Multicoloured Hardcore Model: Fast Mixing and Queueing

> Sam Olesker-Taylor University of Warwick

> > June 2024

- 2 Model and Main Result
- 3 Application as a Queueing System
 - Simulations

Set-Up. Let G = (V, E) be a finite graph

- Our objective is to properly colour a (large) subset U of vertices
- If $u, u' \in U$ and $\{u, u'\} \in E$, then u and u' have different colours
- one colour $\leftrightarrow \rightarrow$ independent sets, $U = V \leftrightarrow \rightarrow$ proper colourings

Set-Up. Let G = (V, E) be a finite graph

- Our objective is to properly colour a (large) subset U of vertices
- If $u, u' \in U$ and $\{u, u'\} \in E$, then u and u' have different colours
- one colour $\leftrightarrow \rightarrow$ independent sets, $U = V \leftrightarrow \rightarrow$ proper colourings

Motivation. Resource sharing: G is an interference graph

- Colouring a vertex assigns it a transmission frequency
- Adjacent vertices cannot use the same frequency
- Uncoloured vertices are *idle* (not transmitting)

Set-Up. Let G = (V, E) be a finite graph

- Our objective is to properly colour a (large) subset U of vertices
- If $u, u' \in U$ and $\{u, u'\} \in E$, then u and u' have different colours
- one colour $\leftrightarrow \rightarrow$ independent sets, $U = V \leftrightarrow \rightarrow$ proper colourings

Motivation. Resource sharing: G is an interference graph

- Colouring a vertex assigns it a transmission frequency
- Adjacent vertices cannot use the same frequency
- Uncoloured vertices are *idle* (not transmitting)

Examples. Frequency-limited communication

- Nearby users of short-range radio
- Fibreoptic routing (more on this later)

Model and Main Result

Let $K \in \mathbb{N}$ and $\Omega := \{ \omega \in \{0, 1, ..., K\}^V \mid \omega \text{ proper} \}$, where $\omega \text{ is proper}$ if $\omega_u \neq \omega_v$ whenever $\{u, v\} \in E$ and $\omega_u + \omega_v > 0$.

Let $K \in \mathbb{N}$ and $\Omega := \{ \omega \in \{0, 1, ..., K\}^V \mid \omega \text{ proper} \}$, where $\omega \text{ is proper if } \omega_u \neq \omega_v \text{ whenever } \{u, v\} \in E \text{ and } \omega_u + \omega_v > 0.$

Definition (Glauber-Type Dynamics: $MCH_{\Omega}(\boldsymbol{\lambda}, \boldsymbol{p})$)

• Select vertex $v \in V$ to update at rate λ_v , simultaneously over all vertices.

Let $K \in \mathbb{N}$ and $\Omega := \{ \omega \in \{0, 1, ..., K\}^V \mid \omega \text{ proper} \}$, where $\omega \text{ is proper if } \omega_u \neq \omega_v \text{ whenever } \{u, v\} \in E \text{ and } \omega_u + \omega_v > 0.$

Definition (Glauber-Type Dynamics: $MCH_{\Omega}(\lambda, p)$)

- Select vertex $v \in V$ to update at rate λ_v , simultaneously over all vertices.
- When vertex $v \in V$ is chosen, toss a p_v -biassed coin: $C \sim \text{Bern}(p_v)$.
 - ▶ If C = 1, choose a (non-zero) colour $k \in \{1, ..., K\}$ uniformly. If k is available for v, then paint v with colour k.
 - If C = 0, give it 'colour' 0—ie, *deactivate* it.

Let $K \in \mathbb{N}$ and $\Omega := \{ \omega \in \{0, 1, ..., K\}^V \mid \omega \text{ proper} \}$, where $\omega \text{ is proper if } \omega_u \neq \omega_v \text{ whenever } \{u, v\} \in E \text{ and } \omega_u + \omega_v > 0.$

Definition (Glauber-Type Dynamics: $MCH_{\Omega}(\boldsymbol{\lambda}, \boldsymbol{p})$)

- Select vertex $v \in V$ to update at rate λ_v , simultaneously over all vertices.
- When vertex $v \in V$ is chosen, toss a p_v -biassed coin: $C \sim \text{Bern}(p_v)$.
 - If C = 1, choose a (non-zero) colour k ∈ {1,...,K} uniformly. If k is available for v, then paint v with colour k.
 If C = 0, give it 'colour' 0—ie, deactivate it.

