
Balanced Allocations:
The Power of Choice versus Noise

Thomas Sauerwald

Department of Computer Science and Technology, University of Cambridge

20 June 2024

(based on joint work with Dimitris Los and John Sylvester)

0

Background

Background 1

Balanced Allocations a.k.a. Balls-into-Bins

Balls → Bins

Items → Buckets

Balls → Baskets

Football → Goal

. . .

Background 2

Balanced Allocations a.k.a. Balls-into-Bins

Balls → Bins

Items → Buckets

Balls → Baskets

Football → Goal

. . .

Background 2

Balanced Allocations a.k.a. Balls-into-Bins

Balls → Bins

Items → Buckets

Balls → Baskets

Football → Goal

. . .

Background 2

Balanced Allocations a.k.a. Balls-into-Bins

Balls → Bins

Items → Buckets

Balls → Baskets

Football → Goal

. . .

Background 2

Balanced Allocations a.k.a. Balls-into-Bins

Balls → Bins

Items → Buckets

Balls → Baskets

Football → Goal

. . .
Background 2

Balanced Allocations a.k.a. Balls-into-Bins

Balls → Bins

Items → Buckets

Balls → Baskets

Football → Goal

. . .
Background 2

Notation
Allocate m tasks (balls) into n machines (bins).

Goal: minimise the maximum load maxi∈[n] xm
i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Background 3

Notation
Allocate m tasks (balls) into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Background 3

Notation
Allocate m tasks (balls) into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Background 3

Notation
Allocate m tasks (balls) into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Background 3

Notation
Allocate m tasks (balls) into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Gap

Background 3

One-Choice versus Two-Choice

One-Choice:
Iteration: For each ball 1, 2, . . . , m sample one bin uniformly at random (u.a.r.) and
allocate ball there.

■ For m ≫ n, w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98])

Two-Choice:
Iteration: For each ball 1, 2, . . . , m sample two bins independently u.a.r. and allocate
ball to the least loaded of the two.

■ For any mn, w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Background 4

One-Choice versus Two-Choice

One-Choice:
Iteration: For each ball 1, 2, . . . , m sample one bin uniformly at random (u.a.r.) and
allocate ball there.

■ For m ≫ n, w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98])

Two-Choice:
Iteration: For each ball 1, 2, . . . , m sample two bins independently u.a.r. and allocate
ball to the least loaded of the two.

■ For any mn, w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Background 4

One-Choice versus Two-Choice

One-Choice:
Iteration: For each ball 1, 2, . . . , m sample one bin uniformly at random (u.a.r.) and
allocate ball there.

■ For m ≫ n, w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98])

Meaning with probability
at least 1 − n−c for constant c > 0.

Two-Choice:
Iteration: For each ball 1, 2, . . . , m sample two bins independently u.a.r. and allocate
ball to the least loaded of the two.

■ For any mn, w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Background 4

One-Choice versus Two-Choice

One-Choice:
Iteration: For each ball 1, 2, . . . , m sample one bin uniformly at random (u.a.r.) and
allocate ball there.

■ For m ≫ n, w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98])

Two-Choice:
Iteration: For each ball 1, 2, . . . , m sample two bins independently u.a.r. and allocate
ball to the least loaded of the two.

■ For any m ≥ n, w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Background 4

One-Choice versus Two-Choice

One-Choice:
Iteration: For each ball 1, 2, . . . , m sample one bin uniformly at random (u.a.r.) and
allocate ball there.

■ For m ≫ n, w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98])

Two-Choice:
Iteration: For each ball 1, 2, . . . , m sample two bins independently u.a.r. and allocate
ball to the least loaded of the two.

■ For any m ≥ n, w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Background 4

One-Choice versus Two-Choice

One-Choice:
Iteration: For each ball 1, 2, . . . , m sample one bin uniformly at random (u.a.r.) and
allocate ball there.

■ For m ≫ n, w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98])

Two-Choice:
Iteration: For each ball 1, 2, . . . , m sample two bins independently u.a.r. and allocate
ball to the least loaded of the two.

■ For any m ≥ n, w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Background 4

Caen Hill Locks (main flight consists of 16 locks)
Source: WikipediaBackground 5

Proof Idea: Layered Induction

■ Let m = n

■ Let bk be the fraction of bins with load at least k after n balls are allocated.

Then:
bk+1 ≤ (bk)2

■ b2 ≤ 1/2 ⇝ blog2 log2 n+3 ≤ n−2

This does not work in the heavily loaded case m ≫ n!

Background 6

Proof Idea: Layered Induction

■ Let m = n

■ Let bk be the fraction of bins with load at least k after n balls are allocated.

Then:
bk+1 ≤ (bk)2

■ b2 ≤ 1/2 ⇝ blog2 log2 n+3 ≤ n−2

This does not work in the heavily loaded case m ≫ n!

Background 6

Proof Idea: Layered Induction

■ Let m = n

■ Let bk be the fraction of bins with load at least k after n balls are allocated.

Then:
bk+1 ≤ (bk)2

■ b2 ≤ 1/2 ⇝ blog2 log2 n+3 ≤ n−2

This does not work in the heavily loaded case m ≫ n!

Background 6

Proof Idea: Layered Induction

■ Let m = n

■ Let bk be the fraction of bins with load at least k after n balls are allocated. Then:
bk+1 ≤ (bk)2

■ b2 ≤ 1/2 ⇝ blog2 log2 n+3 ≤ n−2

This does not work in the heavily loaded case m ≫ n!

Background 6

Proof Idea: Layered Induction

■ Let m = n

■ Let bk be the fraction of bins with load at least k after n balls are allocated. Then:
bk+1 ≤ (bk)2

■ b2 ≤ 1/2 ⇝ blog2 log2 n+3 ≤ n−2

This does not work in the heavily loaded case m ≫ n!

Background 6

Two-Choice: Visualization

Background 7

Experiments

Distribution of Gap(m), m = 108, n = 104 over 100 runs:
■ One-Choice: gap values ranging from 328 to 520
■ Two-Choice: 34 runs with gap 2; 66 runs with gap 3

Background 8

Experiments

0 0.2 0.4 0.6 0.8 1

·104

0

100

200

300

400

m/n

Gap for n = 104

One-Choice
Two-Choice

Distribution of Gap(m), m = 108, n = 104 over 100 runs:
■ One-Choice: gap values ranging from 328 to 520
■ Two-Choice: 34 runs with gap 2; 66 runs with gap 3

Background 8

Experiments

0 0.2 0.4 0.6 0.8 1

·104

0

100

200

300

400

m/n

Gap for n = 104

One-Choice
Two-Choice

“Power of two choices”

Distribution of Gap(m), m = 108, n = 104 over 100 runs:
■ One-Choice: gap values ranging from 328 to 520
■ Two-Choice: 34 runs with gap 2; 66 runs with gap 3

Background 8

Experiments

0 0.2 0.4 0.6 0.8 1

·104

0

100

200

300

400

m/n

Gap for n = 104

One-Choice
Two-Choice

“Power of two choices”

Distribution of Gap(m), m = 108, n = 104 over 100 runs:
■ One-Choice: gap values ranging from 328 to 520
■ Two-Choice: 34 runs with gap 2; 66 runs with gap 3

Background 8

ACM Paris Kanellakis Theory and Practice Award 2020

For “the discovery and analysis of balanced allocations, known as the power of two
choices, and their extensive applications to practice.”

“These include i-Google’s web index, Akamai’s overlay routing network, and highly
reliable distributed data storage systems used by Microsoft and Dropbox, which are
all based on variants of the power of two choices paradigm. There are many other
software systems that use balanced allocations as an important ingredient.”

Background 9

Relaxations of the Original Model

Balls arrive sequentially and sample two bins independently and uniformly at random.
After receiving the correct load from the bins, the ball is placed in the least loaded bin.

Background 10

Relaxations of the Original Model

Balls arrive sequentially and sample two bins independently and uniformly at random.
After receiving the correct load from the bins, the ball is placed in the least loaded bin.

1. What if we are not (always) able to sample two bins?

⇝ 1.5-Choice

2. What if the two bin samples are correlated?

⇝ Balanced Allocations on Graphs

3a. What if the exact load information cannot be queried?

⇝ Thinning

3b. What if the load information is outdated,

or possibly manipulated by an adversary?

⇝ Noise and Delay Models

Background 10

Relaxations of the Original Model

Balls arrive sequentially and sample two bins independently and uniformly at random.
After receiving the correct load from the bins, the ball is placed in the least loaded bin.

1. What if we are not (always) able to sample two bins? ⇝ 1.5-Choice

2. What if the two bin samples are correlated?

⇝ Balanced Allocations on Graphs

3a. What if the exact load information cannot be queried?

⇝ Thinning

3b. What if the load information is outdated,

or possibly manipulated by an adversary?

⇝ Noise and Delay Models

Background 10

Relaxations of the Original Model

Balls arrive sequentially and sample two bins independently and uniformly at random.
After receiving the correct load from the bins, the ball is placed in the least loaded bin.

1. What if we are not (always) able to sample two bins? ⇝ 1.5-Choice

2. What if the two bin samples are correlated?

⇝ Balanced Allocations on Graphs

3a. What if the exact load information cannot be queried?

⇝ Thinning

3b. What if the load information is outdated,

or possibly manipulated by an adversary?

⇝ Noise and Delay Models

Background 10

Relaxations of the Original Model

Balls arrive sequentially and sample two bins independently and uniformly at random.
After receiving the correct load from the bins, the ball is placed in the least loaded bin.

1. What if we are not (always) able to sample two bins? ⇝ 1.5-Choice

2. What if the two bin samples are correlated? ⇝ Balanced Allocations on Graphs

3a. What if the exact load information cannot be queried?

⇝ Thinning

3b. What if the load information is outdated,

or possibly manipulated by an adversary?

⇝ Noise and Delay Models

Background 10

Relaxations of the Original Model

Balls arrive sequentially and sample two bins independently and uniformly at random.
After receiving the correct load from the bins, the ball is placed in the least loaded bin.

1. What if we are not (always) able to sample two bins? ⇝ 1.5-Choice

2. What if the two bin samples are correlated? ⇝ Balanced Allocations on Graphs

3a. What if the exact load information cannot be queried?

⇝ Thinning

3b. What if the load information is outdated,

or possibly manipulated by an adversary?

⇝ Noise and Delay Models

Background 10

Relaxations of the Original Model

Balls arrive sequentially and sample two bins independently and uniformly at random.
After receiving the correct load from the bins, the ball is placed in the least loaded bin.

1. What if we are not (always) able to sample two bins? ⇝ 1.5-Choice

2. What if the two bin samples are correlated? ⇝ Balanced Allocations on Graphs

3a. What if the exact load information cannot be queried?

⇝ Thinning

3b. What if the load information is outdated,

or possibly manipulated by an adversary?

⇝ Noise and Delay Models

Background 10

Relaxations of the Original Model
7 3 3 7 7 7 3 3

Balls arrive sequentially and sample two bins independently and uniformly at random.
After receiving the correct load from the bins, the ball is placed in the least loaded bin.

1. What if we are not (always) able to sample two bins? ⇝ 1.5-Choice

2. What if the two bin samples are correlated? ⇝ Balanced Allocations on Graphs

3a. What if the exact load information cannot be queried? ⇝ Thinning

3b. What if the load information is outdated,

or possibly manipulated by an adversary?

⇝ Noise and Delay Models

Background 10

Relaxations of the Original Model

Balls arrive sequentially and sample two bins independently and uniformly at random.
After receiving the correct load from the bins, the ball is placed in the least loaded bin.

1. What if we are not (always) able to sample two bins? ⇝ 1.5-Choice

2. What if the two bin samples are correlated? ⇝ Balanced Allocations on Graphs

3a. What if the exact load information cannot be queried? ⇝ Thinning

3b. What if the load information is outdated,

or possibly manipulated by an adversary?

⇝ Noise and Delay Models

Background 10

Relaxations of the Original Model

Balls arrive sequentially and sample two bins independently and uniformly at random.
After receiving the correct load from the bins, the ball is placed in the least loaded bin.

1. What if we are not (always) able to sample two bins? ⇝ 1.5-Choice

2. What if the two bin samples are correlated? ⇝ Balanced Allocations on Graphs

3a. What if the exact load information cannot be queried? ⇝ Thinning
3b. What if the load information is outdated,

or possibly manipulated by an adversary?
⇝ Noise and Delay Models

Background 10

Relaxations of the Original Model

Balls arrive sequentially and sample two bins independently and uniformly at random.
After receiving the correct load from the bins, the ball is placed in the least loaded bin.

1. What if we are not (always) able to sample two bins? ⇝ 1.5-Choice

2. What if the two bin samples are correlated? ⇝ Balanced Allocations on Graphs

3a. What if the exact load information cannot be queried? ⇝ Thinning
3b. What if the load information is outdated,

or possibly manipulated by an adversary?
⇝ Noise and Delay Models

Background 10

Relaxations of the Original Model

7
7 7 7

7

7
7

Balls arrive sequentially and sample two bins independently and uniformly at random.
After receiving the correct load from the bins, the ball is placed in the least loaded bin.

