that E[X] < oo, then

e *tZX — W in probability, as t — oo,

18



Convergence of the total number of particles

The following result is the work of Nerman formulated in our
set-up.

Theorem

Suppose that E[X] < oo, then

e *tZX — W in probability, as t — oo,

e In order to use this to prove our main result we have to derive

a suitable £ and X from 7.

18



Convergence of the total number of particles

i

o We let £ be the point process of locations of the frozen

(non-branching) particles
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Convergence of the total number of particles

i

o We let £ be the point process of locations of the frozen
(non-branching) particles

e We let X > 1 be the total number of branching particles
including the particle at the origin
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Convergence of the total number of particles

This leads to the following Theorem:

Theorem

We have E[X] < oo and ¢ satisfies the conditions above for the

Malthusian parameter o = p_. Moreover, for t = — log u, we
have

72 L T(u).
Proof.
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Convergence of the total number of particles

This leads to the following Theorem:

Theorem

We have E[X] < oo and ¢ satisfies the conditions above for the

Malthusian parameter o = p_. Moreover, for t = — log u, we
have
72 L T(u).
Proof.
e Shifting all particle positions by t = — log u the killed

branching random walk 7 (u) becomes a branching random
walk 77(u) started at the origin, with displacements given by
m, with a killing barrier at t = — log u.
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Convergence of the total number of particles

|

[ ]

X=5

e The positions of the frozen particles are the birth times of its
children in the general branching process
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Convergence of the total number of particles

|

[ ]

X=5

e The positions of the frozen particles are the birth times of its
children in the general branching process
e the number of branching particles is the characteristic Xy 21



Convergence of the total number of particles
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Convergence of the total number of particles

e E[X] < oo since the tree is subcritical
e It also holds that [;° e’~*¢(dt) = 1.

e To complete the proof we have

lim P (Sp(on) > u™""x) =P (T(u) > u " x).

n—o0

E%P(T(u) >xu"") =P(W >x),

and therefore

lim lim P (Sn(o,,) > u*p—x) =P(Y >x).

ul0 n—oo
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e Since Y(p-) =1 we have that W, := 3", e "™ isa
Martingale.
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e Since Y(p-) =1 we have that W, := 3", e "™ isa
Martingale.

e By Biggins' theorem for branching random walks the
martingale limit W is strictly positive if and only if the
following two conditions hold,

(7) log(w(p-)) — 2557 > 0,
(i) E[W; log W] < oc.
e The first one holds as ¢(p—) =1 and ¥'(p_) < 0.

e For the second condition it suffices to check E[W;*] < oo for
some « > 1.

23



	1. The Model
	2. Main result
	3. Coupling to a killed branching random walk
	4. Convergence of the total number of particles