Denote the equilibrium distribution π and the equilibrium service rates

$$s_{\mathsf{v}} \coloneqq \sum_{\omega \in \Omega: \omega_{\mathsf{v}}
eq 0} \pi(\omega) \quad ext{for} \quad \mathsf{v} \in V.$$

Let $K \in \mathbb{N}$ and $\Omega := \{ \omega \in \{0, 1, ..., K\}^V \mid \omega \text{ proper} \}$, where $\omega \text{ is proper if } \omega_u \neq \omega_v \text{ whenever } \{u, v\} \in E \text{ and } \omega_u + \omega_v > 0.$

Definition (Glauber-Type Dynamics: $MCH_{\Omega}(\lambda, p)$)

- Select vertex $v \in V$ to update at rate λ_v , simultaneously over all vertices.
- When vertex $v \in V$ is chosen, toss a p_v -biassed coin: $C \sim \text{Bern}(p_v)$.
 - If C = 1, choose a (non-zero) colour k ∈ {1,...,K} uniformly. If k is available for v, then paint v with colour k.
 If C = 0, give it 'colour' 0—ie, deactivate it.

Denote the equilibrium distribution π and the equilibrium service rates

$$s_{\mathsf{v}} \coloneqq \sum_{\omega \in \Omega: \omega_{\mathsf{v}}
eq 0} \pi(\omega) \quad \text{for} \quad \mathsf{v} \in V.$$

If preferred, at each discrete time-step, choose $v \in V$ with probability $\propto \lambda_v$.

Our main theorem establishes fast mixing of these Glauber-type dynamics.

Our main theorem establishes fast mixing of these Glauber-type dynamics.

Definition (Mixing Times)

The TV distance between distributions μ and π on a set Ω is

$$\|\mu-\pi\|_{\mathsf{TV}}\coloneqq \mathsf{max}_{\mathcal{A}\subseteq\Omega} |\mu(\mathcal{A})-\pi(\mathcal{A})|.$$

Our main theorem establishes fast mixing of these Glauber-type dynamics.

Definition (Mixing Times)

The TV distance between distributions μ and π on a set Ω is

$$\|\mu - \pi\|_{\mathsf{TV}} \coloneqq \max_{A \subseteq \Omega} |\mu(A) - \pi(A)|.$$

The mixing time of a Markov chain $X = (X^t)_{t \ge 0}$ with equilibrium dist π is

 $t_{\mathsf{mix}}(\varepsilon) \coloneqq \inf\{t \ge 0 \mid \mathsf{max}_{x \in \Omega} \| \mathbb{P}_x[X^t \in \cdot] - \pi \| \le \varepsilon\} \quad \text{for} \quad \varepsilon \in (0, 1).$

Our main theorem establishes fast mixing of these Glauber-type dynamics.

Definition (Mixing Times)

The TV distance between distributions μ and π on a set Ω is

$$\|\mu - \pi\|_{\mathsf{TV}} \coloneqq \max_{A \subseteq \Omega} |\mu(A) - \pi(A)|.$$

The mixing time of a Markov chain $X = (X^t)_{t \ge 0}$ with equilibrium dist π is

$$t_{\mathsf{mix}}(arepsilon)\coloneqq \inf\{t\geq 0\mid \mathsf{max}_{x\in\Omega}\|\mathbb{P}_x[X^t\in\cdot]-\pi\|\leq arepsilon\}\quad ext{for}\quad arepsilon\in(0,1).$$

Lemma (Coupling Method)

Let X and Y be a coupling of μ and π : ie, X $\sim \mu$ and Y $\sim \pi$. Then,

$$\|\mu - \pi\|_{TV} \le \mathbb{P}[X \neq Y].$$

Our main theorem establishes fast mixing of these Glauber-type dynamics.

Definition (Mixing Times)

The TV distance between distributions μ and π on a set Ω is

$$\|\mu - \pi\|_{\mathsf{TV}} \coloneqq \max_{A \subseteq \Omega} |\mu(A) - \pi(A)|.$$

The mixing time of a Markov chain $X = (X^t)_{t \ge 0}$ with equilibrium dist π is

$$t_{\mathsf{mix}}(arepsilon)\coloneqq \inf\{t\geq 0\mid \mathsf{max}_{x\in\Omega}\|\mathbb{P}_x[X^t\in\cdot]-\pi\|\leq arepsilon\}\quad ext{for}\quad arepsilon\in(0,1).$$

Lemma (Coupling Method)

Let X and Y be a coupling of μ and π : ie, X $\sim \mu$ and Y $\sim \pi$. Then,

$$\|\mu - \pi\|_{TV} \le \mathbb{P}[X \neq Y].$$

Path coupling only requires contraction of adjacent configurations in expectation.