1. What if we are not (always) able to sample two bins? ⇝ 1.5-Choice

2. What if the two bin samples are correlated? ⇝ Balanced Allocations on Graphs

3a. What if the exact load information cannot be queried? ⇝ Thinning
3b. What if the load information is outdated,

or possibly manipulated by an adversary?
⇝ Noise and Delay Models

Background 10

Relaxations of the Original Model

7
7 7 7

7

7
7

Balls arrive sequentially and sample two bins independently and uniformly at random.
After receiving the correct load from the bins, the ball is placed in the least loaded bin.

1. What if we are not (always) able to sample two bins? ⇝ 1.5-Choice

2. What if the two bin samples are correlated? ⇝ Balanced Allocations on Graphs

3a. What if the exact load information cannot be queried? ⇝ Thinning
3b. What if the load information is outdated,

or possibly manipulated by an adversary?
⇝ Noise and Delay Models

Background 10

Relaxations of the Original Model

7
7 7 7

7

7
7

Balls arrive sequentially and sample two bins independently and uniformly at random.
After receiving the correct load from the bins, the ball is placed in the least loaded bin.

1. What if we are not (always) able to sample two bins? ⇝ 1.5-Choice

2. What if the two bin samples are correlated? ⇝ Balanced Allocations on Graphs

3a. What if the exact load information cannot be queried? ⇝ Thinning
3b. What if the load information is outdated, or possibly manipulated by an adversary?

⇝ Noise and Delay Models

Background 10

Relaxations of the Original Model

7
7 7 7

7

7
7

Balls arrive sequentially and sample two bins independently and uniformly at random.
After receiving the correct load from the bins, the ball is placed in the least loaded bin.

1. What if we are not (always) able to sample two bins? ⇝ 1.5-Choice

2. What if the two bin samples are correlated? ⇝ Balanced Allocations on Graphs

3a. What if the exact load information cannot be queried? ⇝ Thinning
3b. What if the load information is outdated, or possibly manipulated by an adversary?

⇝ Noise and Delay Models

Background 10

Relaxations of the Original Model

7
7 7 7

7

7
7

Balls arrive sequentially and sample two bins independently and uniformly at random.
After receiving the correct load from the bins, the ball is placed in the least loaded bin.

1. What if we are not (always) able to sample two bins? ⇝ 1.5-Choice

2. What if the two bin samples are correlated? ⇝ Balanced Allocations on Graphs

3a. What if the exact load information cannot be queried? ⇝ Thinning
3b. What if the load information is outdated, or possibly manipulated by an adversary?
⇝ Noise and Delay Models

Background 10

Between One-Choice and Two-Choice
■ One-Choice: large gap Θ(

√
m
n · log n), especially when m ≫ n

... ??

■ Two-Choice: very small gap log2 log n + Θ(1) regardless of value of m

■ Three-Choice: slightly better than Two-Choice

1.5-Choice (a.k.a. (1 + β)-process):
Iteration: For each t ≥ 0, with probability 1/2 allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ The number of samples per ball is 1.5 (on average)
■ It can be seen as making an erroneous comparison

with probability 1/4
■ The gap is w.h.p. Θ(log n) [PTW15]

Background 11

Between One-Choice and Two-Choice
■ One-Choice: large gap Θ(

√
m
n · log n), especially when m ≫ n

... ??

■ Two-Choice: very small gap log2 log n + Θ(1) regardless of value of m

■ Three-Choice: slightly better than Two-Choice

1.5-Choice (a.k.a. (1 + β)-process):
Iteration: For each t ≥ 0, with probability 1/2 allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ The number of samples per ball is 1.5 (on average)
■ It can be seen as making an erroneous comparison

with probability 1/4
■ The gap is w.h.p. Θ(log n) [PTW15]

Background 11

Between One-Choice and Two-Choice
■ One-Choice: large gap Θ(

√
m
n · log n), especially when m ≫ n

... ??
■ Two-Choice: very small gap log2 log n + Θ(1) regardless of value of m

■ Three-Choice: slightly better than Two-Choice

1.5-Choice (a.k.a. (1 + β)-process):
Iteration: For each t ≥ 0, with probability 1/2 allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ The number of samples per ball is 1.5 (on average)
■ It can be seen as making an erroneous comparison

with probability 1/4
■ The gap is w.h.p. Θ(log n) [PTW15]

Background 11

Between One-Choice and Two-Choice
■ One-Choice: large gap Θ(

√
m
n · log n), especially when m ≫ n

... ??
■ Two-Choice: very small gap log2 log n + Θ(1) regardless of value of m

■ Three-Choice: slightly better than Two-Choice

1.5-Choice (a.k.a. (1 + β)-process):
Iteration: For each t ≥ 0, with probability 1/2 allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ The number of samples per ball is 1.5 (on average)
■ It can be seen as making an erroneous comparison

with probability 1/4
■ The gap is w.h.p. Θ(log n) [PTW15]

Background 11

Between One-Choice and Two-Choice
■ One-Choice: large gap Θ(

√
m
n · log n), especially when m ≫ n

... ??
■ Two-Choice: very small gap log2 log n + Θ(1) regardless of value of m

■ Three-Choice: slightly better than Two-Choice

1.5-Choice (a.k.a. (1 + β)-process):
Iteration: For each t ≥ 0, with probability 1/2 allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

Of course 1/2 could be replaced by β ∈ [0, 1]

■ The number of samples per ball is 1.5 (on average)
■ It can be seen as making an erroneous comparison

with probability 1/4
■ The gap is w.h.p. Θ(log n) [PTW15]

Background 11

Between One-Choice and Two-Choice
■ One-Choice: large gap Θ(

√
m
n · log n), especially when m ≫ n

... ??
■ Two-Choice: very small gap log2 log n + Θ(1) regardless of value of m

■ Three-Choice: slightly better than Two-Choice

1.5-Choice (a.k.a. (1 + β)-process):
Iteration: For each t ≥ 0, with probability 1/2 allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ The number of samples per ball is 1.5 (on average)

■ It can be seen as making an erroneous comparison
with probability 1/4

■ The gap is w.h.p. Θ(log n) [PTW15]

Background 11

Between One-Choice and Two-Choice
■ One-Choice: large gap Θ(

√
m
n · log n), especially when m ≫ n

... ??
■ Two-Choice: very small gap log2 log n + Θ(1) regardless of value of m

■ Three-Choice: slightly better than Two-Choice

1.5-Choice (a.k.a. (1 + β)-process):
Iteration: For each t ≥ 0, with probability 1/2 allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ The number of samples per ball is 1.5 (on average)
■ It can be seen as making an erroneous comparison

with probability 1/4

■ The gap is w.h.p. Θ(log n) [PTW15]

Background 11

Between One-Choice and Two-Choice
■ One-Choice: large gap Θ(

√
m
n · log n), especially when m ≫ n

... ??
■ Two-Choice: very small gap log2 log n + Θ(1) regardless of value of m

■ Three-Choice: slightly better than Two-Choice

1.5-Choice (a.k.a. (1 + β)-process):
Iteration: For each t ≥ 0, with probability 1/2 allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ The number of samples per ball is 1.5 (on average)
■ It can be seen as making an erroneous comparison

with probability 1/4
■ The gap is w.h.p. Θ(log n) [PTW15]

0 0.2 0.4 0.6 0.8 1

·104

0

100

200

300

400

m/n

Gap for n = 104

One-Choice
Two-Choice

“Power of two choices”

Background 11

Between One-Choice and Two-Choice
■ One-Choice: large gap Θ(

√
m
n · log n), especially when m ≫ n

... ??
■ Two-Choice: very small gap log2 log n + Θ(1) regardless of value of m

■ Three-Choice: slightly better than Two-Choice

1.5-Choice (a.k.a. (1 + β)-process):
Iteration: For each t ≥ 0, with probability 1/2 allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ The number of samples per ball is 1.5 (on average)
■ It can be seen as making an erroneous comparison

with probability 1/4
■ The gap is w.h.p. Θ(log n) [PTW15]

0 0.2 0.4 0.6 0.8 1

·104

0

100

200

300

400

m/n

Gap for n = 104

One-Choice
Two-Choice
1.5-Choice

Background 11

Between One-Choice and Two-Choice
■ One-Choice: large gap Θ(

√
m
n · log n), especially when m ≫ n

... ??
■ Two-Choice: very small gap log2 log n + Θ(1) regardless of value of m

■ Three-Choice: slightly better than Two-Choice

1.5-Choice (a.k.a. (1 + β)-process):
Iteration: For each t ≥ 0, with probability 1/2 allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ The number of samples per ball is 1.5 (on average)
■ It can be seen as making an erroneous comparison

with probability 1/4
■ The gap is w.h.p. Θ(log n) [PTW15]

0 0.2 0.4 0.6 0.8 1

·104

0

100

200

300

400

m/n

Gap for n = 104

One-Choice
Two-Choice
1.5-Choice

Background 11

Tool 1: Probability Vectors

■ Probability vector pt, where pt
i is the

prob. of allocating to i-th heaviest bin.

■ For One-Choice,

pOne-Choice =
(1

n
,

1
n

, . . . ,
1
n

)
■ For Two-Choice,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
■ For 1.5-Choice,

p1.5-Choice = 1
2

·pOne-Choice + 1
2

·pTwo-Choice

1 2 3 4 5 6 7 80

0.1

0.2

0.3

i

p
i

■ Having a time-invariant probability vector is handy for the analysis!
■ Good: Both Two-Choice and 1.5-Choice have a strong bias towards light bins
■ Intuition: The more choices, the better(?)

Background 12

Tool 1: Probability Vectors

■ Probability vector pt, where pt
i is the

prob. of allocating to i-th heaviest bin.

■ For One-Choice,

pOne-Choice =
(1

n
,

1
n

, . . . ,
1
n

)

■ For Two-Choice,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
■ For 1.5-Choice,

p1.5-Choice = 1
2

·pOne-Choice + 1
2

·pTwo-Choice

1 2 3 4 5 6 7 80

0.1

0.2

0.3

i

p
i

■ Having a time-invariant probability vector is handy for the analysis!
■ Good: Both Two-Choice and 1.5-Choice have a strong bias towards light bins
■ Intuition: The more choices, the better(?)

Background 12

Tool 1: Probability Vectors

■ Probability vector pt, where pt
i is the

prob. of allocating to i-th heaviest bin.

■ For One-Choice,

pOne-Choice =
(1

n
,

1
n

, . . . ,
1
n

)

■ For Two-Choice,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
■ For 1.5-Choice,

p1.5-Choice = 1
2

·pOne-Choice + 1
2

·pTwo-Choice

1 2 3 4 5 6 7 80

0.1

0.2

0.3

i

p
i

One-Choice

■ Having a time-invariant probability vector is handy for the analysis!
■ Good: Both Two-Choice and 1.5-Choice have a strong bias towards light bins
■ Intuition: The more choices, the better(?)

Background 12

Tool 1: Probability Vectors

■ Probability vector pt, where pt
i is the

prob. of allocating to i-th heaviest bin.

■ For One-Choice,

pOne-Choice =
(1

n
,

1
n

, . . . ,
1
n

)
■ For Two-Choice,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)

■ For 1.5-Choice,

p1.5-Choice = 1
2

·pOne-Choice + 1
2

·pTwo-Choice

1 2 3 4 5 6 7 80

0.1

0.2

0.3

i

p
i

One-Choice

■ Having a time-invariant probability vector is handy for the analysis!
■ Good: Both Two-Choice and 1.5-Choice have a strong bias towards light bins
■ Intuition: The more choices, the better(?)

Background 12

Tool 1: Probability Vectors

■ Probability vector pt, where pt
i is the

prob. of allocating to i-th heaviest bin.

■ For One-Choice,

pOne-Choice =
(1

n
,

1
n

, . . . ,
1
n

)
■ For Two-Choice,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)

■ For 1.5-Choice,

p1.5-Choice = 1
2

·pOne-Choice + 1
2

·pTwo-Choice

1 2 3 4 5 6 7 80

0.1

0.2

0.3

i

p
i

One-Choice
Two-Choice

■ Having a time-invariant probability vector is handy for the analysis!
■ Good: Both Two-Choice and 1.5-Choice have a strong bias towards light bins
■ Intuition: The more choices, the better(?)

Background 12

Tool 1: Probability Vectors

■ Probability vector pt, where pt
i is the

prob. of allocating to i-th heaviest bin.

■ For One-Choice,

pOne-Choice =
(1

n
,

1
n

, . . . ,
1
n

)
■ For Two-Choice,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
■ For 1.5-Choice,

p1.5-Choice = 1
2

·pOne-Choice + 1
2

·pTwo-Choice
1 2 3 4 5 6 7 80

0.1

0.2

0.3

i

p
i

One-Choice
Two-Choice

■ Having a time-invariant probability vector is handy for the analysis!
■ Good: Both Two-Choice and 1.5-Choice have a strong bias towards light bins
■ Intuition: The more choices, the better(?)

Background 12

Tool 1: Probability Vectors

■ Probability vector pt, where pt
i is the

prob. of allocating to i-th heaviest bin.

■ For One-Choice,

pOne-Choice =
(1

n
,

1
n

, . . . ,
1
n

)
■ For Two-Choice,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
■ For 1.5-Choice,

p1.5-Choice = 1
2

·pOne-Choice + 1
2

·pTwo-Choice
1 2 3 4 5 6 7 80

0.1

0.2

0.3

i

p
i

One-Choice
Two-Choice
1.5-Choice

■ Having a time-invariant probability vector is handy for the analysis!
■ Good: Both Two-Choice and 1.5-Choice have a strong bias towards light bins
■ Intuition: The more choices, the better(?)

