Early typical vertices in subcritical random graphs of preferential attachment type

Peter Mörters , Nick Schleicher AofA 2024

• In preferential attachment models vertices arrive one-by-one and attach themselves to existing vertices with a preference for powerful vertices.

- In preferential attachment models vertices arrive one-by-one and attach themselves to existing vertices with a preference for powerful vertices.
- In the classical models the power of a vertex is measured by its current degree.

- In preferential attachment models vertices arrive one-by-one and attach themselves to existing vertices with a preference for powerful vertices.
- In the classical models the power of a vertex is measured by its current degree.
- Here we introduce a simpler model with this idea.

- In preferential attachment models vertices arrive one-by-one and attach themselves to existing vertices with a preference for powerful vertices.
- In the classical models the power of a vertex is measured by its current degree.
- Here we introduce a simpler model with this idea.
- A new vertex n attaches to earlier vertices m ∈ {1,...n−1} with a probability proportional to m^{-γ} for a 0 < γ < 1.

- In preferential attachment models vertices arrive one-by-one and attach themselves to existing vertices with a preference for powerful vertices.
- In the classical models the power of a vertex is measured by its current degree.
- Here we introduce a simpler model with this idea.
- A new vertex n attaches to earlier vertices m ∈ {1,...n−1} with a probability proportional to m^{-γ} for a 0 < γ < 1.
- Then the expected degree of n behaves like:

$$\sum_{m=1}^{n-1} m^{-\gamma} \sim \frac{n^{1-\gamma}}{1-\gamma}$$

• To make the model sparse the proportionality factor should be of order $n^{\gamma-1}$.

- To make the model sparse the proportionality factor should be of order $n^{\gamma-1}$.
- Let V_n = {1,..., n} and choose the connection probability of two distinct vertices i ≠ j as

$$p_{ij} := \beta(i \vee j)^{\gamma-1}(i \wedge j)^{-\gamma},$$

where $0 < \gamma < 1$ parameterizes the strength of the preferences of early vertices and $\beta > 0$ is an edge density parameter.

- To make the model sparse the proportionality factor should be of order $n^{\gamma-1}$.
- Let V_n = {1,..., n} and choose the connection probability of two distinct vertices i ≠ j as

$$p_{ij} := \beta(i \vee j)^{\gamma-1}(i \wedge j)^{-\gamma},$$

where $0 < \gamma < 1$ parameterizes the strength of the preferences of early vertices and $\beta > 0$ is an edge density parameter.

• This is an inhomogeneous random graph with connection probabilities of preferential attachment type.

Theorem

In the inhomogeneous random graph of preferential attachment type there exists a giant component if and only if

$$\gamma \geq \frac{1}{2}$$
 or $\beta > \beta_c := \frac{1}{4} - \frac{\gamma}{2}.$

This is a simplification of the main result in the Paper of Dereich and Mörters (2013).

We are working here in the subcritical regime , i.e. when $\gamma < \frac{1}{2}$ and 0 $< \beta < \beta_c.$

Main result

Main Theorem

Let $S_n(i)$ be the size of the connected component of vertex $i \in V_n$ in the inhomogeneous random graph of preferential attachment type in the subcritical regime. If $o_n \in V_n$ is such that $\frac{o_n}{n} \to u \in (0, 1]$, then

$$\lim_{u \downarrow 0} \lim_{n \to \infty} \mathbb{P}\left(S_n(o_n) \ge u^{-\rho_-}x\right) = \mathbb{P}\left(W \ge x\right) \,,$$

for all x > 0, where

$$\rho_{\pm} = \frac{1}{2} \pm \sqrt{(\gamma - \frac{1}{2})^2 + \beta(2\gamma - 1)}.$$

and W is a positive random variable satisfying

$$\mathbb{P}(W \ge x) = x^{-(
ho_+/
ho_-) + o(1)}$$
 as $x \to \infty$.

For the inner limit we have

Proposition

If $o_n \in V_n$ is such that $\frac{o_n}{n} \to u \in (0,1]$ and x > 0, then

$$\lim_{n\to\infty}\mathbb{P}\left(S_n(o_n)\geq u^{-\rho_-}x\right)=\mathbb{P}\left(T(u)\geq u^{-\rho_-}x\right),$$

where T(u) is the number of particles in a killed branching random walk.

