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Inhomogeneous random graph of preferential attachment type

• In preferential attachment models vertices arrive one-by-one

and attach themselves to existing vertices with a preference

for powerful vertices.

• In the classical models the power of a vertex is measured by

its current degree.

• Here we introduce a simpler model with this idea.

• A new vertex n attaches to earlier vertices m ∈ {1, . . . n − 1}
with a probabilty propotional to m−γ for a 0 < γ < 1.

• Then the expected degree of n behaves like:

n−1∑
m=1

m−γ ∼ n1−γ

1− γ
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Inhomogeneous random graph of preferential attachment type

• To make the model sparse the proportionality factor should be

of order nγ−1.

• Let Vn = {1, . . . , n} and choose the connection probability of

two distinct vertices i ̸= j as

pij := β(i ∨ j)γ−1(i ∧ j)−γ ,

where 0 < γ < 1 parameterizes the strength of the preferences

of early vertices and β > 0 is an edge density parameter.

• This is an inhomogeneous random graph with connection

probabilities of preferential attachment type.
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Inhomogeneous random graph of preferential attachment type

Theorem

In the inhomogeneous random graph of preferential attachment

type there exists a giant component if and only if

γ ≥ 1

2
or β > βc :=

1

4
− γ

2
.

This is a simplification of the main result in the Paper of Dereich

and Mörters (2013).

We are working here in the subcritical regime , i.e. when γ < 1
2

and 0 < β < βc .
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Main result

Main Theorem

Let Sn(i) be the size of the connected component of vertex

i ∈ Vn in the inhomogeneous random graph of preferential

attachment type in the subcritical regime. If on ∈ Vn is such that
on
n → u ∈ (0, 1], then

lim
u↓0

lim
n→∞

P
(
Sn(on) ≥ u−ρ−x

)
= P (W ≥ x) ,

for all x > 0, where

ρ± = 1
2 ±

√
(γ − 1

2)
2 + β(2γ − 1).

and W is a positive random variable satisfying

P (W ≥ x) = x−(ρ+/ρ−)+o(1) as x → ∞.
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Local Coupling

For the inner limit we have

Proposition

If on ∈ Vn is such that on
n → u ∈ (0, 1] and x > 0, then

lim
n→∞

P
(
Sn(on) ≥ u−ρ−x

)
= P

(
T (u) ≥ u−ρ−x

)
,

where T (u) is the number of particles in a killed branching

random walk.
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Branching random walk with killing

• The branching random walk is started in log u < 0 and the

displacements of the children of a vertex are given by an

independent Poisson point process with intensity

π(dy) = β(eγy1y>0 + e(1−γ)y
1y<0) dy .

• The process becomes extinct after a finite number of

generations in the subcritical phase.
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Coupling to the killed branching random walk

• To couple the graph and the branching random walk, we map

labels from {1, · · · , n} to positions in (−∞, 0]. We do this

using the following map

ϕn : {1, . . . , n} → (−∞, 0] , i 7→ −
n∑

j=i+1

1

j
.

• Note that the youngest vertex is mapped to the origin, and

older vertices are placed to the left with decreasing intensity.

• Observe that typical vertices are placed to the left and strong

vertices a placed to the right.

8



Coupling to the killed branching random walk

• To couple the graph and the branching random walk, we map

labels from {1, · · · , n} to positions in (−∞, 0]. We do this

using the following map

ϕn : {1, . . . , n} → (−∞, 0] , i 7→ −
n∑

j=i+1

1

j
.

• Note that the youngest vertex is mapped to the origin, and

older vertices are placed to the left with decreasing intensity.

• Observe that typical vertices are placed to the left and strong

vertices a placed to the right.

8



Coupling to the killed branching random walk

• To couple the graph and the branching random walk, we map

labels from {1, · · · , n} to positions in (−∞, 0]. We do this

using the following map

ϕn : {1, . . . , n} → (−∞, 0] , i 7→ −
n∑

j=i+1

1

j
.

• Note that the youngest vertex is mapped to the origin, and

older vertices are placed to the left with decreasing intensity.

• Observe that typical vertices are placed to the left and strong

vertices a placed to the right.

8



Second step: Coupling to the killed branching random walk

9



Second step: Coupling to the killed branching random walk

The coupling fails if
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Coupling to the killed branching random walk

• This effect allows to couple the Poisson offspring of the

projected tree with the Bernouli offspring of the (tree like)

Graph.

