Phase transition for treerooted maps

AofA 2024 @ Bath, UK June 17, 2024

Zéphyr Salvy (he/they) Joint work with Marie Albenque & Éric Fusy

LIGM, Université Gustave Eiffel, France

Planar maps

Planar map \mathfrak{m} = embedding on the sphere of a connected planar graph, considered up to homeomorphisms

Planar map = planar graph + cyclic order on neighbours

- Rooted planar map = map endowed with a marked oriented edge (represented by an arrow);
- Size | m | = number of edges;
- Corner (does not exist for graphs !) = space between two consecutive edges around a vertex (trigonometric order).

Tree-rooted maps

= (rooted planar) maps endowed with a spanning tree.

Decorated maps are interesting

Theoretical physics point of view:

- Undecorated maps: "pure gravity" case (nothing happens on the surface);
- Decorated maps: things happen! new asymptotic behaviours! new universality classes! excitement!

Tree-rooted maps

• Combinatorics well understood : Mullin's bijection;

$$[z^n]\mathbf{M}(z) = \operatorname{Cat}_n \operatorname{Cat}_{n+1}$$

[Mullin 67]

• Geometry not so much.

Tree-rooted maps

 Combinatorics well understood : Mullin's bijection;

$$[z^n]\mathbf{M}(z) = \operatorname{Cat}_n \operatorname{Cat}_{n+1}$$

[Mullin 67]

• Geometry not so much.

We want a phase transition in tree-rooted maps. => Block-weighted tree-rooted maps.

I. "Block-weighted maps"?

Joint work with William Fleurat

Universality results for planar maps

- Enumeration: $\kappa \rho^{-n} n^{-5/2}$ [Tutte 1963];
- Distance between vertices: $n^{1/4}$ [Chassaing, Schaeffer 2004];
- Scaling limit: Brownian sphere for quadrangulations [Le Gall 2013, Miermont 2013] and general maps [Bettinelli, Jacob, Miermont 2014];

Brownian Sphere \mathcal{S}_e

Universality results for planar maps

- Enumeration: $\kappa \rho^{-n} n^{-5/2}$ [Tutte 1963];
- Distance between vertices: $n^{1/4}$ [Chassaing, Schaeffer 2004];
- Scaling limit: Brownian sphere for quadrangulations [Le Gall 2013, Miermont 2013] and general maps [Bettinelli, Jacob, Miermont 2014];

- Universality:
 - Same enumeration [Drmota, Noy, Yu 2020];
 - Same scaling limit, e.g. for triangulations & 2q-angulations [Le Gall 2013], simple quadrangulations [Addario-Berry, Albenque 2017].

Universality results for plane trees

- Enumeration: $\kappa \rho^{-n} n^{-3/2}$;
- Distance between vertices: $n^{1/2}$ [Flajolet, Odlyzko 1982];
- Scaling limit: Brownian tree [Aldous 1993, Le Gall 2006];

Universality results for plane trees

- Enumeration: $\kappa \rho^{-n} n^{-3/2}$;
- Distance between vertices: $n^{1/2}$ [Flajolet, Odlyzko 1982];
- Scaling limit: Brownian tree [Aldous 1993, Le Gall 2006];

- Universality:
 - Same enumeration;
 - Same scaling limit;

Even for some classes of maps; e.g. outerplanar maps [Caraceni 2016], maps with a boundary of size >> $n^{1/2}$ [Bettinelli 2015].

Models with (very) constrained boundaries

Motivation Inspired by [Bonzom 2016].

Two rich situations with universality results:

2-connected = two vertices must be removed to disconnect. Block = maximal (for inclusion) 2-connected submap.

2-connected = two vertices must be removed to disconnect.Block = maximal (for inclusion) 2-connected submap.

Condensation phenomenon: a large block concentrates a macroscopic part of the mass [Banderier, Flajolet, Schaeffer, Soria 2001; Jonsson, Stefánsson 2011].

2-connected = two vertices must be removed to disconnect.Block = maximal (for inclusion) 2-connected submap.

Condensation phenomenon: a large block concentrates a macroscopic part of the mass [Banderier, Flajolet, Schaeffer, Soria 2001; Jonsson, Stefánsson 2011].