Background 12

Tool 1: Probability Vectors

■ Probability vector pt, where pt
i is the

prob. of allocating to i-th heaviest bin.

■ For One-Choice,

pOne-Choice =
(1

n
,

1
n

, . . . ,
1
n

)
■ For Two-Choice,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
■ For 1.5-Choice,

p1.5-Choice = 1
2

·pOne-Choice + 1
2

·pTwo-Choice
1 2 3 4 5 6 7 80

0.1

0.2

0.3

i

p
i

One-Choice
Two-Choice
1.5-Choice

■ Having a time-invariant probability vector is handy for the analysis!

■ Good: Both Two-Choice and 1.5-Choice have a strong bias towards light bins
■ Intuition: The more choices, the better(?)

Background 12

Tool 1: Probability Vectors

■ Probability vector pt, where pt
i is the

prob. of allocating to i-th heaviest bin.

■ For One-Choice,

pOne-Choice =
(1

n
,

1
n

, . . . ,
1
n

)
■ For Two-Choice,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
■ For 1.5-Choice,

p1.5-Choice = 1
2

·pOne-Choice + 1
2

·pTwo-Choice
1 2 3 4 5 6 7 80

0.1

0.2

0.3

i

p
i

One-Choice
Two-Choice
1.5-Choice

■ Having a time-invariant probability vector is handy for the analysis!
■ Good: Both Two-Choice and 1.5-Choice have a strong bias towards light bins

■ Intuition: The more choices, the better(?)

Background 12

Tool 1: Probability Vectors

■ Probability vector pt, where pt
i is the

prob. of allocating to i-th heaviest bin.

■ For One-Choice,

pOne-Choice =
(1

n
,

1
n

, . . . ,
1
n

)
■ For Two-Choice,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
■ For 1.5-Choice,

p1.5-Choice = 1
2

·pOne-Choice + 1
2

·pTwo-Choice
1 2 3 4 5 6 7 80

0.1

0.2

0.3

i

p
i

One-Choice
Two-Choice
1.5-Choice

■ Having a time-invariant probability vector is handy for the analysis!
■ Good: Both Two-Choice and 1.5-Choice have a strong bias towards light bins
■ Intuition: The more choices, the better(?)

Background 12

Tool 2: Exponential Potential

Γt :=
n∑

i=1
eα(xt

i−t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−α(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

=
n∑

i=1
eα(xt

i−t/n) + e−α(xt
i+t/n)

−3 −2.5 −2 −1.5 −1 −0.5 0.5 1 1.5 2 2.5 3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1 2 3 4 5 6 7 8

■ Normalise load vector: xt − 2.5 =

(0.5, −0.5, −2.5, 0.5, 4.5, 0.5, −0.5, −2.5)

■ Evaluate Exponential Potential Function (α = 1):
Γt =

2.25 + 2.25 + 12.26 + 2.25 + 90.03 + 2.25 + 2.25 + 12.26 = 125.83

Γt = O(poly(n)) ⇒ Gap = O(log n)

Background 13

Tool 2: Exponential Potential

Γt :=
n∑

i=1
eα(xt

i−t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−α(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

=
n∑

i=1
eα(xt

i−t/n) + e−α(xt
i+t/n)

−3 −2.5 −2 −1.5 −1 −0.5 0.5 1 1.5 2 2.5 3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

eα·x

1 2 3 4 5 6 7 8

■ Normalise load vector: xt − 2.5 =

(0.5, −0.5, −2.5, 0.5, 4.5, 0.5, −0.5, −2.5)

■ Evaluate Exponential Potential Function (α = 1):
Γt =

2.25 + 2.25 + 12.26 + 2.25 + 90.03 + 2.25 + 2.25 + 12.26 = 125.83

Γt = O(poly(n)) ⇒ Gap = O(log n)

Background 13

Tool 2: Exponential Potential

Γt :=
n∑

i=1
eα(xt

i−t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−α(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

=
n∑

i=1
eα(xt

i−t/n) + e−α(xt
i+t/n)

−3 −2.5 −2 −1.5 −1 −0.5 0.5 1 1.5 2 2.5 3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

eα·x

e−α·x

1 2 3 4 5 6 7 8

■ Normalise load vector: xt − 2.5 =

(0.5, −0.5, −2.5, 0.5, 4.5, 0.5, −0.5, −2.5)

■ Evaluate Exponential Potential Function (α = 1):
Γt =

2.25 + 2.25 + 12.26 + 2.25 + 90.03 + 2.25 + 2.25 + 12.26 = 125.83

Γt = O(poly(n)) ⇒ Gap = O(log n)

Background 13

Tool 2: Exponential Potential

Γt :=
n∑

i=1
eα(xt

i−t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−α(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

=
n∑

i=1
eα(xt

i−t/n) + e−α(xt
i+t/n)

−3 −2.5 −2 −1.5 −1 −0.5 0.5 1 1.5 2 2.5 3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

eα·x

e−α·x

eα·x + e−α·x

1 2 3 4 5 6 7 8

■ Normalise load vector: xt − 2.5 =

(0.5, −0.5, −2.5, 0.5, 4.5, 0.5, −0.5, −2.5)

■ Evaluate Exponential Potential Function (α = 1):
Γt =

2.25 + 2.25 + 12.26 + 2.25 + 90.03 + 2.25 + 2.25 + 12.26 = 125.83

Γt = O(poly(n)) ⇒ Gap = O(log n)

Background 13

Tool 2: Exponential Potential

Γt =
n∑

i=1
eα(xt

i−t/n) + e−α(xt
i+t/n)

−3 −2.5 −2 −1.5 −1 −0.5 0.5 1 1.5 2 2.5 3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

eα·x

e−α·x

eα·x + e−α·x

1 2 3 4 5 6 7 8

■ Normalise load vector: xt − 2.5 =

(0.5, −0.5, −2.5, 0.5, 4.5, 0.5, −0.5, −2.5)

■ Evaluate Exponential Potential Function (α = 1):
Γt =

2.25 + 2.25 + 12.26 + 2.25 + 90.03 + 2.25 + 2.25 + 12.26 = 125.83

Γt = O(poly(n)) ⇒ Gap = O(log n)

Background 13

Tool 2: Exponential Potential

Γt =
n∑

i=1
eα(xt

i−t/n) + e−α(xt
i+t/n)

−3 −2.5 −2 −1.5 −1 −0.5 0.5 1 1.5 2 2.5 3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

eα·x

e−α·x

eα·x + e−α·x

1 2 3 4 5 6 7 8

■ Normalise load vector: xt − 2.5 =

(0.5, −0.5, −2.5, 0.5, 4.5, 0.5, −0.5, −2.5)
■ Evaluate Exponential Potential Function (α = 1):

Γt =

2.25 + 2.25 + 12.26 + 2.25 + 90.03 + 2.25 + 2.25 + 12.26 = 125.83

Γt = O(poly(n)) ⇒ Gap = O(log n)

Background 13

Tool 2: Exponential Potential

Γt =
n∑

i=1
eα(xt

i−t/n) + e−α(xt
i+t/n)

−3 −2.5 −2 −1.5 −1 −0.5 0.5 1 1.5 2 2.5 3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

eα·x

e−α·x

eα·x + e−α·x

1 2 3 4 5 6 7 8

■ Normalise load vector: xt − 2.5 = (0.5, −0.5, −2.5, 0.5, 4.5, 0.5, −0.5, −2.5)

■ Evaluate Exponential Potential Function (α = 1):
Γt =

2.25 + 2.25 + 12.26 + 2.25 + 90.03 + 2.25 + 2.25 + 12.26 = 125.83

Γt = O(poly(n)) ⇒ Gap = O(log n)

Background 13

Tool 2: Exponential Potential

Γt =
n∑

i=1
eα(xt

i−t/n) + e−α(xt
i+t/n)

−3 −2.5 −2 −1.5 −1 −0.5 0.5 1 1.5 2 2.5 3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

eα·x

e−α·x

eα·x + e−α·x

1 2 3 4 5 6 7 8

■ Normalise load vector: xt − 2.5 = (0.5, −0.5, −2.5, 0.5, 4.5, 0.5, −0.5, −2.5)
■ Evaluate Exponential Potential Function (α = 1):

Γt =

2.25 + 2.25 + 12.26 + 2.25 + 90.03 + 2.25 + 2.25 + 12.26 = 125.83

Γt = O(poly(n)) ⇒ Gap = O(log n)

Background 13

Tool 2: Exponential Potential

Γt =
n∑

i=1
eα(xt

i−t/n) + e−α(xt
i+t/n)

−3 −2.5 −2 −1.5 −1 −0.5 0.5 1 1.5 2 2.5 3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1

eα·x

e−α·x

eα·x + e−α·x

1 2 3 4 5 6 7 8

■ Normalise load vector: xt − 2.5 = (0.5, −0.5, −2.5, 0.5, 4.5, 0.5, −0.5, −2.5)
■ Evaluate Exponential Potential Function (α = 1):

Γt = 2.25

+ 2.25 + 12.26 + 2.25 + 90.03 + 2.25 + 2.25 + 12.26 = 125.83

Γt = O(poly(n)) ⇒ Gap = O(log n)

Background 13

Tool 2: Exponential Potential

Γt =
n∑

i=1
eα(xt

i−t/n) + e−α(xt
i+t/n)

−3 −2.5 −2 −1.5 −1 −0.5 0.5 1 1.5 2 2.5 3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

12

eα·x

e−α·x

eα·x + e−α·x

1 2 3 4 5 6 7 8

■ Normalise load vector: xt − 2.5 = (0.5, −0.5, −2.5, 0.5, 4.5, 0.5, −0.5, −2.5)
■ Evaluate Exponential Potential Function (α = 1):

Γt = 2.25 + 2.25

+ 12.26 + 2.25 + 90.03 + 2.25 + 2.25 + 12.26 = 125.83

Γt = O(poly(n)) ⇒ Gap = O(log n)

Background 13

Tool 2: Exponential Potential

Γt =
n∑

i=1
eα(xt

i−t/n) + e−α(xt
i+t/n)

−3 −2.5 −2 −1.5 −1 −0.5 0.5 1 1.5 2 2.5 3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

12

3 eα·x

e−α·x

eα·x + e−α·x

1 2 3 4 5 6 7 8

■ Normalise load vector: xt − 2.5 = (0.5, −0.5, −2.5, 0.5, 4.5, 0.5, −0.5, −2.5)
■ Evaluate Exponential Potential Function (α = 1):

Γt = 2.25 + 2.25 + 12.26

+ 2.25 + 90.03 + 2.25 + 2.25 + 12.26 = 125.83

Γt = O(poly(n)) ⇒ Gap = O(log n)

Background 13

Tool 2: Exponential Potential

Γt =
n∑

i=1
eα(xt

i−t/n) + e−α(xt
i+t/n)

−3 −2.5 −2 −1.5 −1 −0.5 0.5 1 1.5 2 2.5 3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

2

3

1, 4

eα·x

e−α·x

eα·x + e−α·x

1 2 3 4 5 6 7 8

■ Normalise load vector: xt − 2.5 = (0.5, −0.5, −2.5, 0.5, 4.5, 0.5, −0.5, −2.5)
■ Evaluate Exponential Potential Function (α = 1):

Γt = 2.25 + 2.25 + 12.26 + 2.25

+ 90.03 + 2.25 + 2.25 + 12.26 = 125.83

Γt = O(poly(n)) ⇒ Gap = O(log n)

Background 13

Tool 2: Exponential Potential

Γt =
n∑

i=1
eα(xt

i−t/n) + e−α(xt
i+t/n)

−3 −2.5 −2 −1.5 −1 −0.5 0.5 1 1.5 2 2.5 3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

2

3

1, 4

eα·x

e−α·x

eα·x + e−α·x

1 2 3 4 5 6 7 8

■ Normalise load vector: xt − 2.5 = (0.5, −0.5, −2.5, 0.5, 4.5, 0.5, −0.5, −2.5)
■ Evaluate Exponential Potential Function (α = 1):

Γt = 2.25 + 2.25 + 12.26 + 2.25 + 90.03

+ 2.25 + 2.25 + 12.26 = 125.83

Γt = O(poly(n)) ⇒ Gap = O(log n)

Background 13

Tool 2: Exponential Potential

Γt =
n∑

i=1
eα(xt

i−t/n) + e−α(xt
i+t/n)

−3 −2.5 −2 −1.5 −1 −0.5 0.5 1 1.5 2 2.5 3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

2

3

1, 4, 6

eα·x

e−α·x

eα·x + e−α·x

1 2 3 4 5 6 7 8

■ Normalise load vector: xt − 2.5 = (0.5, −0.5, −2.5, 0.5, 4.5, 0.5, −0.5, −2.5)
■ Evaluate Exponential Potential Function (α = 1):

Γt = 2.25 + 2.25 + 12.26 + 2.25 + 90.03 + 2.25

+ 2.25 + 12.26 = 125.83

Γt = O(poly(n)) ⇒ Gap = O(log n)

Background 13

Tool 2: Exponential Potential

Γt =
n∑

i=1
eα(xt

i−t/n) + e−α(xt
i+t/n)

−3 −2.5 −2 −1.5 −1 −0.5 0.5 1 1.5 2 2.5 3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

