Patricia's bad distributions

Ralph Neininger (Goethe University Frankfurt)

joint work with Louigi Addario-Berry and Pat Morin

AofA 2024 University of Bath

Alphabet $\Sigma = \{0,1\}$

Alphabet $\Sigma = \{0, 1\}$ Data: $x^{(1)}, \dots, x^{(n)} \in \Sigma^{\mathbb{N}}$

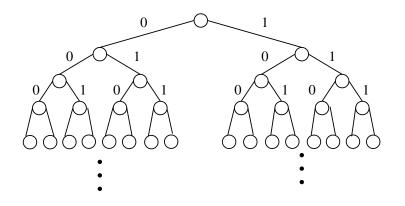
Alphabet $\Sigma = \{0, 1\}$ Data: $x^{(1)}, \dots, x^{(n)} \in \Sigma^{\mathbb{N}}$

Infinite sequences of Bits called strings.

 $\begin{array}{l} \text{Alphabet } \Sigma = \{0,1\} \\ \text{Data: } x^{(1)}, \ldots, x^{(n)} \in \Sigma^{\mathbb{N}} \\ \text{Infinite sequences of Bits called strings.} \end{array}$

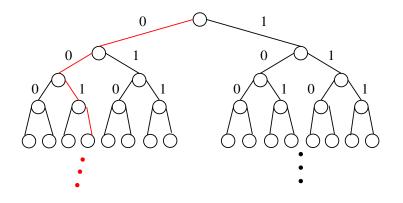
Alphabet $\Sigma = \{0, 1\}$ Data: $x^{(1)}, \dots, x^{(n)} \in \Sigma^{\mathbb{N}}$

Infinite sequences of Bits called strings.



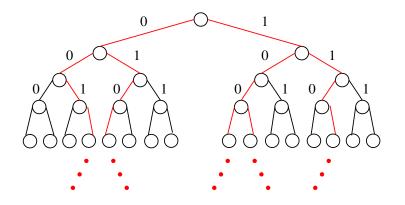
Alphabet $\Sigma = \{0, 1\}$ Data: $x^{(1)}, \dots, x^{(n)} \in \Sigma^{\mathbb{N}}$

Infinite sequences of Bits called strings.



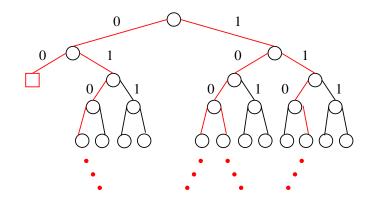
Alphabet $\Sigma = \{0, 1\}$ Data: $x^{(1)}, \dots, x^{(n)} \in \Sigma^{\mathbb{N}}$

Infinite sequences of Bits called strings.



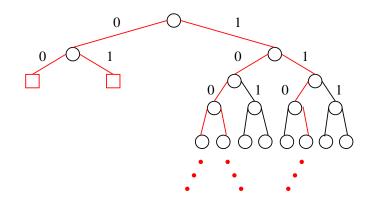
Alphabet $\Sigma = \{0, 1\}$ Data: $x^{(1)}, \dots, x^{(n)} \in \Sigma^{\mathbb{N}}$

Infinite sequences of Bits called strings.



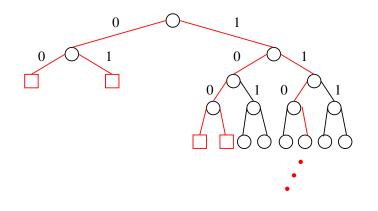
Alphabet $\Sigma = \{0, 1\}$ Data: $x^{(1)}, \dots, x^{(n)} \in \Sigma^{\mathbb{N}}$

Infinite sequences of Bits called strings.



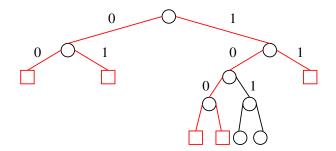
Alphabet $\Sigma = \{0, 1\}$ Data: $x^{(1)}, \dots, x^{(n)} \in \Sigma^{\mathbb{N}}$

Infinite sequences of Bits called strings.



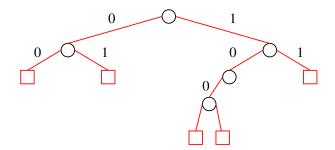
Alphabet $\Sigma = \{0, 1\}$ Data: $x^{(1)}, \dots, x^{(n)} \in \Sigma^{\mathbb{N}}$

Infinite sequences of Bits called strings.