Theorem (Fast Mixing for MCH)

Let n := |V| and $X \sim \mathsf{MCH}_{\Omega}(\lambda, p)$. Suppose that there exists $\beta > 0$ such that

$$rac{1}{K}\sum_{u\in V:\{u,v\}\in E} p_u\lambda_u/\lambda_v \leq 1-eta$$
 for all $v\in V.$

Then,

$$\max_{x \in \Omega} \|\mathbb{P}_x[X^t \in \cdot] - \pi\|_{TV} \le \min\{2ne^{-\beta\lambda_{\min}t}, 1\} \quad \text{for all} \quad t \ge 0.$$

In particular, $t_{mix}(\varepsilon) \leq (\beta \lambda_{\min})^{-1} \log(2n/\varepsilon)$ for all $\varepsilon \in (0,1)$.

Theorem (Fast Mixing for MCH)

Let n := |V| and $X \sim \mathsf{MCH}_{\Omega}(\lambda, p)$. Suppose that there exists $\beta > 0$ such that

$$rac{1}{K}\sum_{u\in V:\{u,v\}\in E} {p_u\lambda_u}/{\lambda_v} \leq 1-eta$$
 for all $v\in V$

Then,

$$\max_{x\in\Omega}\|\mathbb{P}_x[X^t\in\cdot]-\pi\|_{\mathcal{T}V}\leq\min\{2ne^{-\beta\lambda_{\min}t},\,1\}\quad\text{for all}\quad t\geq 0.$$

In particular, $t_{mix}(\varepsilon) \leq (\beta \lambda_{\min})^{-1} \log(2n/\varepsilon)$ for all $\varepsilon \in (0,1)$.

Remark (Heuristic-Driven Choice of Parameters (λ, p))

The graph G and number K of colours are prescribed by the application.

- High-degree vertices have more impact, so update them faster: $\lambda_v \propto d_v$.
- If v is 'on' with prob p_v , then it removes $p_v d_v$ colour choices: $p_v d_v \propto K$.

Theorem (Fast Mixing for MCH)

Let n := |V| and $X \sim \mathsf{MCH}_{\Omega}(\lambda, p)$. Suppose that there exists $\beta > 0$ such that

$$rac{1}{K}\sum_{u\in V:\{u,v\}\in E} {\sf p}_u\lambda_u/\lambda_v\leq 1-eta$$
 for all $v\in V$.

Then,

$$\max_{x\in\Omega} \|\mathbb{P}_x[X^t\in\cdot]-\pi\|_{\mathcal{T}V}\leq \min\{2ne^{-eta\lambda_{\min}t},\,1\}\quad ext{for all}\quad t\geq 0.$$

In particular, $t_{mix}(\varepsilon) \leq (\beta \lambda_{\min})^{-1} \log(2n/\varepsilon)$ for all $\varepsilon \in (0,1)$.

Remark (Heuristic-Driven Choice of Parameters (λ, p))

The graph G and number K of colours are prescribed by the application.

- High-degree vertices have more impact, so update them faster: $\lambda_{v} \propto d_{v}$.
- If v is 'on' with prob p_v , then it removes $p_v d_v$ colour choices: $p_v d_v \propto K$.

The conditions are satisfied with $\beta = \frac{1}{3}$ if $\lambda_v = d_v/\bar{d}$ and $p_v \leq \frac{2}{3}K/d_v$. Further, under these conditions, $\frac{1}{3}p_v \leq s_v \leq p_v$ for all $v \in V$.

Application as a Queueing System

The original motivation for this system was to model **fibreoptic routing**.

The original motivation for this system was to model fibreoptic routing.

- $\bullet\,$ Data in sent along cables between cities: eg, Bath \to Reading \to London
- A single frequency (colour) of light must be used for the *entire* route

The original motivation for this system was to model fibreoptic routing.

- $\bullet\,$ Data in sent along cables between cities: eg, Bath \to Reading \to London
- A single frequency (colour) of light must be used for the entire route
- Interfering routes are ones which share a link, and must use different colours
- $\bullet \ \ \mathsf{Cardiff} \to \mathsf{Bath} \to \mathsf{Reading} \quad \mathsf{interferes with} \quad \mathsf{Bath} \to \mathsf{Reading} \to \mathsf{London}$
- Routes which are physically far apart interfere, so cannot track everything

The original motivation for this system was to model fibreoptic routing.

- $\bullet\,$ Data in sent along cables between cities: eg, Bath \to Reading \to London
- A single frequency (colour) of light must be used for the entire route
- Interfering routes are ones which share a link, and must use different colours
- $\bullet \ \ \mathsf{Cardiff} \to \mathsf{Bath} \to \mathsf{Reading} \quad \mathsf{interferes with} \quad \mathsf{Bath} \to \mathsf{Reading} \to \mathsf{London}$
- Routes which are physically far apart interfere, so cannot track everything

Changing the colour involves re-encoding the data, which is a high overhead cost. The MCH dynamics provide a decentralised way to share the resource.

The original motivation for this system was to model fibreoptic routing.