2, 7

3

1, 4, 6

eα·x

e−α·x

eα·x + e−α·x

1 2 3 4 5 6 7 8

■ Normalise load vector: xt − 2.5 = (0.5, −0.5, −2.5, 0.5, 4.5, 0.5, −0.5, −2.5)
■ Evaluate Exponential Potential Function (α = 1):

Γt = 2.25 + 2.25 + 12.26 + 2.25 + 90.03 + 2.25 + 2.25

+ 12.26 = 125.83

Γt = O(poly(n)) ⇒ Gap = O(log n)

Background 13

Tool 2: Exponential Potential

Γt =
n∑

i=1
eα(xt

i−t/n) + e−α(xt
i+t/n)

−3 −2.5 −2 −1.5 −1 −0.5 0.5 1 1.5 2 2.5 3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

2, 7

3, 8

1, 4, 6

eα·x

e−α·x

eα·x + e−α·x

1 2 3 4 5 6 7 8

■ Normalise load vector: xt − 2.5 = (0.5, −0.5, −2.5, 0.5, 4.5, 0.5, −0.5, −2.5)
■ Evaluate Exponential Potential Function (α = 1):

Γt = 2.25 + 2.25 + 12.26 + 2.25 + 90.03 + 2.25 + 2.25 + 12.26

= 125.83

Γt = O(poly(n)) ⇒ Gap = O(log n)

Background 13

Tool 2: Exponential Potential

Γt =
n∑

i=1
eα(xt

i−t/n) + e−α(xt
i+t/n)

−3 −2.5 −2 −1.5 −1 −0.5 0.5 1 1.5 2 2.5 3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

2, 7

3, 8

1, 4, 6

eα·x

e−α·x

eα·x + e−α·x

1 2 3 4 5 6 7 8

■ Normalise load vector: xt − 2.5 = (0.5, −0.5, −2.5, 0.5, 4.5, 0.5, −0.5, −2.5)
■ Evaluate Exponential Potential Function (α = 1):

Γt = 2.25 + 2.25 + 12.26 + 2.25 + 90.03 + 2.25 + 2.25 + 12.26 = 125.83

Γt = O(poly(n)) ⇒ Gap = O(log n)

Background 13

Tool 2: Exponential Potential

Γt =
n∑

i=1
eα(xt

i−t/n) + e−α(xt
i+t/n)

−3 −2.5 −2 −1.5 −1 −0.5 0.5 1 1.5 2 2.5 3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

2, 7

3, 8

1, 4, 6

eα·x

e−α·x

eα·x + e−α·x

1 2 3 4 5 6 7 8

■ Normalise load vector: xt − 2.5 = (0.5, −0.5, −2.5, 0.5, 4.5, 0.5, −0.5, −2.5)
■ Evaluate Exponential Potential Function (α = 1):

Γt = 2.25 + 2.25 + 12.26 + 2.25 + 90.03 + 2.25 + 2.25 + 12.26 = 125.83

Γt = O(poly(n)) ⇒ Gap = O(log n)

Background 13

The Change in the Exponential Potential Function
■ Let us analyse the change in the exponential potential

Γt :=
n∑

i=1

(
eα(xt

i−t/n)︸ ︷︷ ︸
Overload potential

+ e−α(xt
i−t/n)︸ ︷︷ ︸

Underload potential

)
■ For 1.5-Choice, α = 1/144.

■ One can prove a drop inequality:

E
[

Γt+1 | Γt
]

≤
(

1 − c1

n

)
· Γt + c2.

■ This implies that for any t ≥ 0, E [Γt] ≤ c2
c1

· n.
■ By Markov’s inequality, we get Gap(m) = O(log n) with high probability.

Background 14

The Change in the Exponential Potential Function
■ Let us analyse the change in the exponential potential

Γt :=
n∑

i=1

(
eα(xt

i−t/n)︸ ︷︷ ︸
Overload potential

+ e−α(xt
i−t/n)︸ ︷︷ ︸

Underload potential

)

■ For 1.5-Choice, α = 1/144.
■ One can prove a drop inequality:

E
[

Γt+1 | Γt
]

≤
(

1 − c1

n

)
· Γt + c2.

■ This implies that for any t ≥ 0, E [Γt] ≤ c2
c1

· n.
■ By Markov’s inequality, we get Gap(m) = O(log n) with high probability.

Background 14

The Change in the Exponential Potential Function
■ Let us analyse the change in the exponential potential

Γt :=
n∑

i=1

(
eα(xt

i−t/n)︸ ︷︷ ︸
Overload potential

+ e−α(xt
i−t/n)︸ ︷︷ ︸

Underload potential

)
■ For 1.5-Choice, α = 1/144.

■ One can prove a drop inequality:

E
[

Γt+1 | Γt
]

≤
(

1 − c1

n

)
· Γt + c2.

■ This implies that for any t ≥ 0, E [Γt] ≤ c2
c1

· n.
■ By Markov’s inequality, we get Gap(m) = O(log n) with high probability.

Background 14

The Change in the Exponential Potential Function
■ Let us analyse the change in the exponential potential

Γt :=
n∑

i=1

(
eα(xt

i−t/n)︸ ︷︷ ︸
Overload potential

+ e−α(xt
i−t/n)︸ ︷︷ ︸

Underload potential

)
■ For 1.5-Choice, α = 1/144.
■ One can prove a drop inequality:

E
[

Γt+1 | Γt
]

≤
(

1 − c1

n

)
· Γt + c2.

■ This implies that for any t ≥ 0, E [Γt] ≤ c2
c1

· n.
■ By Markov’s inequality, we get Gap(m) = O(log n) with high probability.

Background 14

The Change in the Exponential Potential Function
■ Let us analyse the change in the exponential potential

Γt :=
n∑

i=1

(
eα(xt

i−t/n)︸ ︷︷ ︸
Overload potential

+ e−α(xt
i−t/n)︸ ︷︷ ︸

Underload potential

)
■ For 1.5-Choice, α = 1/144.
■ One can prove a drop inequality:

E
[

Γt+1 | Γt
]

≤

(
1 − c1

n

)
· Γt + c2.

■ This implies that for any t ≥ 0, E [Γt] ≤ c2
c1

· n.
■ By Markov’s inequality, we get Gap(m) = O(log n) with high probability.

Background 14

The Change in the Exponential Potential Function
■ Let us analyse the change in the exponential potential

Γt :=
n∑

i=1

(
eα(xt

i−t/n)︸ ︷︷ ︸
Overload potential

+ e−α(xt
i−t/n)︸ ︷︷ ︸

Underload potential

)
■ For 1.5-Choice, α = 1/144.
■ One can prove a drop inequality:

E
[

Γt+1 | Γt
]

≤

(
1 − c1

n

)
· Γt + c2.

■ This implies that for any t ≥ 0, E [Γt] ≤ c2
c1

· n.
■ By Markov’s inequality, we get Gap(m) = O(log n) with high probability.

i

i

n/2

xt

t/n

Background 14

The Change in the Exponential Potential Function
■ Let us analyse the change in the exponential potential

Γt :=
n∑

i=1

(
eα(xt

i−t/n)︸ ︷︷ ︸
Overload potential

+ e−α(xt
i−t/n)︸ ︷︷ ︸

Underload potential

)
■ For 1.5-Choice, α = 1/144.
■ One can prove a drop inequality:

E
[

Γt+1 | Γt
]

≤

(
1 − c1

n

)
· Γt + c2.

■ This implies that for any t ≥ 0, E [Γt] ≤ c2
c1

· n.
■ By Markov’s inequality, we get Gap(m) = O(log n) with high probability.

1 2 3 4 5 6 7 80

0.1

0.2

0.3

i

p
i

1.5-Choice

i

i

n/2

xt

t/n

Background 14

The Change in the Exponential Potential Function
■ Let us analyse the change in the exponential potential

Γt :=
n∑

i=1

(
eα(xt

i−t/n)︸ ︷︷ ︸
Overload potential

+ e−α(xt
i−t/n)︸ ︷︷ ︸

Underload potential

)
■ For 1.5-Choice, α = 1/144.
■ One can prove a drop inequality:

E
[

Γt+1 | Γt
]

≤

(
1 − c1

n

)
· Γt + c2.

■ This implies that for any t ≥ 0, E [Γt] ≤ c2
c1

· n.
■ By Markov’s inequality, we get Gap(m) = O(log n) with high probability.

1 2 3 4 5 6 7 80

0.1

0.2

0.3

i

p
i

1.5-Choice

ii
n/2

xt

t/n

Background 14

The Change in the Exponential Potential Function
■ Let us analyse the change in the exponential potential

Γt :=
n∑

i=1

(
eα(xt

i−t/n)︸ ︷︷ ︸
Overload potential

+ e−α(xt
i−t/n)︸ ︷︷ ︸

Underload potential

)
■ For 1.5-Choice, α = 1/144.
■ One can prove a drop inequality:

E
[

Γt+1 | Γt
]

≤

(
1 − c1

n

)
· Γt + c2.

■ This implies that for any t ≥ 0, E [Γt] ≤ c2
c1

· n.
■ By Markov’s inequality, we get Gap(m) = O(log n) with high probability.

1 2 3 4 5 6 7 80

0.1

0.2

0.3

i

p
i

1.5-Choice

ii
n/2

xt

t/n

Background 14

The Change in the Exponential Potential Function
■ Let us analyse the change in the exponential potential

Γt :=
n∑

i=1

(
eα(xt

i−t/n)︸ ︷︷ ︸
Overload potential

+ e−α(xt
i−t/n)︸ ︷︷ ︸

Underload potential

)
■ For 1.5-Choice, α = 1/144.
■ One can prove a drop inequality:

E
[

Γt+1 | Γt
]

≤

(
1 − c1

n

)
· Γt + c2.

■ This implies that for any t ≥ 0, E [Γt] ≤ c2
c1

· n.
■ By Markov’s inequality, we get Gap(m) = O(log n) with high probability.

1 2 3 4 5 6 7 80

0.1

0.2

0.3

i

p
i

1.5-Choice

ii
n/2

xt

t/n

Background 14

The Change in the Exponential Potential Function
■ Let us analyse the change in the exponential potential

Γt :=
n∑

i=1

(
eα(xt

i−t/n)︸ ︷︷ ︸
Overload potential

+ e−α(xt
i−t/n)︸ ︷︷ ︸

Underload potential

)
■ For 1.5-Choice, α = 1/144.
■ One can prove a drop inequality:

E
[

Γt+1 | Γt
]

≤

(
1 − c1

n

)
· Γt + c2.

■ This implies that for any t ≥ 0, E [Γt] ≤ c2
c1

· n.
■ By Markov’s inequality, we get Gap(m) = O(log n) with high probability.

1 2 3 4 5 6 7 80

0.1

0.2

0.3

i

p
i

1.5-Choice

ii
n/2

xt

t/n

Background 14

The Change in the Exponential Potential Function
■ Let us analyse the change in the exponential potential

Γt :=
n∑

i=1

(
eα(xt

i−t/n)︸ ︷︷ ︸
Overload potential

+ e−α(xt
i−t/n)︸ ︷︷ ︸

Underload potential

)
■ For 1.5-Choice, α = 1/144.
■ One can prove a drop inequality:

E
[

Γt+1 | Γt
]

≤
(

1 − c1

n

)
· Γt

+ c2.

■ This implies that for any t ≥ 0, E [Γt] ≤ c2
c1

· n.
■ By Markov’s inequality, we get Gap(m) = O(log n) with high probability.

1 2 3 4 5 6 7 80

0.1

0.2

0.3

i

p
i

1.5-Choice

i
n/2

xt

t/n

Background 14

The Change in the Exponential Potential Function
■ Let us analyse the change in the exponential potential

Γt :=
n∑

i=1

(
eα(xt

i−t/n)︸ ︷︷ ︸
Overload potential

+ e−α(xt
i−t/n)︸ ︷︷ ︸

Underload potential

)
■ For 1.5-Choice, α = 1/144.
■ One can prove a drop inequality:

E
[

Γt+1 | Γt
]

≤
(

1 − c1

n

)
· Γt + c2.

■ This implies that for any t ≥ 0, E [Γt] ≤ c2
c1

· n.
■ By Markov’s inequality, we get Gap(m) = O(log n) with high probability.

Background 14

The Change in the Exponential Potential Function
■ Let us analyse the change in the exponential potential

Γt :=
n∑

i=1

(
eα(xt

i−t/n)︸ ︷︷ ︸
Overload potential

+ e−α(xt
i−t/n)︸ ︷︷ ︸

Underload potential

)
■ For 1.5-Choice, α = 1/144.
■ One can prove a drop inequality:

E
[

Γt+1 | Γt
]

≤
(

1 − c1

n

)
· Γt + c2.

■ This implies that for any t ≥ 0, E [Γt] ≤ c2
c1

· n.

■ By Markov’s inequality, we get Gap(m) = O(log n) with high probability.

Background 14

The Change in the Exponential Potential Function
■ Let us analyse the change in the exponential potential

Γt :=
n∑

i=1

(
eα(xt

i−t/n)︸ ︷︷ ︸
Overload potential

+ e−α(xt
i−t/n)︸ ︷︷ ︸

Underload potential

)
■ For 1.5-Choice, α = 1/144.
■ One can prove a drop inequality:

E
[

Γt+1 | Γt
]

≤
(

1 − c1

n

)
· Γt + c2.