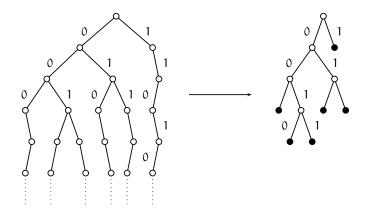


Alphabet $\Sigma = \{0, 1\}$ Data: $x^{(1)}, \dots, x^{(n)} \in \Sigma^{\mathbb{N}}$

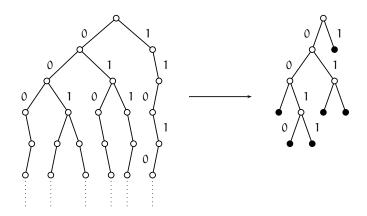
Infinite sequences of Bits called strings.



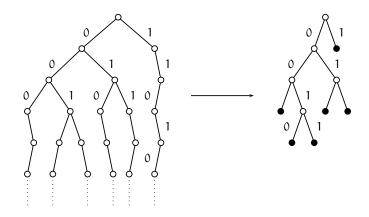
Alphabet $\Sigma = \{0, 1\}$ Data: $x^{(1)}, \dots, x^{(n)} \in \Sigma^{\mathbb{N}}$ Infinite sequences of Bits called strings. Construction of the trie:



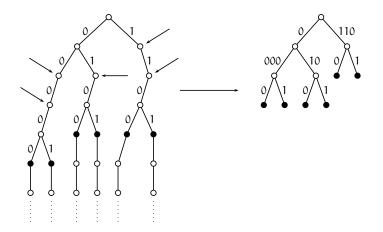
 $\begin{array}{l} \text{Alphabet } \Sigma = \{0,1\} \\ \text{Data: } x^{(1)}, \ldots, x^{(n)} \in \Sigma^{\mathbb{N}} \\ \text{Infinite sequences of Bits called strings.} \\ \text{Construction of the trie: } (retrieval) \end{array}$



 $\begin{array}{l} \text{Alphabet } \Sigma = \{0,1\} \\ \text{Data: } x^{(1)}, \ldots, x^{(n)} \in \Sigma^{\mathbb{N}} \\ \text{Infinite sequences of Bits called strings.} \\ \text{Construction of the trie: } (retrieval) & \text{Height} \end{array}$

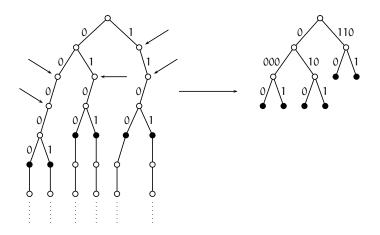


PATRICIA tree From Trie to PATRICIA tree:



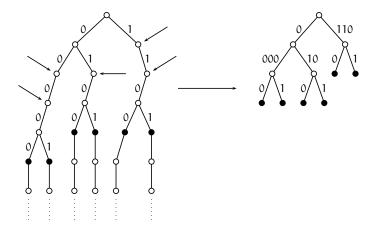
PATRICIA tree

From Trie to PATRICIA tree: Height: H_n



PATRICIA tree

From Trie to PATRICIA tree: Height: *H*_n PATRICIA: Practical Algorithm To Retrieve Information Coded In Alphanumeric (D. Morrison 1968, G. Gwehenberger 1968)



Data random: $X^{(1)}, \ldots, X^{(n)}$ i.i.d. with a distribution μ on $\Sigma^{\mathbb{N}}$. General assumption: μ diffuse (non-atomic)

Data random: $X^{(1)}, \ldots, X^{(n)}$ i.i.d. with a distribution μ on $\Sigma^{\mathbb{N}}$. General assumption: μ diffuse (non-atomic) Special cases of $\mu = \mathcal{L}((X_i^{(1)})_{j\geq 1})$:

Data random: $X^{(1)}, \ldots, X^{(n)}$ i.i.d. with a distribution μ on $\Sigma^{\mathbb{N}}$. General assumption: μ diffuse (non-atomic) Special cases of $\mu = \mathcal{L}((X_j^{(1)})_{j\geq 1})$:

Bernoulli model: $X_1^{(1)}, X_2^{(1)}, \dots$ i.i.d. Bernoulli(p) Books of Knuth, Szpankowski, Mahmoud. Devroye (2002), Janson(2012, 2022), Ischebeck (2023+)

Data random: $X^{(1)}, \ldots, X^{(n)}$ i.i.d. with a distribution μ on $\Sigma^{\mathbb{N}}$. General assumption: μ diffuse (non-atomic) Special cases of $\mu = \mathcal{L}((X_j^{(1)})_{j\geq 1})$:

Bernoulli model: $X_1^{(1)}, X_2^{(1)}, \dots$ i.i.d. Bernoulli(p) Books of Knuth, Szpankowski, Mahmoud. Devroye (2002), Janson(2012, 2022), Ischebeck (2023+)

Markov model: $(X_j^{(1)})_{j\geq 1}$ is a homogenous Markov chain Szpankowski & Jacquet (1991) Leckey, N. & Szpankowski (2013), Leckey, N. & Sulzbach (2014)

Data random: $X^{(1)}, \ldots, X^{(n)}$ i.i.d. with a distribution μ on $\Sigma^{\mathbb{N}}$. General assumption: μ diffuse (non-atomic) Special cases of $\mu = \mathcal{L}((X_j^{(1)})_{j\geq 1})$:

Bernoulli model: $X_1^{(1)}, X_2^{(1)}, \dots$ i.i.d. Bernoulli(*p*) Books of Knuth, Szpankowski, Mahmoud. Devroye (2002), Janson(2012, 2022), Ischebeck (2023+)

Markov model: $(X_j^{(1)})_{j\geq 1}$ is a homogenous Markov chain Szpankowski & Jacquet (1991) Leckey, N. & Szpankowski (2013), Leckey, N. & Sulzbach (2014)

Density model: Z with density f on [0, 1]. Then binary expansion $Z = 0.X_1^{(1)}X_2^{(1)}...$ Devroye (1992)

Data random: $X^{(1)}, \ldots, X^{(n)}$ i.i.d. with a distribution μ on $\Sigma^{\mathbb{N}}$. General assumption: μ diffuse (non-atomic) Special cases of $\mu = \mathcal{L}((X_j^{(1)})_{j\geq 1})$:

Bernoulli model: $X_1^{(1)}, X_2^{(1)}, \dots$ i.i.d. Bernoulli(*p*) Books of Knuth, Szpankowski, Mahmoud. Devroye (2002), Janson(2012, 2022), Ischebeck (2023+)

Markov model: $(X_j^{(1)})_{j\geq 1}$ is a homogenous Markov chain Szpankowski & Jacquet (1991) Leckey, N. & Szpankowski (2013), Leckey, N. & Sulzbach (2014)

Density model: Z with density f on [0, 1]. Then binary expansion $Z = 0.X_1^{(1)}X_2^{(1)}...$ Devroye (1992)

Dynamical sources: Clément, Flajolet & Vallée (2001)

Symmetric Bernoulli model $(p = \frac{1}{2})$:

Symmetric Bernoulli model $(p = \frac{1}{2})$:

Theorem: (Pittel, 1989)

$$\lim_{n \to \infty} \frac{H_n}{\log_2 n} = 1 \quad \text{almost surely}$$

Symmetric Bernoulli model $(p = \frac{1}{2})$:

Theorem: (Pittel, 1989)

$$\lim_{n \to \infty} \frac{H_n}{\log_2 n} = 1 \quad \text{almost surely}$$

Arbitrary diffuse distribution

Symmetric Bernoulli model $(p = \frac{1}{2})$:

Theorem: (Pittel, 1989)

$$\lim_{n \to \infty} \frac{H_n}{\log_2 n} = 1 \quad \text{almost surely}$$

Arbitrary diffuse distribution

Theorem: (Devroye, 2005) For all t > 0 we have

$$\mathbb{P}(H_n \ge \mathbb{E}[H_n] + t) \le \exp\left(-\frac{t^2}{2(\mathbb{E}[H_n] + 1) + 2t/3}\right)$$
$$\mathbb{P}(H_n \le \mathbb{E}[H_n] - t) \le \exp\left(-\frac{t^2}{2(\mathbb{E}[H_n] + 1)}\right)$$

Question of S. Evans and A. Wakolbinger

Question of S. Evans and A. Wakolbinger

How high can a random PATRICIA tree grow?

Question of S. Evans and A. Wakolbinger

How high can a random PATRICIA tree grow?

(For arbitrary diffuse μ on $\Sigma^{\mathbb{N}}$.)