Only small blocks.

2-connected = two vertices must be removed to disconnect.Block = maximal (for inclusion) 2-connected submap.

Condensation phenomenon: a large block concentrates a macroscopic part of the mass [Banderier, Flajolet, Schaeffer, Soria 2001; Jonsson, Stefánsson 2011].

Interpolating model using blocks!

Only small blocks.

Inspired by [Bonzom 2016]; General setting in [Stufler 2020].

Goal: parameter that affects the typical number of blocks.

We choose:
$$\mathbb{P}_{n,u}(\mathfrak{m}) = \frac{u^{\#blocks}(\mathfrak{m})}{Z_{n,u}}$$
 where $u > 0$,
 $\mathcal{M}_n = \{\text{maps of size } n\},$
 $\mathfrak{m} \in \mathcal{M}_n,$
 $Z_{n,u} = \text{normalisation.}$

- u = 1: uniform distribution on maps of size n;
- $u \rightarrow 0$: minimising the number of blocks (=2-connected maps);
- $u \rightarrow \infty$: maximising the number of blocks (= trees!).

Given *u*, asymptotic behaviour when $n \rightarrow \infty$?

II. Block tree of a map

Inspiration from [Tutte 1963]

Inspiration from [Tutte 1963]

Inspiration from [Tutte 1963]

Inspiration from [Tutte 1963]

Inspiration from [Tutte 1963]

Inspiration from [Tutte 1963]

Inspiration from [Tutte 1963]

Inspiration from [Tutte 1963]

- **m** is entirely determined by $T_{\mathfrak{m}}$ and $(\mathfrak{b}_v, v \in T_{\mathfrak{m}})$ where \mathfrak{b}_v is the block of **m** represented by v in $T_{\mathfrak{m}}$;
- Internal node (with k children) of $T_{\mathfrak{m}} \leftrightarrow$ block of \mathfrak{m} of size k/2.

T_{M_n} gives the block sizes of a random map M_n .

Galton-Watson trees for map blocks

 μ -Galton-Watson tree : random tree where the number of children of each node is given by μ independently, with μ = probability law on \mathbb{N} .

Galton-Watson trees for map blocks

 μ -Galton-Watson tree : random tree where the number of children of each node is given by μ independently, with μ = probability law on ℕ.

<u>Theorem</u> [Fleurat, S. 24] If $M_n \hookrightarrow \mathbb{P}_{n,u}$, then T_{M_n} has the law of a Galton-Watson tree of explicit reproduction law μ^u conditioned to be of size 2n.

Results for non tree-rooted maps

<u>Theorem</u> [Fleurat, S. 24] Model exhibits a phase transition at u = 9/5. When $n \to \infty$:

- Subcritical phase u < 9/5: "general map phase" one huge block;
- Critical phase u = 9/5: a few large blocks;
- Supercritical phase u > 9/5: "tree phase" only small blocks.

We obtain explicit results on enumeration, size of blocks and scaling limits in each case.

→ A phase transition in block-weighted random maps W. Fleurat & Z. S., Electronic Journal of Probability, 2024

How can we do the same for tree-rooted maps?

III. Tree-rooted maps

Joint work with Marie Albenque and Éric Fusy

24/38

Model

Goal: parameter that affects the typical number of blocks.

We choose:
$$\mathbb{P}_{n,u}(\mathbf{m}) = \frac{u^{\#blocks(\mathbf{m})}}{Z_{n,u}}$$
 where $u > 0$,
 $\mathcal{M}_n = \{\text{tree-rooted} \\ \text{maps of size } n\},$
 $\mathbf{m} \in \mathcal{M}_n$,
 $Z_{n,u} = \text{normalisation}.$

- u = 1: uniform distribution on tree-rooted maps of size n;
- $u \rightarrow 0$: minimising the number of blocks (=2-connected tree-rooted maps);
- $u \rightarrow \infty$: maximising the number of blocks (= tree-rooted trees!).

Given *u*, asymptotic behaviour when $n \rightarrow \infty$?

Block decomposition of tree-rooted maps

The decomposition of maps into blocks extends into a decomposition of tree-rooted maps into tree-rooted blocks.