■ This implies that for any t ≥ 0, E [Γt] ≤ c2
c1

· n.
■ By Markov’s inequality, we get Gap(m) = O(log n) with high probability.

Background 14

Mean-Thinning

Mean-Thinning 15

Mean-Thinning process

Mean-Thinning:
Iteration: For t ≥ 0, sample two bins i1 and i2 independently u.a.r., and update:

{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n

✓

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n .

W t/n
i1 i1

t/n

t

Mean-Thinning 16

Mean-Thinning process

Mean-Thinning:
Iteration: For t ≥ 0, sample two bins i1 and i2 independently u.a.r., and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n

✓
xt+1

i2
= xt

i2
+ 1 if xt

i1
≥ t

n .

W t/n
i1 i1

t/n

t

Mean-Thinning 16

Mean-Thinning process

Mean-Thinning:
Iteration: For t ≥ 0, sample two bins i1 and i2 independently u.a.r., and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n ✓

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n .

W t/n
i1 i1

t/n

t

Mean-Thinning 16

Mean-Thinning process

Mean-Thinning:
Iteration: For t ≥ 0, sample two bins i1 and i2 independently u.a.r., and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n

✓

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n .

W t/n
i1 i1

t/n

i1 i1

t

Mean-Thinning 16

Mean-Thinning process

Mean-Thinning:
Iteration: For t ≥ 0, sample two bins i1 and i2 independently u.a.r., and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n

✓

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n .

W t/n
i1 i1

t/n

i1 i1 i2

t

Mean-Thinning 16

Mean-Thinning process

Mean-Thinning:
Iteration: For t ≥ 0, sample two bins i1 and i2 independently u.a.r., and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n

✓

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n .

W t/n
i1 i1

t/n

i1 i1 i2 i1 i1

t

Mean-Thinning 16

Mean-Thinning process

Mean-Thinning:
Iteration: For t ≥ 0, sample two bins i1 and i2 independently u.a.r., and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n

✓

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n .

W t/n
i1 i1

t/n

i1 i1 i2 i1 i2 i1

t

Mean-Thinning 16

Mean-Thinning: Visualization

Mean-Thinning 17

Mean-Thinning: Our Results [LSS22]

■ For all m ≥ n, Mean-Thinning achieves w.h.p. Gap(m) = O(log n)

■ For sufficiently large m, w.h.p. Gap(m) = Ω(log n)

■ The following implementation of Mean-Thinning uses 2 − ϵ samples (on average):
▶ Sample a bin i1, allocate ball to i1 if its load is below the average.
▶ Otherwise sample a bin i2 and allocate ball to i2.

Bin i1 (or i2) can directly allocate the ball after checking whether
it is underloaded ⇝ no extra communication or comparison needed!

Mean-Thinning 18

Mean-Thinning: Our Results [LSS22]

■ For all m ≥ n, Mean-Thinning achieves w.h.p. Gap(m) = O(log n)

■ For sufficiently large m, w.h.p. Gap(m) = Ω(log n)

■ The following implementation of Mean-Thinning uses 2 − ϵ samples (on average):
▶ Sample a bin i1, allocate ball to i1 if its load is below the average.
▶ Otherwise sample a bin i2 and allocate ball to i2.

Bin i1 (or i2) can directly allocate the ball after checking whether
it is underloaded ⇝ no extra communication or comparison needed!

Mean-Thinning 18

Mean-Thinning: Our Results [LSS22]

■ For all m ≥ n, Mean-Thinning achieves w.h.p. Gap(m) = O(log n)

■ For sufficiently large m, w.h.p. Gap(m) = Ω(log n)

■ The following implementation of Mean-Thinning uses 2 − ϵ samples (on average):
▶ Sample a bin i1, allocate ball to i1 if its load is below the average.
▶ Otherwise sample a bin i2 and allocate ball to i2.

Bin i1 (or i2) can directly allocate the ball after checking whether
it is underloaded ⇝ no extra communication or comparison needed!

Mean-Thinning 18

Mean-Thinning: Our Results [LSS22]

■ For all m ≥ n, Mean-Thinning achieves w.h.p. Gap(m) = O(log n)

■ For sufficiently large m, w.h.p. Gap(m) = Ω(log n)

■ The following implementation of Mean-Thinning uses 2 − ϵ samples (on average):
▶ Sample a bin i1, allocate ball to i1 if its load is below the average.
▶ Otherwise sample a bin i2 and allocate ball to i2.

Bin i1 (or i2) can directly allocate the ball after checking whether
it is underloaded ⇝ no extra communication or comparison needed!

Mean-Thinning 18

Mean-Thinning: Why the analysis is tricky
■ Let δt be mean quantile, i.e., the fraction of bins which are overloaded (i.e., xt ≥ t/n)

■ If δt is very large, say δt = 1 − 1/n, then p is very close to the One-Choice vector:

pMean-Thinning(xt) =
(1

n
− 1

n2 , . . . ,
1
n

− 1
n2︸ ︷︷ ︸

(n−1) entries

,
2
n

− 1
n2

)
.

How can we prove a drop in the exponential potential?

Mean-Thinning 19

Mean-Thinning: Why the analysis is tricky
■ Let δt be mean quantile, i.e., the fraction of bins which are overloaded (i.e., xt ≥ t/n)
■ If δt is very large, say δt = 1 − 1/n, then p is very close to the One-Choice vector:

pMean-Thinning(xt) =
(1

n
− 1

n2 , . . . ,
1
n

− 1
n2︸ ︷︷ ︸

(n−1) entries

,
2
n

− 1
n2

)
.

How can we prove a drop in the exponential potential?

Mean-Thinning 19

Mean-Thinning: Why the analysis is tricky
■ Let δt be mean quantile, i.e., the fraction of bins which are overloaded (i.e., xt ≥ t/n)
■ If δt is very large, say δt = 1 − 1/n, then p is very close to the One-Choice vector:

pMean-Thinning(xt) =
(1

n
− 1

n2 , . . . ,
1
n

− 1
n2︸ ︷︷ ︸

(n−1) entries

,
2
n

− 1
n2

)
.

How can we prove a drop in the exponential potential?

Mean-Thinning 19

Mean-Thinning: Why the analysis is tricky
■ Let δt be mean quantile, i.e., the fraction of bins which are overloaded (i.e., xt ≥ t/n)
■ If δt is very large, say δt = 1 − 1/n, then p is very close to the One-Choice vector:

pMean-Thinning(xt) =
(1

n
− 1

n2 , . . . ,
1
n

− 1
n2︸ ︷︷ ︸

(n−1) entries

,
2
n

− 1
n2

)
.

How can we prove a drop in the exponential potential?

Mean-Thinning 19

Combe Down Tunnel (length 1.6 kilometres)
Copyright: Graeme Bickerdike

Mean-Thinning 20

Combe Down Tunnel (length 1.6 kilometres)
Copyright: Graeme Bickerdike

Mean-Thinning 20

A Closer Look at Γt

■ Similar to the exponential potential analysis before, there is a
constant α > 0:

▶ (Good step) If for const ϵ > 0, then there are constants
c1, c2 > 0

E[Γt+1 | Γt] ≤
(

1 − c1α

n

)
· Γt + c2,

▶ (Bad step) If δt /∈ (ϵ, 1 − ϵ), then there are constants c3, c4 > 0

E[Γt+1 | Γt] ≤
(

1 + c3α2

n

)
· Γt + c4.

How to prove there are enough good steps?

Skip (Slightly (More)) Technical Part

Mean-Thinning 21

A Closer Look at Γt

■ Similar to the exponential potential analysis before, there is a
constant α > 0:
▶ (Good step) If δt ∈ (ϵ, 1 − ϵ) for const ϵ > 0, then there are

constants c1, c2 > 0

E[Γt+1 | Γt] ≤
(

1 − c1α

n

)
· Γt + c2,

▶ (Bad step) If δt /∈ (ϵ, 1 − ϵ), then there are constants c3, c4 > 0

E[Γt+1 | Γt] ≤
(

1 + c3α2

n

)
· Γt + c4.

How to prove there are enough good steps?

Skip (Slightly (More)) Technical Part

Mean-Thinning 21

A Closer Look at Γt

■ Similar to the exponential potential analysis before, there is a
constant α > 0:
▶ (Good step) If δt ∈ (ϵ, 1 − ϵ) for const ϵ > 0, then there are

constants c1, c2 > 0

E[Γt+1 | Γt] ≤
(

1 − c1α

n

)
· Γt + c2,

▶ (Bad step) If δt /∈ (ϵ, 1 − ϵ), then there are constants c3, c4 > 0

E[Γt+1 | Γt] ≤
(

1 + c3α2

n

)
· Γt + c4.

How to prove there are enough good steps?

Skip (Slightly (More)) Technical Part

Mean-Thinning 21

A Closer Look at Γt

■ Similar to the exponential potential analysis before, there is a
constant α > 0:
▶ (Good step) If δt ∈ (ϵ, 1 − ϵ) for const ϵ > 0, then there are

constants c1, c2 > 0

E[Γt+1 | Γt] ≤
(

1 − c1α

n

)
· Γt + c2,

▶ (Bad step) If δt /∈ (ϵ, 1 − ϵ), then there are constants c3, c4 > 0

E[Γt+1 | Γt] ≤
(

1 + c3α2

n

)
· Γt + c4.

How to prove there are enough good steps?

Skip (Slightly (More)) Technical Part

Mean-Thinning 21

Mean Quantile Stabilization

How to prove there are enough good steps?

■ We need a fraction of at least ϵ of overloaded and underloaded bins at those steps
■ Define an absolute value potential function,

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ .

■ If ∆t ≤ c · n, then:

▶ At least n/2 bins have (normalised) load between [−2c, +2c]
▶ Constant prob. for such bin to switch between overloaded/underloaded in 2cn steps
▶ After 2cn steps, enough overloaded and underloaded bins ⇝ good step ✓

How to prove that ∆t is small?

Change in the quadratic potential Υt =
∑n

i=1
(
xt

i − t
n

)2 is equal to −∆t + Θ(n).

Mean-Thinning 22

Mean Quantile Stabilization

How to prove there are enough good steps?

■ We need a fraction of at least ϵ of overloaded and underloaded bins at those steps

■ Define an absolute value potential function,

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ .

■ If ∆t ≤ c · n, then:

▶ At least n/2 bins have (normalised) load between [−2c, +2c]
▶ Constant prob. for such bin to switch between overloaded/underloaded in 2cn steps
▶ After 2cn steps, enough overloaded and underloaded bins ⇝ good step ✓

How to prove that ∆t is small?

Change in the quadratic potential Υt =
∑n

i=1
(
xt

i − t
n

)2 is equal to −∆t + Θ(n).

Mean-Thinning 22

Mean Quantile Stabilization

How to prove there are enough good steps?

■ We need a fraction of at least ϵ of overloaded and underloaded bins at those steps
■ Define an absolute value potential function,

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ .

■ If ∆t ≤ c · n, then:

▶ At least n/2 bins have (normalised) load between [−2c, +2c]
▶ Constant prob. for such bin to switch between overloaded/underloaded in 2cn steps
▶ After 2cn steps, enough overloaded and underloaded bins ⇝ good step ✓

How to prove that ∆t is small?

Change in the quadratic potential Υt =
∑n

i=1
(
xt

i − t
n

)2 is equal to −∆t + Θ(n).

Mean-Thinning 22

Mean Quantile Stabilization

How to prove there are enough good steps?

■ We need a fraction of at least ϵ of overloaded and underloaded bins at those steps
■ Define an absolute value potential function,

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ .

■ If ∆t ≤ c · n, then:

▶ At least n/2 bins have (normalised) load between [−2c, +2c]
▶ Constant prob. for such bin to switch between overloaded/underloaded in 2cn steps
▶ After 2cn steps, enough overloaded and underloaded bins ⇝ good step ✓

How to prove that ∆t is small?

Change in the quadratic potential Υt =
∑n

i=1
(
xt

i − t
n

)2 is equal to −∆t + Θ(n).

t/n i

xt
i

Mean-Thinning 22

Mean Quantile Stabilization

How to prove there are enough good steps?

■ We need a fraction of at least ϵ of overloaded and underloaded bins at those steps
■ Define an absolute value potential function,

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ .

■ If ∆t ≤ c · n, then:

▶ At least n/2 bins have (normalised) load between [−2c, +2c]
▶ Constant prob. for such bin to switch between overloaded/underloaded in 2cn steps
▶ After 2cn steps, enough overloaded and underloaded bins ⇝ good step ✓

How to prove that ∆t is small?

Change in the quadratic potential Υt =
∑n

i=1
(
xt

i − t
n

)2 is equal to −∆t + Θ(n).

t/n i

xt
i

∆t

Mean-Thinning 22

Mean Quantile Stabilization

How to prove there are enough good steps?

■ We need a fraction of at least ϵ of overloaded and underloaded bins at those steps
■ Define an absolute value potential function,

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ .

■ If ∆t ≤ c · n, then:

▶ At least n/2 bins have (normalised) load between [−2c, +2c]
▶ Constant prob. for such bin to switch between overloaded/underloaded in 2cn steps
▶ After 2cn steps, enough overloaded and underloaded bins ⇝ good step ✓

How to prove that ∆t is small?