Results (with L. Addario-Berry and P. Morin)

Results (with L. Addario-Berry and P. Morin)

Theorem 1: (The height is sublinear)

Results (with L. Addario-Berry and P. Morin)

Theorem 1: (The height is sublinear) For any diffuse probability distribution μ on $\{0, 1\}^{\mathbb{N}}$,

Theorem 1: (The height is sublinear) For any diffuse probability distribution μ on $\{0,1\}^{\mathbb{N}}$,

$$\frac{\mathbb{E}[H_n]}{n} \to 0, \qquad \frac{H_n}{n} \to 0 \quad \text{almost surely.}$$

Theorem 1: (The height is sublinear) For any diffuse probability distribution μ on $\{0,1\}^{\mathbb{N}}$,

$$\frac{\mathbb{E}[H_n]}{n} \to 0, \qquad \frac{H_n}{n} \to 0 \quad \text{almost surely.}$$

Theorem 2: (Any sublinear height is possible)

Theorem 1: (The height is sublinear) For any diffuse probability distribution μ on $\{0,1\}^{\mathbb{N}}$,

$$\frac{\mathbb{E}[H_n]}{n} \to 0, \qquad \frac{H_n}{n} \to 0 \quad \text{almost surely}$$

Theorem 2: (Any sublinear height is possible) For any sequence $\alpha = (\alpha_n)_{n \in \mathbb{N}}$ with $\alpha_n \to \infty$

Theorem 1: (The height is sublinear) For any diffuse probability distribution μ on $\{0,1\}^{\mathbb{N}}$,

$$\frac{\mathbb{E}[H_n]}{n} \to 0, \qquad \frac{H_n}{n} \to 0 \quad \text{almost surely}$$

Theorem 2: (Any sublinear height is possible) For any sequence $\alpha = (\alpha_n)_{n \in \mathbb{N}}$ with $\alpha_n \to \infty$ there exists a diffuse μ_{α} on $\{0, 1\}^{\mathbb{N}}$, such that

Theorem 1: (The height is sublinear) For any diffuse probability distribution μ on $\{0,1\}^{\mathbb{N}}$,

$$\frac{\mathbb{E}[H_n]}{n} \to 0, \qquad \frac{H_n}{n} \to 0 \quad \text{almost surely.}$$

Theorem 2: (Any sublinear height is possible) For any sequence $\alpha = (\alpha_n)_{n \in \mathbb{N}}$ with $\alpha_n \to \infty$ there exists a diffuse μ_{α} on $\{0, 1\}^{\mathbb{N}}$, such that

$$\frac{\mathbb{E}[H_n]}{n/\alpha_n} \to \infty, \qquad \frac{H_n}{n/\alpha_n} \to \infty \quad \text{almost surely}.$$

Theorem 1: (The height is sublinear) For any diffuse probability distribution μ on $\{0,1\}^{\mathbb{N}}$,

$$\frac{\mathbb{E}[H_n]}{n} \to 0, \qquad \frac{H_n}{n} \to 0 \quad \text{almost surely.}$$

Theorem 2: (Any sublinear height is possible) For any sequence $\alpha = (\alpha_n)_{n \in \mathbb{N}}$ with $\alpha_n \to \infty$ there exists a diffuse μ_{α} on $\{0, 1\}^{\mathbb{N}}$, such that

$$\frac{\mathbb{E}[H_n]}{n/\alpha_n} \to \infty, \qquad \frac{H_n}{n/\alpha_n} \to \infty \quad \text{almost surely}.$$

Remark: Devroye (1992) has Theorem 1 for the density model and Theorem 2 for $\alpha_n = n^{\varepsilon}$.

Auxiliary distribution μ_N on $\{0,1\}^{\mathbb{N}}$ for $N \in \mathbb{N}$:

Auxiliary distribution μ_N on $\{0,1\}^{\mathbb{N}}$ for $N \in \mathbb{N}$: *T* uniformly on $\{0, \dots, N^2 - 1\}$

Auxiliary distribution μ_N on $\{0,1\}^{\mathbb{N}}$ for $N \in \mathbb{N}$: T uniformly on $\{0, \ldots, N^2 - 1\}$ $(B_i)_{i \ge 1}$ i.i.d. Bernoulli $(\frac{1}{2})$ (indep. of T)

Auxiliary distribution μ_N on $\{0,1\}^{\mathbb{N}}$ for $N \in \mathbb{N}$: T uniformly on $\{0, \dots, N^2 - 1\}$ $(B_i)_{i \geq 1}$ i.i.d. Bernoulli $(\frac{1}{2})$ (indep. of T)

Conditional on $\{T = k\}$,

$$\xi_i := \begin{cases} 0, & \text{if } i < k, \\ 1, & \text{if } i = k, \\ B_{i-k}, & \text{if } i > k. \end{cases}$$

