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Notation
Allocate m tasks (balls) into n machines (bins).

Goal: minimise the maximum load maxi∈[n] xm
i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).
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One-Choice versus Two-Choice

One-Choice:
Iteration: For each ball 1, 2, . . . , m sample one bin uniformly at random (u.a.r.) and
allocate ball there.

■ For m ≫ n, w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98])

Two-Choice:
Iteration: For each ball 1, 2, . . . , m sample two bins independently u.a.r. and allocate
ball to the least loaded of the two.

■ For any mn, w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].
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Caen Hill Locks (main flight consists of 16 locks)
Source: WikipediaBackground 5



Proof Idea: Layered Induction

■ Let m = n

■ Let bk be the fraction of bins with load at least k after n balls are allocated.

Then:
bk+1 ≤ (bk)2

■ b2 ≤ 1/2 ⇝ blog2 log2 n+3 ≤ n−2

This does not work in the heavily loaded case m ≫ n!
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Two-Choice: Visualization
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Experiments

Distribution of Gap(m), m = 108, n = 104 over 100 runs:
■ One-Choice: gap values ranging from 328 to 520
■ Two-Choice: 34 runs with gap 2; 66 runs with gap 3
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ACM Paris Kanellakis Theory and Practice Award 2020

For “the discovery and analysis of balanced allocations, known as the power of two
choices, and their extensive applications to practice.”

“These include i-Google’s web index, Akamai’s overlay routing network, and highly
reliable distributed data storage systems used by Microsoft and Dropbox, which are
all based on variants of the power of two choices paradigm. There are many other
software systems that use balanced allocations as an important ingredient.”
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Relaxations of the Original Model

Balls arrive sequentially and sample two bins independently and uniformly at random.
After receiving the correct load from the bins, the ball is placed in the least loaded bin.
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Between One-Choice and Two-Choice
■ One-Choice: large gap Θ(

√
m
n · log n), especially when m ≫ n

... ??

■ Two-Choice: very small gap log2 log n + Θ(1) regardless of value of m

■ Three-Choice: slightly better than Two-Choice

1.5-Choice (a.k.a. (1 + β)-process):
Iteration: For each t ≥ 0, with probability 1/2 allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ The number of samples per ball is 1.5 (on average)
■ It can be seen as making an erroneous comparison

with probability 1/4
■ The gap is w.h.p. Θ(log n) [PTW15]
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Tool 1: Probability Vectors

■ Probability vector pt, where pt
i is the

prob. of allocating to i-th heaviest bin.

■ For One-Choice,

pOne-Choice =
( 1

n
,

1
n

, . . . ,
1
n

)
■ For Two-Choice,

pTwo-Choice =
( 1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
■ For 1.5-Choice,

p1.5-Choice = 1
2

·pOne-Choice + 1
2

·pTwo-Choice

1 2 3 4 5 6 7 80

0.1

0.2

0.3

i

p
i

■ Having a time-invariant probability vector is handy for the analysis!
■ Good: Both Two-Choice and 1.5-Choice have a strong bias towards light bins
■ Intuition: The more choices, the better(?)

Background 12
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Tool 2: Exponential Potential

Γt :=
n∑

i=1
eα(xt

i−t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−α(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

=
n∑

i=1
eα(xt

i−t/n) + e−α(xt
i+t/n)
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■ Normalise load vector: xt − 2.5 =

(0.5, −0.5, −2.5, 0.5, 4.5, 0.5, −0.5, −2.5)

■ Evaluate Exponential Potential Function (α = 1):
Γt =

2.25 + 2.25 + 12.26 + 2.25 + 90.03 + 2.25 + 2.25 + 12.26 = 125.83

Γt = O(poly(n)) ⇒ Gap = O(log n)
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The Change in the Exponential Potential Function
■ Let us analyse the change in the exponential potential

Γt :=
n∑

i=1

(
eα(xt

i−t/n)︸ ︷︷ ︸
Overload potential

+ e−α(xt
i−t/n)︸ ︷︷ ︸

Underload potential

)
■ For 1.5-Choice, α = 1/144.

■ One can prove a drop inequality:

E
[

Γt+1 | Γt
]

≤
(

1 − c1

n

)
· Γt + c2.

■ This implies that for any t ≥ 0, E [ Γt ] ≤ c2
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Mean-Thinning process

Mean-Thinning:
Iteration: For t ≥ 0, sample two bins i1 and i2 independently u.a.r., and update:

{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n

✓
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i2
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i2

+ 1 if xt
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n .
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Mean-Thinning: Visualization
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Mean-Thinning: Our Results [LSS22]

■ For all m ≥ n, Mean-Thinning achieves w.h.p. Gap(m) = O(log n)

■ For sufficiently large m, w.h.p. Gap(m) = Ω(log n)

■ The following implementation of Mean-Thinning uses 2 − ϵ samples (on average):
▶ Sample a bin i1, allocate ball to i1 if its load is below the average.
▶ Otherwise sample a bin i2 and allocate ball to i2.

Bin i1 (or i2) can directly allocate the ball after checking whether
it is underloaded ⇝ no extra communication or comparison needed!
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Mean-Thinning: Why the analysis is tricky
■ Let δt be mean quantile, i.e., the fraction of bins which are overloaded (i.e., xt ≥ t/n)

■ If δt is very large, say δt = 1 − 1/n, then p is very close to the One-Choice vector:

pMean-Thinning(xt) =
( 1

n
− 1

n2 , . . . ,
1
n

− 1
n2︸ ︷︷ ︸

(n−1) entries

,
2
n

− 1
n2

)
.