Change in the quadratic potential Υt =
∑n

i=1
(
xt

i − t
n

)2 is equal to −∆t + Θ(n).

t/n i

xt
i

∆t

Mean-Thinning 22

Mean Quantile Stabilization

How to prove there are enough good steps?

■ We need a fraction of at least ϵ of overloaded and underloaded bins at those steps
■ Define an absolute value potential function,

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ .

■ If ∆t ≤ c · n, then:
▶ At least n/2 bins have (normalised) load between [−2c, +2c]

▶ Constant prob. for such bin to switch between overloaded/underloaded in 2cn steps
▶ After 2cn steps, enough overloaded and underloaded bins ⇝ good step ✓

How to prove that ∆t is small?

Change in the quadratic potential Υt =
∑n

i=1
(
xt

i − t
n

)2 is equal to −∆t + Θ(n).

t/n i

xt
i

∆t

Mean-Thinning 22

Mean Quantile Stabilization

How to prove there are enough good steps?

■ We need a fraction of at least ϵ of overloaded and underloaded bins at those steps
■ Define an absolute value potential function,

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ .

■ If ∆t ≤ c · n, then:
▶ At least n/2 bins have (normalised) load between [−2c, +2c]

▶ Constant prob. for such bin to switch between overloaded/underloaded in 2cn steps
▶ After 2cn steps, enough overloaded and underloaded bins ⇝ good step ✓

How to prove that ∆t is small?

Change in the quadratic potential Υt =
∑n

i=1
(
xt

i − t
n

)2 is equal to −∆t + Θ(n).

t/n i

xt
i

∆t

Mean-Thinning 22

Mean Quantile Stabilization

How to prove there are enough good steps?

■ We need a fraction of at least ϵ of overloaded and underloaded bins at those steps
■ Define an absolute value potential function,

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ .

■ If ∆t ≤ c · n, then:
▶ At least n/2 bins have (normalised) load between [−2c, +2c]
▶ Constant prob. for such bin to switch between overloaded/underloaded in 2cn steps

▶ After 2cn steps, enough overloaded and underloaded bins ⇝ good step ✓

How to prove that ∆t is small?

Change in the quadratic potential Υt =
∑n

i=1
(
xt

i − t
n

)2 is equal to −∆t + Θ(n).

t/n i

xt
i

∆t

Mean-Thinning 22

Mean Quantile Stabilization

How to prove there are enough good steps?

■ We need a fraction of at least ϵ of overloaded and underloaded bins at those steps
■ Define an absolute value potential function,

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ .

■ If ∆t ≤ c · n, then:
▶ At least n/2 bins have (normalised) load between [−2c, +2c]
▶ Constant prob. for such bin to switch between overloaded/underloaded in 2cn steps

▶ After 2cn steps, enough overloaded and underloaded bins ⇝ good step ✓

How to prove that ∆t is small?

Change in the quadratic potential Υt =
∑n

i=1
(
xt

i − t
n

)2 is equal to −∆t + Θ(n).

t/n i

xt
i

∆t

Mean-Thinning 22

Mean Quantile Stabilization

How to prove there are enough good steps?

■ We need a fraction of at least ϵ of overloaded and underloaded bins at those steps
■ Define an absolute value potential function,

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ .

■ If ∆t ≤ c · n, then:
▶ At least n/2 bins have (normalised) load between [−2c, +2c]
▶ Constant prob. for such bin to switch between overloaded/underloaded in 2cn steps

▶ After 2cn steps, enough overloaded and underloaded bins ⇝ good step ✓

How to prove that ∆t is small?

Change in the quadratic potential Υt =
∑n

i=1
(
xt

i − t
n

)2 is equal to −∆t + Θ(n).

t/n i

xt
i

∆t

Mean-Thinning 22

Mean Quantile Stabilization

How to prove there are enough good steps?

■ We need a fraction of at least ϵ of overloaded and underloaded bins at those steps
■ Define an absolute value potential function,

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ .

■ If ∆t ≤ c · n, then:
▶ At least n/2 bins have (normalised) load between [−2c, +2c]
▶ Constant prob. for such bin to switch between overloaded/underloaded in 2cn steps
▶ After 2cn steps, enough overloaded and underloaded bins ⇝ good step ✓

How to prove that ∆t is small?

Change in the quadratic potential Υt =
∑n

i=1
(
xt

i − t
n

)2 is equal to −∆t + Θ(n).

t/n i

xt
i

∆t

Mean-Thinning 22

Mean Quantile Stabilization

How to prove there are enough good steps?

■ We need a fraction of at least ϵ of overloaded and underloaded bins at those steps
■ Define an absolute value potential function,

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ .

■ If ∆t ≤ c · n, then:
▶ At least n/2 bins have (normalised) load between [−2c, +2c]
▶ Constant prob. for such bin to switch between overloaded/underloaded in 2cn steps
▶ After 2cn steps, enough overloaded and underloaded bins ⇝ good step ✓

How to prove that ∆t is small?

Change in the quadratic potential Υt =
∑n

i=1
(
xt

i − t
n

)2 is equal to −∆t + Θ(n).

t/n i

xt
i

∆t

Mean-Thinning 22

Mean Quantile Stabilization

How to prove there are enough good steps?

■ We need a fraction of at least ϵ of overloaded and underloaded bins at those steps
■ Define an absolute value potential function,

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ .

■ If ∆t ≤ c · n, then:
▶ At least n/2 bins have (normalised) load between [−2c, +2c]
▶ Constant prob. for such bin to switch between overloaded/underloaded in 2cn steps
▶ After 2cn steps, enough overloaded and underloaded bins ⇝ good step ✓

How to prove that ∆t is small?

Change in the quadratic potential Υt =
∑n

i=1
(
xt

i − t
n

)2 is equal to −∆t + Θ(n).

t/n i

xt
i

∆t

Mean-Thinning 22

Recovery from a bad configuration

i1, i2

250 300 350 400 450

Number of balls m

Potential functions

Quadratic potential
Absolute potential

Exponential potential

Mean-Thinning 23

Recovery from a bad configuration

i1, i2

250 300 350 400 450

Number of balls m

Potential functions

Quadratic potential
Absolute potential

Exponential potential

Mean-Thinning 23

Recovery from a bad configuration

i1, i2

250 300 350 400 450

Number of balls m

Potential functions

Quadratic potential
Absolute potential

Exponential potential

i1, i2

Mean-Thinning 23

What happens if we use Thinning with a different threshold?

■ We proved Mean-Thinning has a gap of Θ(log n) [LSS22]
■ Simple coupling ⇒ Thinning with threshold t

n + f(n) has gap O(log n + f(n))

Gap(m) for n = 103 and m = 107 (15 rep.)

Conjecture: For thresholds like f(n) =
√

log n:
■ Gap is O(log n

log log n)
■ The average number of samples is 1 + o(1)

Allowing the threshold to vary over time:

■ [FGL24]: gap of (log n)1/2+o(1) for specific round m (and fraction of 1 − e−1/2
√

log log log n rounds)
■ [LS22]: for m = Θ(n

√
log n), gap is Ω(

√
log n) w.h.p.

■ [LS22]: gap is Ω(log n
log log n

) for at least a 1/(log n) fraction of all rounds w.h.p.

Mean-Thinning 24

What happens if we use Thinning with a different threshold?

■ We proved Mean-Thinning has a gap of Θ(log n) [LSS22]

■ Simple coupling ⇒ Thinning with threshold t
n + f(n) has gap O(log n + f(n))

Gap(m) for n = 103 and m = 107 (15 rep.)

Conjecture: For thresholds like f(n) =
√

log n:
■ Gap is O(log n

log log n)
■ The average number of samples is 1 + o(1)

Allowing the threshold to vary over time:

■ [FGL24]: gap of (log n)1/2+o(1) for specific round m (and fraction of 1 − e−1/2
√

log log log n rounds)
■ [LS22]: for m = Θ(n

√
log n), gap is Ω(

√
log n) w.h.p.

■ [LS22]: gap is Ω(log n
log log n

) for at least a 1/(log n) fraction of all rounds w.h.p.

Mean-Thinning 24

What happens if we use Thinning with a different threshold?

■ We proved Mean-Thinning has a gap of Θ(log n) [LSS22]
■ Simple coupling ⇒ Thinning with threshold t

n + f(n) has gap O(log n + f(n))

Gap(m) for n = 103 and m = 107 (15 rep.)

Conjecture: For thresholds like f(n) =
√

log n:
■ Gap is O(log n

log log n)
■ The average number of samples is 1 + o(1)

Allowing the threshold to vary over time:

■ [FGL24]: gap of (log n)1/2+o(1) for specific round m (and fraction of 1 − e−1/2
√

log log log n rounds)
■ [LS22]: for m = Θ(n

√
log n), gap is Ω(

√
log n) w.h.p.

■ [LS22]: gap is Ω(log n
log log n

) for at least a 1/(log n) fraction of all rounds w.h.p.

Mean-Thinning 24

What happens if we use Thinning with a different threshold?

■ We proved Mean-Thinning has a gap of Θ(log n) [LSS22]
■ Simple coupling ⇒ Thinning with threshold t

n + f(n) has gap O(log n + f(n))

Gap(m) for n = 103 and m = 107 (15 rep.)

Conjecture: For thresholds like f(n) =
√

log n:
■ Gap is O(log n

log log n)
■ The average number of samples is 1 + o(1)

Allowing the threshold to vary over time:

■ [FGL24]: gap of (log n)1/2+o(1) for specific round m (and fraction of 1 − e−1/2
√

log log log n rounds)
■ [LS22]: for m = Θ(n

√
log n), gap is Ω(

√
log n) w.h.p.

■ [LS22]: gap is Ω(log n
log log n

) for at least a 1/(log n) fraction of all rounds w.h.p.

Mean-Thinning 24

What happens if we use Thinning with a different threshold?

■ We proved Mean-Thinning has a gap of Θ(log n) [LSS22]
■ Simple coupling ⇒ Thinning with threshold t

n + f(n) has gap O(log n + f(n))

Gap(m) for n = 103 and m = 107 (15 rep.)

Conjecture: For thresholds like f(n) =
√

log n:
■ Gap is O(log n

log log n)
■ The average number of samples is 1 + o(1)

Allowing the threshold to vary over time:

■ [FGL24]: gap of (log n)1/2+o(1) for specific round m (and fraction of 1 − e−1/2
√

log log log n rounds)
■ [LS22]: for m = Θ(n

√
log n), gap is Ω(

√
log n) w.h.p.

■ [LS22]: gap is Ω(log n
log log n

) for at least a 1/(log n) fraction of all rounds w.h.p.

Mean-Thinning 24

What happens if we use Thinning with a different threshold?

■ We proved Mean-Thinning has a gap of Θ(log n) [LSS22]
■ Simple coupling ⇒ Thinning with threshold t

n + f(n) has gap O(log n + f(n))

Gap(m) for n = 103 and m = 107 (15 rep.)

Conjecture: For thresholds like f(n) =
√

log n:
■ Gap is O(log n

log log n)
■ The average number of samples is 1 + o(1)

Allowing the threshold to vary over time:

■ [FGL24]: gap of (log n)1/2+o(1) for specific round m (and fraction of 1 − e−1/2
√

log log log n rounds)
■ [LS22]: for m = Θ(n

√
log n), gap is Ω(

√
log n) w.h.p.

■ [LS22]: gap is Ω(log n
log log n

) for at least a 1/(log n) fraction of all rounds w.h.p.
Mean-Thinning 24

Noisy Comparisons

Noisy Comparisons 25

Two Choice with Noise: Noisy Load Estimates

7
7 7 7

7

7
7

g = 4 here!

Two-Choice with Noisy Load Estimates [LS23]
Iteration: For each t ≥ 0:

1. Sample two bins i, j independently and uniformly at random
2. Receive load estimates x̃t

i and x̃t
j

3. Allocate ball to the bin with smaller load estimate

Load Estimates could be...

■ adversarial perturbations ⇝ x̃t
i ∈ [xt

i − g, xt
i + g]

■ random perturbations of exact loads ⇝ x̃t
i = xt

i + N (0, σ2)
■ T -time-delayed versions of exact loads ⇝ x̃t

i ∈ [xt−T
i , xt

i]

Noisy Comparisons 26

Two Choice with Noise: Noisy Load Estimates

7
7 7 7

7

7
7

g = 4 here!

Two-Choice with Noisy Load Estimates [LS23]
Iteration: For each t ≥ 0:

1. Sample two bins i, j independently and uniformly at random
2. Receive load estimates x̃t

i and x̃t
j

3. Allocate ball to the bin with smaller load estimate

Load Estimates could be...

■ adversarial perturbations ⇝ x̃t
i ∈ [xt

i − g, xt
i + g]

■ random perturbations of exact loads ⇝ x̃t
i = xt

i + N (0, σ2)
■ T -time-delayed versions of exact loads ⇝ x̃t

i ∈ [xt−T
i , xt

i]

Noisy Comparisons 26

Two Choice with Noise: Noisy Load Estimates

7
7 7 7

7

7
7

g = 4 here!

Two-Choice with Noisy Load Estimates [LS23]
Iteration: For each t ≥ 0:

1. Sample two bins i, j independently and uniformly at random
2. Receive load estimates x̃t

i and x̃t
j

3. Allocate ball to the bin with smaller load estimate

Load Estimates could be...