Auxiliary distribution μ_N on $\{0,1\}^{\mathbb{N}}$ for $N \in \mathbb{N}$: T uniformly on $\{0, \ldots, N^2 - 1\}$ $(B_i)_{i \ge 1}$ i.i.d. Bernoulli $(\frac{1}{2})$ (indep. of T)

Conditional on $\{T = k\}$,

$$\xi_i := \begin{cases} 0, & \text{if } i < k, \\ 1, & \text{if } i = k, \\ B_{i-k}, & \text{if } i > k. \end{cases}$$

 μ_N is defined as the distribution of $\Xi = (\xi_i)_{i \in \mathbb{N}}$.

Auxiliary distribution μ_N on $\{0,1\}^{\mathbb{N}}$ for $N \in \mathbb{N}$: T uniformly on $\{0, \dots, N^2 - 1\}$ $(B_i)_{i \geq 1}$ i.i.d. Bernoulli $(\frac{1}{2})$ (indep. of T)

Conditional on $\{T = k\}$,

$$\xi_i := \begin{cases} 0, & \text{if } i < k, \\ 1, & \text{if } i = k, \\ B_{i-k}, & \text{if } i > k. \end{cases}$$

 μ_N is defined as the distribution of $\Xi = (\xi_i)_{i \in \mathbb{N}}$.

Lemma: For all $n \in \{1, ..., N\}$ and μ_N we have

 $\mathbb{E}[H_n] \geq n-2.$

Idea for Theorem 2 $\alpha = (\alpha_n)_{n \in \mathbb{N}}$ with $\alpha_n \to \infty$ Idea for Theorem 2 $\alpha = (\alpha_n)_{n \in \mathbb{N}} \text{ with } \alpha_n \to \infty$ $\beta_n := \lfloor \log_2 \alpha_n \rfloor - 2.$ $B(n) := \max\{m \in \mathbb{N} \mid \beta_m \le n\}, \quad n \in \mathbb{N}.$ Idea for Theorem 2 $\alpha = (\alpha_n)_{n \in \mathbb{N}} \text{ with } \alpha_n \to \infty$ $\beta_n := \lfloor \log_2 \alpha_n \rfloor - 2.$ $B(n) := \max\{m \in \mathbb{N} \mid \beta_m \le n\}, \quad n \in \mathbb{N}.$ *G* geometric($\frac{1}{2}$) distributed.

Idea for Theorem 2 $\alpha = (\alpha_n)_{n \in \mathbb{N}} \text{ with } \alpha_n \to \infty$ $\beta_n := \lfloor \log_2 \alpha_n \rfloor - 2.$ $B(n) := \max\{m \in \mathbb{N} \mid \beta_m \le n\}, \quad n \in \mathbb{N}.$

G geometric($\frac{1}{2}$) distributed.

Conditional on $\{G = k\}$

$$\phi_i = \begin{cases} 0, & \text{if } i < k, \\ 1, & \text{if } i = k, \\ \xi_{i-k}, & \text{if } i > k, \end{cases}$$

where $\Xi = (\xi_i)_{i \in \mathbb{N}}$ is independent of *G* and has distribution $\mu_{B(k)}$.

Idea for Theorem 2 $\alpha = (\alpha_n)_{n \in \mathbb{N}}$ with $\alpha_n \to \infty$ $\beta_n := \lfloor \log_2 \alpha_n \rfloor - 2.$ $B(n) := \max\{m \in \mathbb{N} \mid \beta_m \le n\}, \quad n \in \mathbb{N}.$

G geometric($\frac{1}{2}$) distributed.

Conditional on $\{G = k\}$

$$\phi_i = \begin{cases} 0, & \text{if } i < k, \\ 1, & \text{if } i = k, \\ \xi_{i-k}, & \text{if } i > k, \end{cases}$$

where $\Xi = (\xi_i)_{i \in \mathbb{N}}$ is independent of *G* and has distribution $\mu_{B(k)}$.

$$\mu_{\alpha} := \mathcal{L}((\phi_i)_{i \in \mathbb{N}}).$$

Aim: $\mathbb{E}[H_n] \ge n/\alpha_n$ for all $n \ge n_0$.