Block decomposition of tree-rooted maps

The decomposition of maps into blocks extends into a decomposition of tree-rooted maps into tree-rooted blocks.

So everything should be easy, right?

$$M(z) = \sum_{n \ge 0} \operatorname{Cat}_n \operatorname{Cat}_{n+1} z^n \operatorname{so}$$

$$M(z) = \sum_{n \ge 0} \operatorname{Cat}_n \operatorname{Cat}_{n+1} z^n \text{ so}$$

•
$$[z^n]M(z) \sim \frac{4}{\pi} \times 16^n \times n^{-3};$$

$$M(z) = \sum_{n \ge 0} \operatorname{Cat}_n \operatorname{Cat}_{n+1} z^n \text{ so}$$

• $[z^n]M(z) \sim \frac{4}{\pi} \times 16^n \times n^{-3}; \quad \rho_M = \frac{1}{16};$

$$M(z) = \sum_{n \ge 0} \operatorname{Cat}_{n} \operatorname{Cat}_{n+1} z^{n} \text{ so}$$

• $[z^{n}]M(z) \sim \frac{4}{\pi} \times 16^{n} \times n^{-3}; \quad \rho_{M} = \frac{1}{16};$

$$M(\rho_M) = 8 - \frac{64}{3\pi} \simeq 1.2 \text{ so } M \text{ is not algebraic...}$$

$$P\left(z,M(z)\right)=0$$

$$M(z) = \sum_{n \ge 0} \operatorname{Cat}_n \operatorname{Cat}_{n+1} z^n \text{ so}$$

$$. [z^n] M(z) \sim \frac{4}{\pi} \times 16^n \times n^{-3}; \quad \rho_M = \frac{1}{16};$$

$$Algebraic \\ M, B$$

$$. M(\rho_M) = 8 - \frac{64}{3\pi} \simeq 1.2 \text{ so } M \text{ is not algebraic...}$$

$$P(z, M(z)) = 0$$

$$M(z) = \sum_{n \ge 0} \operatorname{Cat}_n \operatorname{Cat}_{n+1} z^n \text{ so}$$

$$[z^n] M(z) \sim \frac{4}{\pi} \times 16^n \times n^{-3}; \quad \rho_M = \frac{1}{16};$$

$$Algebraic$$

$$M(\rho_M) = 8 - \frac{64}{3\pi} \simeq 1.2 \text{ so } M \text{ is not algebraic...}$$

$$P(z, M(z)) = 0$$

$$P_0(z)\frac{\partial^2 M}{\partial z^2}(z) + P_1(z)\frac{\partial M}{\partial z}(z) + P_2(z)M(z) + P_3(z) = 0.$$

2-connected tree-rooted maps are naughty

Using $M(z) = B(zM^2(z))$ and the properties of M, we show

2-connected tree-rooted maps are naughty

Using $M(z) = B(zM^2(z))$ and the properties of M, we show

•
$$\rho_B = \rho_M M^2 (\rho_M) = \frac{4(3\pi - 8)^2}{9\pi^2} \approx 0.091$$

is not algebraic so B is not D-finite

2-connected tree-rooted maps are naughty

Using $M(z) = B(zM^2(z))$ and the properties of M, we show

•
$$\rho_{B} = \rho_{M} M^{2}(\rho_{M}) = \frac{4(3\pi - 8)^{2}}{9\pi^{2}} \approx 0.091$$

is not algebraic so B is not D-finite

• *B* is *D*-algebraic

2-connected tree-rooted maps are naughty

Using $M(z) = B(zM^2(z))$ and the properties of M, we show

•
$$\rho_{B} = \rho_{M} M^{2}(\rho_{M}) = \frac{4(3\pi - 8)^{2}}{9\pi^{2}} \approx 0.091$$

is not algebraic so B is not D-finite

D-algebraic B D-finite M

Algebraic

M, B

• *B* is *D*-algebraic

$$P\left(\frac{\partial^2 \mathbf{B}}{\partial y^2}(y), \frac{\partial \mathbf{B}}{\partial y}(y), \mathbf{B}(y), y\right) = 0.$$