- $\bullet\,$ Data in sent along cables between cities: eg, Bath \to Reading \to London
- A single frequency (colour) of light must be used for the entire route
- Interfering routes are ones which share a link, and must use different colours
- $\bullet \ \ \mathsf{Cardiff} \to \mathsf{Bath} \to \mathsf{Reading} \quad \mathsf{interferes with} \quad \mathsf{Bath} \to \mathsf{Reading} \to \mathsf{London}$
- Routes which are physically far apart interfere, so cannot track everything

Changing the colour involves re-encoding the data, which is a high overhead cost. The MCH dynamics provide a decentralised way to share the resource.

- It is fast and easy to test if a given colour is available along the route
- Optical switches can be configured rapidly to set-up a light path
- The particular light path is used to transmit data until it is refreshed

Definition (MCH Queueing Network: $QMCH_{\Omega}(\lambda, p; \nu, \mu))$

Let $X \sim \mathsf{MCH}_{\Omega}(\boldsymbol{\lambda}, \boldsymbol{p})$. The state space of Q is \mathbb{N}^V .

Definition (MCH Queueing Network: $QMCH_{\Omega}(\lambda, \boldsymbol{p}; \boldsymbol{\nu}, \boldsymbol{\mu})$) Let $X \sim MCH_{\Omega}(\lambda, \boldsymbol{p})$. The state space of Q is \mathbb{N}^{V} . Its transition rates are

$$q
ightarrow \begin{cases} q^{v,+} & ext{at rate }
u_v & ext{where } q_u^{v,\pm} \coloneqq q_u \pm \mathbf{1}\{u=v\} \\ q^{v,-} & ext{at rate }
\mu_v \mathbf{1}\{x_v \neq 0\} & ext{given MCH configuration } X = x \end{cases}$$

In other words, *jobs* arrive to vertex $v \in V$ at rate ν_v and are processed at rate μ_v provided vertex v is active in the underlying MCH configuration (ie, $x_v \neq 0$).

Definition (MCH Queueing Network: $QMCH_{\Omega}(\lambda, \boldsymbol{p}; \boldsymbol{\nu}, \boldsymbol{\mu})$) Let $X \sim MCH_{\Omega}(\lambda, \boldsymbol{p})$. The state space of Q is \mathbb{N}^{V} . Its transition rates are

 $q o egin{cases} q^{
u,+} & ext{at rate} \quad
u_
u & ext{where} \quad q_u^{
u,\pm} \coloneqq q_u \pm \mathbf{1}\{u = v\} \ q^{
u,-} & ext{at rate} \quad \mu_
u \mathbf{1}\{x_
u
eq 0\} & ext{given MCH configuration} \quad X = x \end{cases}$

In other words, *jobs* arrive to vertex $v \in V$ at rate ν_v and are processed at rate μ_v provided vertex v is active in the underlying MCH configuration (ie, $x_v \neq 0$).

Theorem

Suppose
$$\lambda_v = d_v/\bar{d}$$
, $p_v \leq \frac{2}{3}K/d_v$ and $\nu_v < \frac{1}{3}p_v$ for all v .

Definition (MCH Queueing Network: $QMCH_{\Omega}(\lambda, \boldsymbol{p}; \boldsymbol{\nu}, \boldsymbol{\mu})$)

Let $X \sim \mathsf{MCH}_{\Omega}(\lambda, p)$. The state space of Q is \mathbb{N}^V . Its transition rates are

$$q \to \begin{cases} q^{\nu,+} & \text{at rate} \quad \nu_{\nu} & \text{where} \quad q_u^{\nu,\pm} \coloneqq q_u \pm \mathbf{1}\{u = \nu\} \\ q^{\nu,-} & \text{at rate} \quad \mu_{\nu} \mathbf{1}\{x_{\nu} \neq 0\} & \text{given MCH configuration } X = x \end{cases}$$

In other words, *jobs* arrive to vertex $v \in V$ at rate ν_v and are processed at rate μ_v provided vertex v is active in the underlying MCH configuration (ie, $x_v \neq 0$).

Theorem

Suppose $\lambda_{v} = d_{v}/\bar{d}$, $p_{v} \leq \frac{2}{3}K/d_{v}$ and $\nu_{v} < \frac{1}{3}p_{v}$ for all v. Then, in equilibrium, $\mathbb{E}[Q_{v}^{0}] \leq \frac{18(\bar{d}/d_{\min})n\log(2n/e)}{(s_{v} - \nu_{v})^{2}} \quad \text{for all} \quad v \in V.$

Simulations

Graphs: Erdős-Rényi (top) and random-regular (bottom) graphs

- n = 500 vertices and average degree $\bar{d} = 40$
- K = 10 colours and probabilities $p_v = \frac{4}{5} eK/d_v \approx 0.5$

Sam Olesker-Taylo