Aim: $\mathbb{E}[H_n] \ge n/\alpha_n$ for all $n \ge n_0$.

$$X_{n} := \left| \left\{ 1 \le j \le n : \left(\Phi_{1}^{(j)}, \dots, \Phi_{\beta_{n}}^{(j)} \right) = (0, \dots, 0, 1) \right\} \right|$$

Aim: $\mathbb{E}[H_n] \ge n/\alpha_n$ for all $n \ge n_0$. $X_n := \left| \left\{ 1 \le j \le n : \left(\Phi_1^{(j)}, \dots, \Phi_{\beta_n}^{(j)} \right) = (0, \dots, 0, 1) \right\} \right|$ $X_n \sim \mathcal{B}(n, 2^{-\beta_n}).$

Aim: $\mathbb{E}[H_n] \ge n/\alpha_n$ for all $n \ge n_0$. $X_n := \left| \left\{ 1 \le j \le n : \left(\Phi_1^{(j)}, \dots, \Phi_{\beta_n}^{(j)} \right) = (0, \dots, 0, 1) \right\} \right|$ $X_n \sim \mathcal{B}(n, 2^{-\beta_n}).$ Note $2^{-\beta_n} \ge 4/\alpha_n$.

Aim: $\mathbb{E}[H_n] \ge n/\alpha_n$ for all $n \ge n_0$. $X_n := \left| \left\{ 1 \le j \le n : \left(\Phi_1^{(j)}, \dots, \Phi_{\beta_n}^{(j)} \right) = (0, \dots, 0, 1) \right\} \right|$ $X_n \sim B(n, 2^{-\beta_n}).$ Note $2^{-\beta_n} \ge 4/\alpha_n$. $\mathbb{P}\left(X_n < \frac{2n}{\alpha_n} \right) \le \exp\left(-\frac{n}{\alpha_n}\right)$ (Okamoto)

Aim: $\mathbb{E}[H_n] \ge n/\alpha_n$ for all $n \ge n_0$. $X_n := \left| \left\{ 1 \le j \le n : \left(\Phi_1^{(j)}, \dots, \Phi_{\beta_n}^{(j)} \right) = (0, \dots, 0, 1) \right\} \right|$ $X_n \sim B(n, 2^{-\beta_n})$. Note $2^{-\beta_n} \ge 4/\alpha_n$. $\mathbb{P}\left(X_n < \frac{2n}{\alpha_n} \right) \le \exp\left(-\frac{n}{\alpha_n}\right)$ (Okamoto)

W.h.p. $2n/\alpha_n$ of the *n* strings start with $(0^{\beta_n-1}, 1)$.

Aim: $\mathbb{E}[H_n] \ge n/\alpha_n$ for all $n \ge n_0$. $X_n := \left| \left\{ 1 \le j \le n : \left(\Phi_1^{(j)}, \dots, \Phi_{\beta_n}^{(j)} \right) = (0, \dots, 0, 1) \right\} \right|$ $X_n \sim B(n, 2^{-\beta_n})$. Note $2^{-\beta_n} \ge 4/\alpha_n$. $\mathbb{P}\left(X_n < \frac{2n}{\alpha_n} \right) \le \exp\left(-\frac{n}{\alpha_n} \right)$ (Okamoto)

W.h.p. $2n/\alpha_n$ of the *n* strings start with $(0^{\beta_n-1}, 1)$. They have suffixes $(\Xi_1^{(j)}, \Xi_2^{(j)}, \ldots)$ drawn ind. from $\mu_{\mathcal{B}(\beta_n)}$

Aim: $\mathbb{E}[H_n] \ge n/\alpha_n$ for all $n \ge n_0$. $X_n := \left| \left\{ 1 \le j \le n : \left(\Phi_1^{(j)}, \dots, \Phi_{\beta_n}^{(j)} \right) = (0, \dots, 0, 1) \right\} \right|$ $X_n \sim B(n, 2^{-\beta_n})$. Note $2^{-\beta_n} > 4/\alpha_n$. $\mathbb{P}\left(X_n < \frac{2n}{\alpha_n}\right) \le \exp\left(-\frac{n}{\alpha_n}\right) \qquad \text{(Okamoto)}$ W.h.p. $2n/\alpha_n$ of the *n* strings start with $(0^{\beta_n-1}, 1)$. They have suffixes $(\Xi_1^{(j)}, \Xi_2^{(j)}, \ldots)$ drawn ind. from $\mu_{B(\beta_n)}$

For all large *n* we have $\lceil 2n/\alpha_n \rceil \leq n \leq B(\beta_n)$.