Enumeration of 2-connected tree-rooted maps

Using $M(z) = B(zM^2(z))$ and the properties of M, we show

Theorem [Albenque, Fusy, S. 24]

$$[y^n] B(y) \sim \frac{4(3\pi - 8)^3}{27\pi(4 - \pi)^3} \times \rho_B^{-n} \times n^{-3}.$$

Phase transition

<u>Theorem</u> [Albenque, Fusy, S. 24] Model exhibits a phase transition at $u_C = \frac{9\pi(4-\pi)}{420\pi - 81\pi^2 - 512} \simeq 3.02.$

When $n \to \infty$:

- Subcritical phase u < u_C: "general tree-rooted map phase" one huge block;
- Critical phase $u = u_C$: a few large blocks;
- Supercritical phase $u > u_C$: "tree phase" only small blocks.

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	$u < u_C$	$u = u_C$	$u > u_C$
Enumeration			
Size of - the largest block - the second one			
Scaling limit of M_n			

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	$u < u_C$	$u = u_C$	$u > u_C$
Enumeration	$\rho(u)^{-n}n^{-3}$	$\rho(u)^{-n}n^{-3/2}\ln(n)^{-1/2}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest block - the second one			
Scaling limit of M _n			

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	$u < u_C$	$u = u_C$	$u > u_C$
Enumeration	$\rho(u)^{-n}n^{-3}$	$\rho(u)^{-n}n^{-3/2}\ln(n)^{-1/2}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest block - the second one	$\sim (1 - \mathbb{E}(\mu^u))n$ $\Theta(n^{1/2})$	$\Theta(n^{1/2})$	$\frac{\ln(n)}{\ln\left(\frac{\rho_B}{y(u)}\right)} - \frac{3\ln(\ln(n))}{\ln\left(\frac{\rho_B}{y(u)}\right)} + O(1)$
Scaling limit of M_n			

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	$u < u_C$	$u = u_C$	$u > u_C$
Enumeration	$\rho(u)^{-n}n^{-3}$	$\rho(u)^{-n}n^{-3/2}\ln(n)^{-1/2}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest	$\sim (1 - \mathbb{E}(\mu^u))n$	$\Theta(n^{1/2})$	$\frac{\ln(n)}{1 + \left(\frac{\rho_R}{\rho_R}\right)} - \frac{3\ln(\ln(n))}{1 + \left(\frac{\rho_R}{\rho_R}\right)} + O(1)$
- the second one	$\Theta(n^{1/2})$		$\ln\left(\frac{r_B}{y(u)}\right) \qquad \ln\left(\frac{r_B}{y(u)}\right)$
Or	dered atoms of a	a Poisson Point P	rocess
Scaling limit of			
<i>M</i> _n			
		34/38	

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	$u < u_C$	$u = u_C$	$u > u_C$
Enumeration	$\rho(u)^{-n}n^{-3}$	$\rho(u)^{-n}n^{-3/2}\ln(n)^{-1/2}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest block - the second one	$\sim (1 - \mathbb{E}(\mu^u))n$	$\Theta(n^{1/2})$	$\frac{\ln(n)}{\ln\left(\frac{\rho_B}{y(u)}\right)} - \frac{3\ln(\ln(n))}{\ln\left(\frac{\rho_B}{y(u)}\right)} + O(1)$
	$\Theta(n^{1/2})$		
		$\frac{C_2 \ln(n)^{1/2}}{n^{1/2}} M_n \to \mathcal{T}_e$	[Stufler 2020] $\frac{C_3(u)}{n^{1/2}} M_n \to \mathcal{T}_e$
Scaling limit of M_n	?	A A A A A A A A A A A A A A A A A A A	THE ALLER ALLER
		35/38	18 AND