Branching random walk with killing

 The branching random walk is started in log u < 0 and the displacements of the children of a vertex are given by an independent Poisson point process with intensity

$$\pi(\mathrm{d} y) = \beta(\mathrm{e}^{\gamma y} \mathbb{1}_{y>0} + \mathrm{e}^{(1-\gamma)y} \mathbb{1}_{y<0}) \,\mathrm{d} y \,.$$

Branching random walk with killing

 The branching random walk is started in log u < 0 and the displacements of the children of a vertex are given by an independent Poisson point process with intensity

$$\pi(\mathrm{d} y) = \beta(\mathrm{e}^{\gamma y} \mathbb{1}_{y>0} + \mathrm{e}^{(1-\gamma)y} \mathbb{1}_{y<0}) \,\mathrm{d} y \,.$$

• The process becomes extinct after a finite number of generations in the subcritical phase.

Coupling to the killed branching random walk

 To couple the graph and the branching random walk, we map labels from {1, · · · , n} to positions in (-∞, 0]. We do this using the following map

$$\phi_n: \{1,\ldots,n\} \to (-\infty,0] \quad , \quad i \mapsto -\sum_{j=i+1}^n \frac{1}{j} \; .$$

Coupling to the killed branching random walk

 To couple the graph and the branching random walk, we map labels from {1, · · · , n} to positions in (−∞, 0]. We do this using the following map

$$\phi_n \colon \{1,\ldots,n\} \to (-\infty,0] \quad , \quad i \mapsto -\sum_{j=i+1}^n \frac{1}{j} \; .$$

 Note that the youngest vertex is mapped to the origin, and older vertices are placed to the left with decreasing intensity.

Coupling to the killed branching random walk

 To couple the graph and the branching random walk, we map labels from {1, · · · , n} to positions in (−∞, 0]. We do this using the following map

$$\phi_n \colon \{1,\ldots,n\} \to (-\infty,0] \quad , \quad i \mapsto -\sum_{j=i+1}^n \frac{1}{j} \; .$$

- Note that the youngest vertex is mapped to the origin, and older vertices are placed to the left with decreasing intensity.
- Observe that typical vertices are placed to the left and strong vertices a placed to the right.

Second step: Coupling to the killed branching random walk

Second step: Coupling to the killed branching random walk

The coupling fails if

• This effect allows to couple the Poisson offspring of the projected tree with the Bernouli offspring of the (tree like) Graph.

- This effect allows to couple the Poisson offspring of the projected tree with the Bernouli offspring of the (tree like) Graph.
- ⇒ There exists a coupling such that the projected tree coincides with the connected component of a typical vertex with high probabilty.

For the outer limit we have:

Proposition

Under the conditions of the main Theorem, for every x > 0,

$$\lim_{u\downarrow 0} \mathbb{P}\left(T(u) \ge xu^{-\rho_{-}}\right) = \mathbb{P}\left(W \ge x\right) \,,$$

where W is a positive random variable satisfying

$$\mathbb{P}(W \ge x) = x^{-(\rho_+/\rho_-)+o(1)}$$
 as $x \to \infty$.

The proof is based on the work of Aidekon et al

Thank you for your attention.

• Our aims is to find the size of the largest component in the subcritical phase.

- Our aims is to find the size of the largest component in the subcritical phase.
- In rank one models it is known that the size is of the order of the largest degree, in our language of order n^{γ}

- Our aims is to find the size of the largest component in the subcritical phase.
- In rank one models it is known that the size is of the order of the largest degree, in our language of order n^{γ}
- We heuristically derive a conjecture: Suppose we were allowed to let n → ∞ and u → 0 simultaneously.