■ adversarial perturbations ⇝ x̃t
i ∈ [xt

i − g, xt
i + g]

■ random perturbations of exact loads ⇝ x̃t
i = xt

i + N (0, σ2)
■ T -time-delayed versions of exact loads ⇝ x̃t

i ∈ [xt−T
i , xt

i]

Noisy Comparisons 26

Two Choice with Noise: Noisy Load Estimates

7
7 7 7

7

7
7

g = 4 here!

Two-Choice with Noisy Load Estimates [LS23]
Iteration: For each t ≥ 0:

1. Sample two bins i, j independently and uniformly at random
2. Receive load estimates x̃t

i and x̃t
j

3. Allocate ball to the bin with smaller load estimate

Load Estimates could be...
■ adversarial perturbations ⇝ x̃t

i ∈ [xt
i − g, xt

i + g]

■ random perturbations of exact loads ⇝ x̃t
i = xt

i + N (0, σ2)
■ T -time-delayed versions of exact loads ⇝ x̃t

i ∈ [xt−T
i , xt

i]

Noisy Comparisons 26

Two Choice with Noise: Noisy Load Estimates

7
7 7 7

7

7
7

g = 4 here!

Two-Choice with Noisy Load Estimates [LS23]
Iteration: For each t ≥ 0:

1. Sample two bins i, j independently and uniformly at random
2. Receive load estimates x̃t

i and x̃t
j

3. Allocate ball to the bin with smaller load estimate

Load Estimates could be...
■ adversarial perturbations ⇝ x̃t

i ∈ [xt
i − g, xt

i + g]

■ random perturbations of exact loads ⇝ x̃t
i = xt

i + N (0, σ2)
■ T -time-delayed versions of exact loads ⇝ x̃t

i ∈ [xt−T
i , xt

i]

Noisy Comparisons 26

Two Choice with Noise: Noisy Load Estimates

7
7 7 7

7

7
7

g = 4 here!

Two-Choice with Noisy Load Estimates [LS23]
Iteration: For each t ≥ 0:

1. Sample two bins i, j independently and uniformly at random
2. Receive load estimates x̃t

i and x̃t
j

3. Allocate ball to the bin with smaller load estimate

Load Estimates could be...
■ adversarial perturbations ⇝ x̃t

i ∈ [xt
i − g, xt

i + g]
■ random perturbations of exact loads ⇝ x̃t

i = xt
i + N (0, σ2)

■ T -time-delayed versions of exact loads ⇝ x̃t
i ∈ [xt−T

i , xt
i]

Noisy Comparisons 26

Two Choice with Noise: Noisy Load Estimates

7
7 7 7

7

7
7

g = 4 here!

Two-Choice with Noisy Load Estimates [LS23]
Iteration: For each t ≥ 0:

1. Sample two bins i, j independently and uniformly at random
2. Receive load estimates x̃t

i and x̃t
j

3. Allocate ball to the bin with smaller load estimate

Load Estimates could be...
■ adversarial perturbations ⇝ x̃t

i ∈ [xt
i − g, xt

i + g]
■ random perturbations of exact loads ⇝ x̃t

i = xt
i + N (0, σ2)

■ T -time-delayed versions of exact loads ⇝ x̃t
i ∈ [xt−T

i , xt
i]

Noisy Comparisons 26

Two Choice with Noise: Noisy Load Estimates

7
7 7 7

7

7
7

g = 4 here!

Two-Choice with Noisy Load Estimates [LS23]
Iteration: For each t ≥ 0:

1. Sample two bins i, j independently and uniformly at random
2. Receive load estimates x̃t

i and x̃t
j

3. Allocate ball to the bin with smaller load estimate

Load Estimates could be...
■ adversarial perturbations ⇝ x̃t

i ∈ [xt
i − g, xt

i + g]
■ random perturbations of exact loads ⇝ x̃t

i = xt
i + N (0, σ2)

■ T -time-delayed versions of exact loads ⇝ x̃t
i ∈ [xt−T

i , xt
i]

Noisy Comparisons 26

Comparison-Based Model

Let us assume that the adversary can directly influence comparisons:

g-Bounded Process
Parameter: Integer g ≥ 1
Iteration: For each t ≥ 0:

1. Sample two bins i, j independently and uniformly at random
2. If |xt

i − xt
j | > g, allocate ball to the lesser loaded bin,

3. Otherwise, allocate ball to the higher loaded bin.

Adversary is greedily fooling Two-Choice as often as possible!

Noisy Comparisons 27

Comparison-Based Model

Let us assume that the adversary can directly influence comparisons:

g-Bounded Process
Parameter: Integer g ≥ 1
Iteration: For each t ≥ 0:

1. Sample two bins i, j independently and uniformly at random
2. If |xt

i − xt
j | > g, allocate ball to the lesser loaded bin,

3. Otherwise, allocate ball to the higher loaded bin.

Adversary is greedily fooling Two-Choice as often as possible!

Noisy Comparisons 27

Comparison-Based Model

Let us assume that the adversary can directly influence comparisons:

g-Bounded Process
Parameter: Integer g ≥ 1
Iteration: For each t ≥ 0:

1. Sample two bins i, j independently and uniformly at random
2. If |xt

i − xt
j | > g, allocate ball to the lesser loaded bin,

3. Otherwise, allocate ball to the higher loaded bin.

Adversary is greedily fooling Two-Choice as often as possible!

Noisy Comparisons 27

Asymptotic Results for g ≤ log n [LS23]

g

Gap

1

log log n · g
log g

g + log n

0

log log n

log n

log n

Matching lower bound even if the
noisy load comparisons are random!

Analysis more complicated (also involves
super-exponential potential functions)

Conclusion

Noisy Comparisons 28

Asymptotic Results for g ≤ log n [LS23]

g

Gap

1

log log n · g
log g

g + log n

0

log log n

log n

log n

g + log n

Matching lower bound even if the
noisy load comparisons are random!

Analysis more complicated (also involves
super-exponential potential functions)

Conclusion

Noisy Comparisons 28

Asymptotic Results for g ≤ log n [LS23]

g

Gap

1

log log n · g
log g

g + log n

0

log log n

log n

log n

g + log n

An upper bound of O(g + log n) follows
with the exponential potential method

Matching lower bound even if the
noisy load comparisons are random!

Analysis more complicated (also involves
super-exponential potential functions)

Conclusion

Noisy Comparisons 28

Asymptotic Results for g ≤ log n [LS23]

g

Gap

1

log log n · g
log g

g + log n

0

log log n

log n

log n

g + log n

Matching lower bound even if the
noisy load comparisons are random!

Analysis more complicated (also involves
super-exponential potential functions)

Conclusion

Noisy Comparisons 28

Asymptotic Results for g ≤ log n [LS23]

g

Gap

1

log log n · g
log g

g + log n

0

log log n

log n

log n

g + log n

Matching lower bound even if the
noisy load comparisons are random!

Analysis more complicated (also involves
super-exponential potential functions)

Conclusion

Noisy Comparisons 28

Asymptotic Results for g ≤ log n [LS23]

g

Gap

1

log log n · g
log g

g + log n

0

log log n

log n

log n

Matching lower bound even if the
noisy load comparisons are random!

Analysis more complicated (also involves
super-exponential potential functions)

Conclusion

Noisy Comparisons 28

Asymptotic Results for g ≤ log n [LS23]

g

Gap

1

log log n · g
log g

g + log n

0

log log n

log n

log n

Matching lower bound even if the
noisy load comparisons are random!

Analysis more complicated (also involves
super-exponential potential functions)

Conclusion

Noisy Comparisons 28

Asymptotic Results for g ≤ log n [LS23]

g

Gap

1

log log n · g
log g

g + log n

0

log log n

log n

log n

Matching lower bound even if the
noisy load comparisons are random!

Analysis more complicated (also involves
super-exponential potential functions)

Conclusion

Noisy Comparisons 28

Delay Models (The Problem of Choices)

T -Delay
Parameter: Integer T ≥ 1
Iteration: For each t ≥ 0:

1. Sample two bins i, j independently and uniformly at random
2. Receive load estimates x̃t

i ∈ [xt−T
i , xt

i] and x̃t
i ∈ [xt−T

j , xt
j].

3. Allocate ball to the bin with smaller load estimate.

Batching model: Load values are updated every T steps [BCE+12]

Noisy Comparisons 29

Delay Models (The Problem of Choices)

T -Delay
Parameter: Integer T ≥ 1
Iteration: For each t ≥ 0:

1. Sample two bins i, j independently and uniformly at random
2. Receive load estimates x̃t

i ∈ [xt−T
i , xt

i] and x̃t
i ∈ [xt−T

j , xt
j].

3. Allocate ball to the bin with smaller load estimate.

Batching model: Load values are updated every T steps [BCE+12]

Noisy Comparisons 29

Batching (1/2)

1 10 20 30 40 50
0

20

40

60

Normalized batch size T/n, n = 100

G
a
p
(n

2
)
ov
er

10
0
ru
n
s

Three-Choice
Two-Choice
1.5-Choice

■ Two-Choice (and Three-Choice) have a too strong bias towards the bins that are
lightly loaded at the beginning

■ Result: For T ≥ n log n, (1 + β)-Choice with β =
√

(n/T) · log n has
Gap(m) = O(

√
(T/n) · log n) (optimal and quadratically better than Two-Choice)

Noisy Comparisons 30

Batching (1/2)

1 10 20 30 40 50
0

20

40

60

Normalized batch size T/n, n = 100

G
a
p
(n

2
)
ov
er

10
0
ru
n
s

Three-Choice
Two-Choice
1.5-Choice

■ Two-Choice (and Three-Choice) have a too strong bias towards the bins that are
lightly loaded at the beginning

■ Result: For T ≥ n log n, (1 + β)-Choice with β =
√

(n/T) · log n has
Gap(m) = O(

√
(T/n) · log n) (optimal and quadratically better than Two-Choice)

Noisy Comparisons 30

Batching (2/2)

Load distribution after two additional batches of Two-Choice (left) and 1.5-Choice (right)

Noisy Comparisons 31

Conclusion
Summary of Results:
■ Tight bounds for several noisy versions of Two-Choice
■ Proof techniques based on (super-)exponential and low-order potential functions
■ (Some of the results extend to weighted balls and balanced allocations on graphs)

Open Questions:
■ Are there better thresholds than Mean-Thinning?
⇝ experiments suggest a gap of Θ(log n

log log n) is possible
■ understand Balanced Allocations on sparse graphs
■ other “more realistic” noise models

More visualizations:
https://dimitrioslos.com/research/phd-thesis/index.html

(Dimitrios Los)

Noisy Comparisons 32

https://dimitrioslos.com/research/phd-thesis/index.html

Conclusion
Summary of Results:
■ Tight bounds for several noisy versions of Two-Choice
■ Proof techniques based on (super-)exponential and low-order potential functions
■ (Some of the results extend to weighted balls and balanced allocations on graphs)

Open Questions:
■ Are there better thresholds than Mean-Thinning?
⇝ experiments suggest a gap of Θ(log n

log log n) is possible
■ understand Balanced Allocations on sparse graphs
■ other “more realistic” noise models

More visualizations:
https://dimitrioslos.com/research/phd-thesis/index.html

(Dimitrios Los)

Noisy Comparisons 32

https://dimitrioslos.com/research/phd-thesis/index.html

Conclusion
Summary of Results:
■ Tight bounds for several noisy versions of Two-Choice
■ Proof techniques based on (super-)exponential and low-order potential functions
■ (Some of the results extend to weighted balls and balanced allocations on graphs)

Open Questions:
■ Are there better thresholds than Mean-Thinning?
⇝ experiments suggest a gap of Θ(log n

log log n) is possible
■ understand Balanced Allocations on sparse graphs
■ other “more realistic” noise models

More visualizations:
https://dimitrioslos.com/research/phd-thesis/index.html

(Dimitrios Los)
Noisy Comparisons 32

https://dimitrioslos.com/research/phd-thesis/index.html

Bibliography I
▶ Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, Balanced allocations, SIAM J.

Comput. 29 (1999), no. 1, 180–200. MR 1710347

▶ P. Berenbrink, A. Czumaj, M. Englert, T. Friedetzky, and L. Nagel, Multiple-choice
balanced allocation in (almost) parallel, Proceedings of 16th International Workshop on
Approximation, Randomization, and Combinatorial Optimization (RANDOM’12)
(Berlin Heidelberg), Springer-Verlag, 2012, pp. 411–422.

▶ P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking, Balanced allocations: the heavily
loaded case, SIAM J. Comput. 35 (2006), no. 6, 1350–1385. MR 2217150

▶ O. N. Feldheim, O. Gurel-Gurevich, and J. Li, Long-term balanced allocation via
thinning, The Annals of Applied Probability 34 (2024), no. 1A, 795 – 850.

▶ D. Los and T. Sauerwald, Balanced allocations with incomplete information: The power
of two queries, 13th Innovations in Theoretical Computer Science Conference (ITCS’22),
vol. 215, 2022, pp. 103:1–103:23.

Noisy Comparisons 33

Bibliography II
▶ , Balanced allocations with the choice of noise, J. ACM 70 (2023), no. 6,

37:1–37:84.
▶ D. Los, T. Sauerwald, and J. Sylvester, Balanced allocations: Caching and packing,

twinning and thinning, Proceedings of the 2022 ACM-SIAM Symposium on Discrete
Algorithms (SODA’22), 2022, pp. 1847–1874.