⇒ There exists a coupling such that the projected tree coincides

with the connected component of a typical vertex with high

probabilty.
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Convergence of the number of total particles

For the outer limit we have:

Proposition

Under the conditions of the main Theorem, for every x > 0,

lim
u↓0

P
(
T (u) ≥ xu−ρ−

)
= P (W ≥ x) ,

where W is a positive random variable satisfying

P (W ≥ x) = x−(ρ+/ρ−)+o(1) as x → ∞.

The proof is based on the work of Aidekon et al
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Thank you for your attention.
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Outlook

• Our aims is to find the size of the largest component in the

subcritical phase.

• In rank one models it is known that the size is of the order of

the largest degree, in our language of order nγ

• We heuristically derive a conjecture: Suppose we were allowed

to let n → ∞ and u → 0 simultaneously.

• At best we could be allowed u ≈ c
n . Then our hypothetic

result would give that the most powerful vertices would have a

connected component of size nρ−
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Branching random walks without killing

• Consider the marked tree we get from the branching random

walk (without killing) with displacements given by a Poisson

process Π with intensity π

• Define

ψ(α) = E
[∑
x∈Π

e−ατx
]
.
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The Nerman Setup

• Let ξ be a point process on [0,∞). We denote by µ = E[ξ]
the intensity measure of the point process.

• The following conditions have to be met:

(i) µ is not concentrated on any lattice,

(ii) there exists an α ∈ (0,∞) such that
∫∞
0

e−αtµ(dt) = 1

(iii) we have
∫∞
0

te−αtµ(dt) <∞.

The Crump-Mode-Jagers or general branching process.
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Convergence of the total number of particles

• The set-up of Nerman allows to also include a time dependent

characteristic for each particle x .

• In our case it suffices to use a characteristic Xx , which may

depend on ξx but is independent for each particle and

distributed like some real valued X .

• We sum Xx over all particles born before time t,

ZX
t :=

∑
x∈T ,σx<t

Xx .
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Convergence of the total number of particles

The following result is the work of Nerman formulated in our

set-up.

Theorem

Suppose that E[X ] <∞, then

e−αtZX
t → W in probability, as t → ∞,

• In order to use this to prove our main result we have to derive

a suitable ξ and X from π.
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Convergence of the total number of particles

• We let ξ be the point process of locations of the frozen

(non-branching) particles

• We let X ≥ 1 be the total number of branching particles

including the particle at the origin
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Convergence of the total number of particles

This leads to the following Theorem:

Theorem

We have E[X ] <∞ and ξ satisfies the conditions above for the

Malthusian parameter α = ρ−. Moreover, for t = − log u, we

have

ZX
t

d
= T (u).

Proof.

• Shifting all particle positions by t = − log u the killed

branching random walk T (u) becomes a branching random

walk T ′(u) started at the origin, with displacements given by

π, with a killing barrier at t = − log u.
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Convergence of the total number of particles

• The positions of the frozen particles are the birth times of its

children in the general branching process

• the number of branching particles is the characteristic Xx
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Convergence of the total number of particles

• E[X ] <∞ since the tree is subcritical

• It also holds that
∫∞
0 eρ−tξ(dt) = 1.

• To complete the proof we have

lim
n→∞

P
(
Sn(on) ≥ u−ρ−x

)
= P

(
T (u) ≥ u−ρ−x

)
.

lim
u↓0

P
(
T (u) ≥ xu−ρ−

)
= P (W ≥ x) ,

and therefore

lim
u↓0

lim
n→∞

P
(
Sn(on) ≥ u−ρ−x

)
= P (Y ≥ x) .
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Biggins

• Since ψ(ρ−) = 1 we have that Wn :=
∑

|x |=n e
−ρ−τx is a

Martingale.

• By Biggins’ theorem for branching random walks the
martingale limit W is strictly positive if and only if the
following two conditions hold,

(i) log(ψ(ρ−))− ρ−ψ
′(ρ−)

ψ(ρ−) > 0 ,

(ii) E[W1 logW1] <∞.

• The first one holds as ψ(ρ−) = 1 and ψ′(ρ−) < 0.

• For the second condition it suffices to check E[W α
1 ] <∞ for

some α > 1.
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