- Our aims is to find the size of the largest component in the subcritical phase.
- In rank one models it is known that the size is of the order of the largest degree, in our language of order n^{γ}
- We heuristically derive a conjecture: Suppose we were allowed to let n → ∞ and u → 0 simultaneously.
- At best we could be allowed $u \approx \frac{c}{n}$. Then our hypothetic result would give that the most powerful vertices would have a connected component of size n^{ρ_-}

Branching random walks without killing

• Consider the marked tree we get from the branching random walk (without killing) with displacements given by a Poisson process Π with intensity π

Branching random walks without killing

- Consider the marked tree we get from the branching random walk (without killing) with displacements given by a Poisson process Π with intensity π
- Define

$$\psi(\alpha) = \mathbb{E}\Big[\sum_{x\in\Pi} \mathrm{e}^{-\alpha\tau_x}\Big].$$

Let ξ be a point process on [0,∞). We denote by μ = ℝ[ξ] the intensity measure of the point process.

- Let ξ be a point process on [0,∞). We denote by μ = E[ξ] the intensity measure of the point process.
- The following conditions have to be met:

- Let ξ be a point process on [0,∞). We denote by μ = E[ξ] the intensity measure of the point process.
- The following conditions have to be met:
 (i) μ is not concentrated on any lattice,

- Let ξ be a point process on [0,∞). We denote by μ = E[ξ] the intensity measure of the point process.
- The following conditions have to be met:

(i) μ is not concentrated on any lattice,

(ii) there exists an $\alpha \in (0,\infty)$ such that $\int_0^\infty \mathrm{e}^{-\alpha t} \mu(\mathrm{d} t) = 1$

- Let ξ be a point process on [0,∞). We denote by μ = E[ξ] the intensity measure of the point process.
- The following conditions have to be met:

(i) μ is not concentrated on any lattice,

(ii) there exists an $\alpha \in (0,\infty)$ such that $\int_0^\infty e^{-\alpha t} \mu(dt) = 1$

(iii) we have $\int_0^\infty t e^{-\alpha t} \mu(dt) < \infty$.

- Let ξ be a point process on [0,∞). We denote by μ = E[ξ] the intensity measure of the point process.
- The following conditions have to be met:

(i) μ is not concentrated on any lattice,

(ii) there exists an $\alpha \in (0,\infty)$ such that $\int_0^\infty e^{-\alpha t} \mu(dt) = 1$

(iii) we have $\int_0^\infty t e^{-\alpha t} \mu(dt) < \infty$.

The Crump-Mode-Jagers or general branching process.

• The set-up of Nerman allows to also include a time dependent characteristic for each particle *x*.

- The set-up of Nerman allows to also include a time dependent characteristic for each particle *x*.
- In our case it suffices to use a characteristic X_x, which may depend on ξ_x but is independent for each particle and distributed like some real valued X.

- The set-up of Nerman allows to also include a time dependent characteristic for each particle *x*.
- In our case it suffices to use a characteristic X_x, which may depend on ξ_x but is independent for each particle and distributed like some real valued X.
- We sum X_x over all particles born before time t,

$$Z_t^X := \sum_{x \in \mathcal{T}, \sigma_x < t} X_x.$$

The following result is the work of Nerman formulated in our set-up.

Theorem

Suppose that $\mathbb{E}[X] < \infty$, then

$$e^{-\alpha t}Z_t^X \to W$$
 in probability, as $t \to \infty$,

The following result is the work of Nerman formulated in our set-up.

Theorem

Suppose that $\mathbb{E}[X] < \infty$, then

$$e^{-\alpha t}Z_t^X \to W$$
 in probability, as $t \to \infty$,

• In order to use this to prove our main result we have to derive a suitable ξ and X from π .

 We let ξ be the point process of locations of the frozen (non-branching) particles

- We let ξ be the point process of locations of the frozen (non-branching) particles
- We let X ≥ 1 be the total number of branching particles including the particle at the origin

This leads to the following Theorem:

Theorem

We have $\mathbb{E}[X] < \infty$ and ξ satisfies the conditions above for the Malthusian parameter $\alpha = \rho_-$. Moreover, for $t = -\log u$, we have

$$Z_t^X \stackrel{d}{=} T(u).$$

Proof.

This leads to the following Theorem:

Theorem

We have $\mathbb{E}[X] < \infty$ and ξ satisfies the conditions above for the Malthusian parameter $\alpha = \rho_{-}$. Moreover, for $t = -\log u$, we have

$$Z_t^X \stackrel{d}{=} T(u).$$

Proof.

 Shifting all particle positions by t = -log u the killed branching random walk T(u) becomes a branching random walk T'(u) started at the origin, with displacements given by π, with a killing barrier at t = -log u.