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	$u < u_C$	$u = u_C$	$u > u_C$
Enumeration	$\rho(u)^{-n}n^{-3}$	$\rho(u)^{-n}n^{-3/2}\ln(n)^{-1/2}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest block - the second one	$\sim (1 - \mathbb{E}(\mu^u))n$	$\Theta(n^{1/2})$	$\frac{\ln(n)}{\ln\left(\frac{\rho_B}{y(u)}\right)} - \frac{3\ln(\ln(n))}{\ln\left(\frac{\rho_B}{y(u)}\right)} + O(1)$
	$\Theta(n^{1/2})$		
Scaling limit of M_n	?	$\frac{C_2 \ln(n)^{1/2}}{n^{1/2}} M_n + \mathcal{T}_e$	$\frac{C_3(u)}{n^{1/2}} M_n + \mathcal{T}_e$
		A A A A A A A A A A A A A A A A A A A	ATT STATE AND A REAL CONTRACTOR
		35/38	ATTING THE A

IV. Perspectives

Extensions to more involved decompositions

Block-weighted

- Tree-rooted quadrangulations;
- Forested maps;
- Maps endowed with a Potts model / Ising model;
- 2-oriented quadrangulations (resp. 3-oriented triangulations) decomposed into irreducible blocks...

Thank you!

▶ Theorem 15. The random tree-rooted map $M_n^{(u)}$, drawn according to $\mathbb{P}_n^{(u)}$, exhibits the following behaviours when n tends to infinity. Subcritical case. For $u < u_c$, the largest bloc is macroscopic, and more precisely one has:

$$\frac{\mathrm{LB}_{1}(\mathrm{M}_{n}^{(u)}) - (1 - E(u))n}{\sqrt{c(u)n\ln(n)}} \xrightarrow[n \to \infty]{(d)} \mathcal{N}(0, 1).$$
(23)

Furthermore, for any fixed $j \ge 2$, it holds that $LB_j(M_n^{(u)}) = \Theta_{\mathbb{P}}(n^{1/2})$ and for x > 0:

$$\mathbb{P}\left(\mathrm{LB}_{j}(\mathrm{M}_{n}^{(u)}) \leq x\sqrt{n}\right) \xrightarrow[n \to \infty]{} e^{-\lambda(x)} \sum_{p=0}^{j-2} \frac{\lambda(x)^{p}}{p!}, \qquad \text{where } \lambda(x) := \frac{c(u)}{2x^{2}}.$$
(24)

Critical case. For $u = u_C$, for any fixed $j \ge 1$, it holds that $LB_j(M_n^{(u)}) = \Theta_{\mathbb{P}}(n^{1/2})$. More precisely, up to a shift of indices, the sizes of the blocks exhibit a similar behavior as the sizes of non-macroscopic blocks in the subcritical regime, namely, for x > 0:

$$\mathbb{P}\left(\mathrm{LB}_{j}(\mathrm{M}_{n}^{(u)}) \leq x\sqrt{n}\right) \xrightarrow[n \to \infty]{} e^{-\lambda(x)} \sum_{p=0}^{j-1} \frac{\lambda(x)^{p}}{p!}, \qquad \text{where } \lambda(x) := \frac{c(u_{C})}{2x^{2}}.$$
(25)

Supercritical case. For $u > u_C$, for all fixed $j \ge 1$, it holds as $n \to \infty$ that

$$\mathrm{LB}_{j}(\mathrm{M}_{n}^{(u)}) = \frac{\ln(n)}{\ln\left(\frac{\rho_{B}}{y(u)}\right)} - \frac{3\ln(\ln(n))}{\ln\left(\frac{\rho_{B}}{y(u)}\right)} + O_{\mathbb{P}}(1).$$

▶ Remark 16. One can get a local limit theorem for $LB_1(M_n^{(u)})$ in the subcritical case as in [24] (up to the technicality that nodes of the block tree have only even numbers of children). Furthermore, one can state a joint limit law for the sizes $LB_j(M_n^{(u)})$. For any fixed $r \ge 1$,

$$\left(\frac{c(u)}{2}\left(\frac{\mathrm{LB}_{j}(\mathrm{M}_{n}^{(u)})}{\sqrt{n}}\right)^{-2}, \ 2 \leq j \leq r+1\right) \xrightarrow[n \to \infty]{(d)} (A_{1}, \dots, A_{r}),$$

where the A_i are the decreasingly ordered atoms of a Poisson Point Process of rate 1 on \mathbb{R}_+ . The same joint limit law holds at u_C (with j from 1 to r).