How can we prove a drop in the exponential potential?
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Combe Down Tunnel (length 1.6 kilometres)
Copyright: Graeme Bickerdike
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A Closer Look at Γt

■ Similar to the exponential potential analysis before, there is a
constant α > 0:

▶ (Good step) If for const ϵ > 0, then there are constants
c1, c2 > 0

E[ Γt+1 | Γt ] ≤
(

1 − c1α

n

)
· Γt + c2,

▶ (Bad step) If δt /∈ (ϵ, 1 − ϵ), then there are constants c3, c4 > 0

E[ Γt+1 | Γt ] ≤
(

1 + c3α2

n

)
· Γt + c4.

How to prove there are enough good steps?

Skip (Slightly (More)) Technical Part
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Mean Quantile Stabilization

How to prove there are enough good steps?

■ We need a fraction of at least ϵ of overloaded and underloaded bins at those steps
■ Define an absolute value potential function,

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ .

■ If ∆t ≤ c · n, then:

▶ At least n/2 bins have (normalised) load between [−2c, +2c]
▶ Constant prob. for such bin to switch between overloaded/underloaded in 2cn steps
▶ After 2cn steps, enough overloaded and underloaded bins ⇝ good step ✓

How to prove that ∆t is small?

Change in the quadratic potential Υt =
∑n

i=1
(
xt

i − t
n

)2 is equal to −∆t + Θ(n).
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What happens if we use Thinning with a different threshold?

■ We proved Mean-Thinning has a gap of Θ(log n) [LSS22]
■ Simple coupling ⇒ Thinning with threshold t

n + f(n) has gap O(log n + f(n))

Gap(m) for n = 103 and m = 107 (15 rep.)

Conjecture: For thresholds like f(n) =
√

log n:
■ Gap is O( log n

log log n )
■ The average number of samples is 1 + o(1)

Allowing the threshold to vary over time:

■ [FGL24]: gap of (log n)1/2+o(1) for specific round m (and fraction of 1 − e−1/2
√

log log log n rounds)
■ [LS22]: for m = Θ(n

√
log n), gap is Ω(

√
log n) w.h.p.

■ [LS22]: gap is Ω( log n
log log n

) for at least a 1/(log n) fraction of all rounds w.h.p.
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Two Choice with Noise: Noisy Load Estimates

7
7 7 7

7

7
7

g = 4 here!

Two-Choice with Noisy Load Estimates [LS23]
Iteration: For each t ≥ 0:

1. Sample two bins i, j independently and uniformly at random
2. Receive load estimates x̃t

i and x̃t
j

3. Allocate ball to the bin with smaller load estimate

Load Estimates could be...

■ adversarial perturbations ⇝ x̃t
i ∈ [xt

i − g, xt
i + g]

■ random perturbations of exact loads ⇝ x̃t
i = xt

i + N (0, σ2)
■ T -time-delayed versions of exact loads ⇝ x̃t

i ∈ [xt−T
i , xt

i]
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Comparison-Based Model

Let us assume that the adversary can directly influence comparisons:

g-Bounded Process
Parameter: Integer g ≥ 1
Iteration: For each t ≥ 0:

1. Sample two bins i, j independently and uniformly at random
2. If |xt

i − xt
j | > g, allocate ball to the lesser loaded bin,

3. Otherwise, allocate ball to the higher loaded bin.

Adversary is greedily fooling Two-Choice as often as possible!
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Asymptotic Results for g ≤ log n [LS23]

g

Gap

1

log log n · g
log g

g + log n

0

log log n

log n

log n

Matching lower bound even if the
noisy load comparisons are random!

Analysis more complicated (also involves
super-exponential potential functions)

Conclusion
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An upper bound of O(g + log n) follows
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Delay Models (The Problem of Choices)

T -Delay
Parameter: Integer T ≥ 1
Iteration: For each t ≥ 0:

1. Sample two bins i, j independently and uniformly at random
2. Receive load estimates x̃t

i ∈ [xt−T
i , xt

i] and x̃t
i ∈ [xt−T

j , xt
j ].

3. Allocate ball to the bin with smaller load estimate.

Batching model: Load values are updated every T steps [BCE+12]
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Batching (1/2)

1 10 20 30 40 50
0

20

40

60

Normalized batch size T/n, n = 100

G
a
p
(n

2
)
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n
s

Three-Choice
Two-Choice
1.5-Choice

■ Two-Choice (and Three-Choice) have a too strong bias towards the bins that are
lightly loaded at the beginning

■ Result: For T ≥ n log n, (1 + β)-Choice with β =
√

(n/T ) · log n has
Gap(m) = O(

√
(T/n) · log n) (optimal and quadratically better than Two-Choice)
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Batching (2/2)

Load distribution after two additional batches of Two-Choice (left) and 1.5-Choice (right)
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Conclusion
Summary of Results:
■ Tight bounds for several noisy versions of Two-Choice
■ Proof techniques based on (super-)exponential and low-order potential functions
■ (Some of the results extend to weighted balls and balanced allocations on graphs)

Open Questions:
■ Are there better thresholds than Mean-Thinning?
⇝ experiments suggest a gap of Θ( log n

log log n ) is possible
■ understand Balanced Allocations on sparse graphs
■ other “more realistic” noise models

More visualizations:
https://dimitrioslos.com/research/phd-thesis/index.html

(Dimitrios Los)
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