Aim: $\mathbb{E}[H_n] \ge n/\alpha_n$ for all $n \ge n_0$. $X_n := \left| \left\{ 1 \le j \le n : \left(\Phi_1^{(j)}, \dots, \Phi_{\beta_n}^{(j)} \right) = (0, \dots, 0, 1) \right\} \right|$ $X_n \sim B(n, 2^{-\beta_n})$. Note $2^{-\beta_n} > 4/\alpha_n$. $\mathbb{P}\left(X_n < \frac{2n}{\alpha_n}\right) \le \exp\left(-\frac{n}{\alpha_n}\right) \qquad \text{(Okamoto)}$ W.h.p. $2n/\alpha_n$ of the *n* strings start with $(0^{\beta_n-1}, 1)$. They have suffixes $(\Xi_1^{(j)}, \Xi_2^{(j)}, \ldots)$ drawn ind. from $\mu_{B(\beta_n)}$ For all large *n* we have $\lceil 2n/\alpha_n \rceil \leq n \leq B(\beta_n)$.

The Lemma implies the assertion.

Consider bad ν with $\mathbb{E}[H_n] \ge n/\log \alpha_n$.

Consider bad ν with $\mathbb{E}[H_n] \ge n/\log \alpha_n$. Devroye (2005)

 $\mathbb{P}(H_n \leq \mathbb{E}[H_n] - t) \leq \exp\left(-\frac{t^2}{2n}\right).$

Consider bad ν with $\mathbb{E}[H_n] \ge n/\log \alpha_n$. Devroye (2005)

$$\mathbb{P}(H_n \leq \mathbb{E}[H_n] - t) \leq \exp\left(-\frac{t^2}{2n}\right).$$

This implies

$$\mathbb{P}\left(H_n \leq \frac{n}{\log^2 \alpha_n}\right) \leq \exp\left(-\frac{n}{2\log^4 n}\right)$$

Consider bad ν with $\mathbb{E}[H_n] \ge n/\log \alpha_n$. Devroye (2005)

$$\mathbb{P}(H_n \leq \mathbb{E}[H_n] - t) \leq \exp\left(-\frac{t^2}{2n}\right).$$

This implies

$$\mathbb{P}\left(H_n \leq \frac{n}{\log^2 \alpha_n}\right) \leq \exp\left(-\frac{n}{2\log^4 n}\right)$$

Borel-Cantelli Lemma implies

$$\frac{H_n}{n/\alpha_n} o \infty$$
 almost surely.

THANK YOU!

 $\Xi = \xi_1 \xi_2 \xi_3 \dots$ with $\mathcal{L}(\Xi) = \mu$. Claim:

 $\Xi = \xi_1 \xi_2 \xi_3 \dots$ with $\mathcal{L}(\Xi) = \mu$. Claim:

 $\forall \varepsilon > 0 \exists k \in \mathbb{N} \forall v = v_1 \dots v_k : \mathbb{P}(\xi_1 \dots \xi_k = v_1 \dots v_k) < \varepsilon.$

$$\Xi = \xi_1 \xi_2 \xi_3 \dots \text{ with } \mathcal{L}(\Xi) = \mu. \text{ Claim:}$$
$$\forall \varepsilon > 0 \exists k \in \mathbb{N} \forall v = v_1 \dots v_k : \mathbb{P}(\xi_1 \dots \xi_k = v_1 \dots v_k) < \varepsilon.$$
Assume

 $\exists \varepsilon > 0 \,\forall \, k \in \mathbb{N} \,\exists \, v = v_1 \dots v_k : \mathbb{P}(\xi_1 \dots \xi_k = v_1 \dots v_k) \geq \varepsilon.$

$$\Xi = \xi_1 \xi_2 \xi_3 \dots \text{ with } \mathcal{L}(\Xi) = \mu. \text{ Claim:}$$
$$\forall \varepsilon > 0 \exists k \in \mathbb{N} \forall v = v_1 \dots v_k : \mathbb{P}(\xi_1 \dots \xi_k = v_1 \dots v_k) < \varepsilon.$$
Assume

 $\exists \varepsilon > 0 \,\forall \, k \in \mathbb{N} \,\exists \, v = v_1 \dots v_k : \mathbb{P}(\xi_1 \dots \xi_k = v_1 \dots v_k) \geq \varepsilon.$

By a diagonal argument exists $v = v_1 v_2 v_3 \ldots \in \{0, 1\}^{\mathbb{N}}$:

$$\mathbb{P}(\xi_1 \dots \xi_k = v_1 \dots v_k) \ge \varepsilon, \quad \text{for all } k.$$

$$\Xi = \xi_1 \xi_2 \xi_3 \dots \text{ with } \mathcal{L}(\Xi) = \mu. \text{ Claim:}$$
$$\forall \varepsilon > 0 \exists k \in \mathbb{N} \forall v = v_1 \dots v_k : \mathbb{P}(\xi_1 \dots \xi_k = v_1 \dots v_k) < \varepsilon.$$
Assume

