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Set-Up, Motivation and Examples

Set-Up. Let G = (V ,E ) be a finite graph

Our objective is to properly colour a (large) subset U of vertices

If u, u′ ∈ U and {u, u′} ∈ E , then u and u′ have different colours

one colour ↭ independent sets, U = V ↭ proper colourings

Motivation. Resource sharing: G is an interference graph

Colouring a vertex assigns it a transmission frequency

Adjacent vertices cannot use the same frequency

Uncoloured vertices are idle (not transmitting)

Examples. Frequency-limited communication

Nearby users of short-range radio

Fibreoptic routing (more on this later)

Sam Olesker-Taylor Multicoloured Hardcore Model June 2024 1 / 7



Set-Up, Motivation and Examples

Set-Up. Let G = (V ,E ) be a finite graph

Our objective is to properly colour a (large) subset U of vertices

If u, u′ ∈ U and {u, u′} ∈ E , then u and u′ have different colours

one colour ↭ independent sets, U = V ↭ proper colourings

Motivation. Resource sharing: G is an interference graph

Colouring a vertex assigns it a transmission frequency

Adjacent vertices cannot use the same frequency

Uncoloured vertices are idle (not transmitting)

Examples. Frequency-limited communication

Nearby users of short-range radio

Fibreoptic routing (more on this later)

Sam Olesker-Taylor Multicoloured Hardcore Model June 2024 1 / 7



Set-Up, Motivation and Examples

Set-Up. Let G = (V ,E ) be a finite graph

Our objective is to properly colour a (large) subset U of vertices

If u, u′ ∈ U and {u, u′} ∈ E , then u and u′ have different colours

one colour ↭ independent sets, U = V ↭ proper colourings

Motivation. Resource sharing: G is an interference graph

Colouring a vertex assigns it a transmission frequency

Adjacent vertices cannot use the same frequency

Uncoloured vertices are idle (not transmitting)

Examples. Frequency-limited communication

Nearby users of short-range radio

Fibreoptic routing (more on this later)

Sam Olesker-Taylor Multicoloured Hardcore Model June 2024 1 / 7



Set-Up, Motivation and Examples

Set-Up. Let G = (V ,E ) be a finite graph

Our objective is to properly colour a (large) subset U of vertices

If u, u′ ∈ U and {u, u′} ∈ E , then u and u′ have different colours

one colour ↭ independent sets, U = V ↭ proper colourings

Motivation. Resource sharing: G is an interference graph

Colouring a vertex assigns it a transmission frequency

Adjacent vertices cannot use the same frequency

Uncoloured vertices are idle (not transmitting)

Examples. Frequency-limited communication

Nearby users of short-range radio

Fibreoptic routing (more on this later)

Sam Olesker-Taylor Multicoloured Hardcore Model June 2024 1 / 7



Model and Main Result



Glauber-Type Dynamics

Let K ∈ N and Ω := {ω ∈ {0, 1, ...,K}V | ω proper}, where
ω is proper if ωu ̸= ωv whenever {u, v} ∈ E and ωu + ωv > 0.

Definition (Glauber-Type Dynamics: MCHΩ(λ,p))

Select vertex v ∈ V to update at rate λv , simultaneously over all vertices.

When vertex v ∈ V is chosen, toss a pv -biassed coin: C ∼ Bern(pv ).

▶ If C = 1, choose a (non-zero) colour k ∈ {1, ...,K} uniformly.
If k is available for v , then paint v with colour k.

▶ If C = 0, give it ‘colour’ 0—ie, deactivate it.

Denote the equilibrium distribution π and the equilibrium service rates

sv :=
∑

ω∈Ω:ωv ̸=0 π(ω) for v ∈ V .

If preferred, at each discrete time-step, choose v ∈ V with probability ∝ λv .
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Mixing Times

Our main theorem establishes fast mixing of these Glauber-type dynamics.

Definition (Mixing Times)

The TV distance between distributions µ and π on a set Ω is

∥µ− π∥TV := maxA⊆Ω |µ(A)− π(A)|.

The mixing time of a Markov chain X = (X t)t≥0 with equilibrium dist π is

tmix(ε) := inf{t ≥ 0 | maxx∈Ω∥Px [X
t ∈ ·]− π∥ ≤ ε} for ε ∈ (0, 1).

Lemma (Coupling Method)

Let X and Y be a coupling of µ and π: ie, X ∼ µ and Y ∼ π. Then,

∥µ− π∥TV ≤ P[X ̸= Y ].

Path coupling only requires contraction of adjacent configurations in expectation.
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Main Result: Conditions for Fast Mixing

Theorem (Fast Mixing for MCH)

Let n := |V | and X ∼ MCHΩ(λ,p). Suppose that there exists β > 0 such that

1
K

∑
u∈V :{u,v}∈E puλu/λv ≤ 1− β for all v ∈ V .

Then,

maxx∈Ω ∥Px [X
t ∈ ·]− π∥TV ≤ min{2ne−βλmint , 1} for all t ≥ 0.

In particular, tmix(ε) ≤ (βλmin)
−1 log(2n/ε) for all ε ∈ (0, 1).

Remark (Heuristic-Driven Choice of Parameters (λ,p))

The graph G and number K of colours are prescribed by the application.

High-degree vertices have more impact, so update them faster: λv ∝ dv .

If v is ‘on’ with prob pv , then it removes pvdv colour choices: pvdv ∝ K .

The conditions are satisfied with β = 1
3 if λv = dv/d̄ and pv ≤ 2

3K/dv .

Further, under these conditions, 1
3pv ≤ sv ≤ pv for all v ∈ V .
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Application as a Queueing System



Motivation from Fibreoptic Networks

The original motivation for this system was to model fibreoptic routing.

Data in sent along cables between cities: eg, Bath → Reading → London

A single frequency (colour) of light must be used for the entire route

Interfering routes are ones which share a link, and must use different colours

Cardiff → Bath → Reading interferes with Bath → Reading → London

Routes which are physically far apart interfere, so cannot track everything

Changing the colour involves re-encoding the data, which is a high overhead cost.

The MCH dynamics provide a decentralised way to share the resource.

It is fast and easy to test if a given colour is available along the route

Optical switches can be configured rapidly to set-up a light path

The particular light path is used to transmit data until it is refreshed
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Queueing Network

Definition (MCH Queueing Network: QMCHΩ(λ,p;ν,µ))

Let X ∼ MCHΩ(λ,p). The state space of Q is NV . Its transition rates are

q →

{
qv ,+ at rate νv where qv ,±u := qu ± 1{u = v}
qv ,− at rate µv1{xv ̸= 0} given MCH configuration X = x

In other words, jobs arrive to vertex v ∈ V at rate νv and are processed at rate
µv provided vertex v is active in the underlying MCH configuration (ie, xv ̸= 0).

Theorem

Suppose λv = dv/d̄ , pv ≤ 2
3K/dv and νv < 1

3pv for all v . Then, in equilibrium,

E[Q0
v ] ≤

18(d̄/dmin)n log(2n/e)

(sv − νv )2
for all v ∈ V .
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Simulations

Graphs: Erdős–Rényi (top) and random-regular (bottom) graphs

n = 500 vertices and average degree d̄ = 40

K = 10 colours and probabilities pv = 4
5eK/dv ≈ 0.5
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