• The positions of the frozen particles are the birth times of its children in the general branching process

- The positions of the frozen particles are the birth times of its children in the general branching process
- the number of branching particles is the characteristic X_x

• $\mathbb{E}[X] < \infty$ since the tree is subcritical

- $\mathbb{E}[X] < \infty$ since the tree is subcritical
- It also holds that $\int_0^\infty e^{\rho_- t} \xi(dt) = 1.$

- $\mathbb{E}[X] < \infty$ since the tree is subcritical
- It also holds that $\int_0^\infty e^{\rho_- t} \xi(dt) = 1.$
- To complete the proof we have

$$\lim_{n\to\infty}\mathbb{P}\left(S_n(o_n)\geq u^{-\rho_-}x\right)=\mathbb{P}\left(T(u)\geq u^{-\rho_-}x\right).$$

$$\lim_{u\downarrow 0} \mathbb{P}\left(T(u) \ge x u^{-\rho_{-}}\right) = \mathbb{P}\left(W \ge x\right),$$

and therefore

$$\lim_{u \downarrow 0} \lim_{n \to \infty} \mathbb{P}\left(S_n(o_n) \ge u^{-\rho_-}x\right) = \mathbb{P}\left(Y \ge x\right) \,.$$

• Since $\psi(\rho_{-}) = 1$ we have that $W_n := \sum_{|x|=n} e^{-\rho_{-}\tau_x}$ is a Martingale.

- Since $\psi(\rho_{-}) = 1$ we have that $W_n := \sum_{|x|=n} e^{-\rho_{-}\tau_x}$ is a Martingale.
- By Biggins' theorem for branching random walks the martingale limit *W* is strictly positive if and only if the following two conditions hold,

- Since $\psi(\rho_{-}) = 1$ we have that $W_n := \sum_{|x|=n} e^{-\rho_{-}\tau_x}$ is a Martingale.
- By Biggins' theorem for branching random walks the martingale limit *W* is strictly positive if and only if the following two conditions hold,

(*i*)
$$\log(\psi(\rho_{-})) - \frac{\rho_{-}\psi'(\rho_{-})}{\psi(\rho_{-})} > 0$$
,

- Since $\psi(\rho_{-}) = 1$ we have that $W_n := \sum_{|x|=n} e^{-\rho_{-}\tau_x}$ is a Martingale.
- By Biggins' theorem for branching random walks the martingale limit *W* is strictly positive if and only if the following two conditions hold,

(*i*)
$$\log(\psi(\rho_{-})) - \frac{\rho_{-}\psi'(\rho_{-})}{\psi(\rho_{-})} > 0$$
,
(*ii*) $\mathbb{E}[W_{1} \log W_{1}] < \infty$.

- Since $\psi(\rho_{-}) = 1$ we have that $W_n := \sum_{|x|=n} e^{-\rho_{-}\tau_x}$ is a Martingale.
- By Biggins' theorem for branching random walks the martingale limit *W* is strictly positive if and only if the following two conditions hold,

(*i*)
$$\log(\psi(\rho_{-})) - \frac{\rho_{-}\psi'(\rho_{-})}{\psi(\rho_{-})} > 0$$
,
(*ii*) $\mathbb{E}[W_{1} \log W_{1}] < \infty$.

• The first one holds as $\psi(\rho_-) = 1$ and $\psi'(\rho_-) < 0$.

- Since $\psi(\rho_{-}) = 1$ we have that $W_n := \sum_{|x|=n} e^{-\rho_{-}\tau_x}$ is a Martingale.
- By Biggins' theorem for branching random walks the martingale limit *W* is strictly positive if and only if the following two conditions hold,

(*i*)
$$\log(\psi(\rho_{-})) - \frac{\rho_{-}\psi'(\rho_{-})}{\psi(\rho_{-})} > 0$$
,
(*ii*) $\mathbb{E}[W_1 \log W_1] < \infty$.

- The first one holds as $\psi(\rho_{-}) = 1$ and $\psi'(\rho_{-}) < 0$.
- For the second condition it suffices to check $\mathbb{E}[W_1^{\alpha}] < \infty$ for some $\alpha > 1$.