 $\exists \varepsilon > 0 \forall k \in \mathbb{N} \exists v = v_1 \dots v_k : \mathbb{P}(\xi_1 \dots \xi_k = v_1 \dots v_k) \geq \varepsilon.$

By a diagonal argument exists $v = v_1 v_2 v_3 \ldots \in \{0, 1\}^{\mathbb{N}}$:

$$\mathbb{P}(\xi_1 \dots \xi_k = v_1 \dots v_k) \ge \varepsilon, \quad \text{for all } k.$$

Then, by continuity of measure

$$\mathbb{P}(\Xi = v) = \lim_{k \to \infty} \mathbb{P}(\xi_1 \dots \xi_k = v_1 \dots v_k) \ge \varepsilon.$$

Contradiction to diffuse.

Consider $\varepsilon \in (0, 1/4)$ and $k = k(\varepsilon)$ as above.

Consider $\varepsilon \in (0, 1/4)$ and $k = k(\varepsilon)$ as above. Sufficient is

 $\mathbb{P}(\exists n_0 \forall n \geq n_0 : H_n \leq k + 2\varepsilon n) = 1.$

Consider $\varepsilon \in (0, 1/4)$ and $k = k(\varepsilon)$ as above. Sufficient is

 $\mathbb{P}(\exists n_0 \forall n \geq n_0 : H_n \leq k + 2\varepsilon n) = 1.$

For $v = v_1 \dots v_k$ set

 $N_{\mathbf{v}} := |\{1 \le j \le n : \xi_1^{(j)} \dots \xi_k^{(j)} = \mathbf{v}_1 \dots \mathbf{v}_k\}|,\$

Consider $arepsilon \in (0,1/4)$ and k=k(arepsilon) as above. Sufficient is

 $\mathbb{P}(\exists n_0 \forall n \geq n_0 : H_n \leq k + 2\varepsilon n) = 1.$

For $v = v_1 \dots v_k$ set

$$N_{\mathbf{v}} := |\{1 \le j \le n : \xi_1^{(j)} \dots \xi_k^{(j)} = v_1 \dots v_k\}|,\$$
$$E_{n,k} := \left\{\max_{\mathbf{v} \in \{0,1\}^k} N_{\mathbf{v}} \ge 2\varepsilon n\right\}.$$

Consider $arepsilon \in (0,1/4)$ and k=k(arepsilon) as above. Sufficient is

 $\mathbb{P}(\exists n_0 \forall n \geq n_0 : H_n \leq k + 2\varepsilon n) = 1.$

For $v = v_1 \dots v_k$ set

$$N_{\mathbf{v}} := |\{1 \le j \le n : \xi_1^{(j)} \dots \xi_k^{(j)} = \mathbf{v}_1 \dots \mathbf{v}_k\}|,$$
$$E_{n,k} := \left\{\max_{\mathbf{v} \in \{0,1\}^k} N_{\mathbf{v}} \ge 2\varepsilon n\right\}.$$

Then

 $\{\exists n_0 : \forall n \ge n_0 : H_n \le k + 2\varepsilon n\} \supset \{E_{n,k} \text{ for finitely many } n\} \\ = \left(\limsup_{n \to \infty} E_{n,k}\right)^c$

Consider $arepsilon \in (0,1/4)$ and k=k(arepsilon) as above. Sufficient is

 $\mathbb{P}(\exists n_0 \forall n \geq n_0 : H_n \leq k + 2\varepsilon n) = 1.$

For $v = v_1 \dots v_k$ set

$$N_{\mathbf{v}} := |\{1 \le j \le n : \xi_1^{(j)} \dots \xi_k^{(j)} = \mathbf{v}_1 \dots \mathbf{v}_k\}|,$$
$$E_{n,k} := \left\{\max_{\mathbf{v} \in \{0,1\}^k} N_{\mathbf{v}} \ge 2\varepsilon n\right\}.$$

Then

$$\{\exists n_0 : \forall n \ge n_0 : H_n \le k + 2\varepsilon n\} \supset \{E_{n,k} \text{ for finitely many } n\} \\ = \left(\limsup_{n \to \infty} E_{n,k}\right)^c$$

Tail bound for Binomial plus Borel-Cantelli.