▶ Y. Peres, K. Talwar, and U. Wieder, Graphical balanced allocations and the
(1 + β)-choice process, Random Structures Algorithms 47 (2015), no. 4, 760–775. MR
3418914

▶ M. Raab and A. Steger, “Balls into bins”—a simple and tight analysis, Proceedings of
2nd International Workshop on Randomization and Approximation Techniques in
Computer Science (RANDOM’98), vol. 1518, Springer, 1998, pp. 159–170. MR 1729169

▶ Udi Wieder, Hashing, load balancing and multiple choice, Found. Trends Theor.
Comput. Sci. 12 (2017), no. 3-4, 275–379.

Noisy Comparisons 34

	Background
	Mean-Thinning
	Noisy Comparisons

	anm4:
	4.268:
	4.267:
	4.266:
	4.265:
	4.264:
	4.263:
	4.262:
	4.261:
	4.260:
	4.259:
	4.258:
	4.257:
	4.256:
	4.255:
	4.254:
	4.253:
	4.252:
	4.251:
	4.250:
	4.249:
	4.248:
	4.247:
	4.246:
	4.245:
	4.244:
	4.243:
	4.242:
	4.241:
	4.240:
	4.239:
	4.238:
	4.237:
	4.236:
	4.235:
	4.234:
	4.233:
	4.232:
	4.231:
	4.230:
	4.229:
	4.228:
	4.227:
	4.226:
	4.225:
	4.224:
	4.223:
	4.222:
	4.221:
	4.220:
	4.219:
	4.218:
	4.217:
	4.216:
	4.215:
	4.214:
	4.213:
	4.212:
	4.211:
	4.210:
	4.209:
	4.208:
	4.207:
	4.206:
	4.205:
	4.204:
	4.203:
	4.202:
	4.201:
	4.200:
	4.199:
	4.198:
	4.197:
	4.196:
	4.195:
	4.194:
	4.193:
	4.192:
	4.191:
	4.190:
	4.189:
	4.188:
	4.187:
	4.186:
	4.185:
	4.184:
	4.183:
	4.182:
	4.181:
	4.180:
	4.179:
	4.178:
	4.177:
	4.176:
	4.175:
	4.174:
	4.173:
	4.172:
	4.171:
	4.170:
	4.169:
	4.168:
	4.167:
	4.166:
	4.165:
	4.164:
	4.163:
	4.162:
	4.161:
	4.160:
	4.159:
	4.158:
	4.157:
	4.156:
	4.155:
	4.154:
	4.153:
	4.152:
	4.151:
	4.150:
	4.149:
	4.148:
	4.147:
	4.146:
	4.145:
	4.144:
	4.143:
	4.142:
	4.141:
	4.140:
	4.139:
	4.138:
	4.137:
	4.136:
	4.135:
	4.134:
	4.133:
	4.132:
	4.131:
	4.130:
	4.129:
	4.128:
	4.127:
	4.126:
	4.125:
	4.124:
	4.123:
	4.122:
	4.121:
	4.120:
	4.119:
	4.118:
	4.117:
	4.116:
	4.115:
	4.114:
	4.113:
	4.112:
	4.111:
	4.110:
	4.109:
	4.108:
	4.107:
	4.106:
	4.105:
	4.104:
	4.103:
	4.102:
	4.101:
	4.100:
	4.99:
	4.98:
	4.97:
	4.96:
	4.95:
	4.94:
	4.93:
	4.92:
	4.91:
	4.90:
	4.89:
	4.88:
	4.87:
	4.86:
	4.85:
	4.84:
	4.83:
	4.82:
	4.81:
	4.80:
	4.79:
	4.78:
	4.77:
	4.76:
	4.75:
	4.74:
	4.73:
	4.72:
	4.71:
	4.70:
	4.69:
	4.68:
	4.67:
	4.66:
	4.65:
	4.64:
	4.63:
	4.62:
	4.61:
	4.60:
	4.59:
	4.58:
	4.57:
	4.56:
	4.55:
	4.54:
	4.53:
	4.52:
	4.51:
	4.50:
	4.49:
	4.48:
	4.47:
	4.46:
	4.45:
	4.44:
	4.43:
	4.42:
	4.41:
	4.40:
	4.39:
	4.38:
	4.37:
	4.36:
	4.35:
	4.34:
	4.33:
	4.32:
	4.31:
	4.30:
	4.29:
	4.28:
	4.27:
	4.26:
	4.25:
	4.24:
	4.23:
	4.22:
	4.21:
	4.20:
	4.19:
	4.18:
	4.17:
	4.16:
	4.15:
	4.14:
	4.13:
	4.12:
	4.11:
	4.10:
	4.9:
	4.8:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	anm3:
	3.268:
	3.267:
	3.266:
	3.265:
	3.264:
	3.263:
	3.262:
	3.261:
	3.260:
	3.259:
	3.258:
	3.257:
	3.256:
	3.255:
	3.254:
	3.253:
	3.252:
	3.251:
	3.250:
	3.249:
	3.248:
	3.247:
	3.246:
	3.245:
	3.244:
	3.243:
	3.242:
	3.241:
	3.240:
	3.239:
	3.238:
	3.237:
	3.236:
	3.235:
	3.234:
	3.233:
	3.232:
	3.231:
	3.230:
	3.229:
	3.228:
	3.227:
	3.226:
	3.225:
	3.224:
	3.223:
	3.222:
	3.221:
	3.220:
	3.219:
	3.218:
	3.217:
	3.216:
	3.215:
	3.214:
	3.213:
	3.212:
	3.211:
	3.210:
	3.209:
	3.208:
	3.207:
	3.206:
	3.205:
	3.204:
	3.203:
	3.202:
	3.201:
	3.200:
	3.199:
	3.198:
	3.197:
	3.196:
	3.195:
	3.194:
	3.193:
	3.192:
	3.191:
	3.190:
	3.189:
	3.188:
	3.187:
	3.186:
	3.185:
	3.184:
	3.183:
	3.182:
	3.181:
	3.180:
	3.179:
	3.178:
	3.177:
	3.176:
	3.175:
	3.174:
	3.173:
	3.172:
	3.171:
	3.170:
	3.169:
	3.168:
	3.167:
	3.166:
	3.165:
	3.164:
	3.163:
	3.162:
	3.161:
	3.160:
	3.159:
	3.158:
	3.157:
	3.156:
	3.155:
	3.154:
	3.153:
	3.152:
	3.151:
	3.150:
	3.149:
	3.148:
	3.147:
	3.146:
	3.145:
	3.144:
	3.143:
	3.142:
	3.141:
	3.140:
	3.139:
	3.138:
	3.137:
	3.136:
	3.135:
	3.134:
	3.133:
	3.132:
	3.131:
	3.130:
	3.129:
	3.128:
	3.127:
	3.126:
	3.125:
	3.124:
	3.123:
	3.122:
	3.121:
	3.120:
	3.119:
	3.118:
	3.117:
	3.116:
	3.115:
	3.114:
	3.113:
	3.112:
	3.111:
	3.110:
	3.109:
	3.108:
	3.107:
	3.106:
	3.105:
	3.104:
	3.103:
	3.102:
	3.101:
	3.100:
	3.99:
	3.98:
	3.97:
	3.96:
	3.95:
	3.94:
	3.93:
	3.92:
	3.91:
	3.90:
	3.89:
	3.88:
	3.87:
	3.86:
	3.85:
	3.84:
	3.83:
	3.82:
	3.81:
	3.80:
	3.79:
	3.78:
	3.77:
	3.76:
	3.75:
	3.74:
	3.73:
	3.72:
	3.71:
	3.70:
	3.69:
	3.68:
	3.67:
	3.66:
	3.65:
	3.64:
	3.63:
	3.62:
	3.61:
	3.60:
	3.59:
	3.58:
	3.57:
	3.56:
	3.55:
	3.54:
	3.53:
	3.52:
	3.51:
	3.50:
	3.49:
	3.48:
	3.47:
	3.46:
	3.45:
	3.44:
	3.43:
	3.42:
	3.41:
	3.40:
	3.39:
	3.38:
	3.37:
	3.36:
	3.35:
	3.34:
	3.33:
	3.32:
	3.31:
	3.30:
	3.29:
	3.28:
	3.27:
	3.26:
	3.25:
	3.24:
	3.23:
	3.22:
	3.21:
	3.20:
	3.19:
	3.18:
	3.17:
	3.16:
	3.15:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	anm2:
	2.268:
	2.267:
	2.266:
	2.265:
	2.264:
	2.263:
	2.262:
	2.261:
	2.260:
	2.259:
	2.258:
	2.257:
	2.256:
	2.255:
	2.254:
	2.253:
	2.252:
	2.251:
	2.250:
	2.249:
	2.248:
	2.247:
	2.246:
	2.245:
	2.244:
	2.243:
	2.242:
	2.241:
	2.240:
	2.239:
	2.238:
	2.237:
	2.236:
	2.235:
	2.234:
	2.233:
	2.232:
	2.231:
	2.230:
	2.229:
	2.228:
	2.227:
	2.226:
	2.225:
	2.224:
	2.223:
	2.222:
	2.221:
	2.220:
	2.219:
	2.218:
	2.217:
	2.216:
	2.215:
	2.214:
	2.213:
	2.212:
	2.211:
	2.210:
	2.209:
	2.208:
	2.207:
	2.206:
	2.205:
	2.204:
	2.203:
	2.202:
	2.201:
	2.200:
	2.199:
	2.198:
	2.197:
	2.196:
	2.195:
	2.194:
	2.193:
	2.192:
	2.191:
	2.190:
	2.189:
	2.188:
	2.187:
	2.186:
	2.185:
	2.184:
	2.183:
	2.182:
	2.181:
	2.180:
	2.179:
	2.178:
	2.177:
	2.176:
	2.175:
	2.174:
	2.173:
	2.172:
	2.171:
	2.170:
	2.169:
	2.168:
	2.167:
	2.166:
	2.165:
	2.164:
	2.163:
	2.162:
	2.161:
	2.160:
	2.159:
	2.158:
	2.157:
	2.156:
	2.155:
	2.154:
	2.153:
	2.152:
	2.151:
	2.150:
	2.149:
	2.148:
	2.147:
	2.146:
	2.145:
	2.144:
	2.143:
	2.142:
	2.141:
	2.140:
	2.139:
	2.138:
	2.137:
	2.136:
	2.135:
	2.134:
	2.133:
	2.132:
	2.131:
	2.130:
	2.129:
	2.128:
	2.127:
	2.126:
	2.125:
	2.124:
	2.123:
	2.122:
	2.121:
	2.120:
	2.119:
	2.118:
	2.117:
	2.116:
	2.115:
	2.114:
	2.113:
	2.112:
	2.111:
	2.110:
	2.109:
	2.108:
	2.107:
	2.106:
	2.105:
	2.104:
	2.103:
	2.102:
	2.101:
	2.100:
	2.99:
	2.98:
	2.97:
	2.96:
	2.95:
	2.94:
	2.93:
	2.92:
	2.91:
	2.90:
	2.89:
	2.88:
	2.87:
	2.86:
	2.85:
	2.84:
	2.83:
	2.82:
	2.81:
	2.80:
	2.79:
	2.78:
	2.77:
	2.76:
	2.75:
	2.74:
	2.73:
	2.72:
	2.71:
	2.70:
	2.69:
	2.68:
	2.67:
	2.66:
	2.65:
	2.64:
	2.63:
	2.62:
	2.61:
	2.60:
	2.59:
	2.58:
	2.57:
	2.56:
	2.55:
	2.54:
	2.53:
	2.52:
	2.51:
	2.50:
	2.49:
	2.48:
	2.47:
	2.46:
	2.45:
	2.44:
	2.43:
	2.42:
	2.41:
	2.40:
	2.39:
	2.38:
	2.37:
	2.36:
	2.35:
	2.34:
	2.33:
	2.32:
	2.31:
	2.30:
	2.29:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	1.Plus:
	1.Reset:
	1.Minus:
	1.EndRight:
	1.StepRight:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	1.StepLeft:
	1.EndLeft:
	anm1:
	1.100:
	1.99:
	1.98:
	1.97:
	1.96:
	1.95:
	1.94:
	1.93:
	1.92:
	1.91:
	1.90:
	1.89:
	1.88:
	1.87:
	1.86:
	1.85:
	1.84:
	1.83:
	1.82:
	1.81:
	1.80:
	1.79:
	1.78:
	1.77:
	1.76:
	1.75:
	1.74:
	1.73:
	1.72:
	1.71:
	1.70:
	1.69:
	1.68:
	1.67:
	1.66:
	1.65:
	1.64:
	1.63:
	1.62:
	1.61:
	1.60:
	1.59:
	1.58:
	1.57:
	1.56:
	1.55:
	1.54:
	1.53:
	1.52:
	1.51:
	1.50:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.119:
	0.118:
	0.117:
	0.116:
	0.115:
	0.114:
	0.113:
	0.112:
	0.111:
	0.110:
	0.109:
	0.108:
	0.107:
	0.106:
	0.105:
	0.104:
	0.103:
	0.102:
	0.101:
	0.100:
	0.99:
	0.98:
	0.97:
	0.96:
	0.95:
	0.94:
	0.93:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

