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PATRICIA tree
From Trie to PATRICIA tree:
Height: H,
PATRICIA: Practical Algorithm To Retrieve Information Coded In
Alphanumeric (D. Morrison 1968, G. Gwehenberger 1968)
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Markov model: (Xj(l))jzl is a homogenous Markov chain
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Density model: Z with density f on [0, 1].
Then binary expansion Z = O.Xl(l)X2(1) .
Devroye (1992)

Dynamical sources: Clément, Flajolet & Vallée (2001)
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Symmetric Bernoulli model (p = 3):

Theorem: (Pittel, 1989)

- n
lim =1 almost surely
n—oo logy n

Arbitrary diffuse distribution

Theorem: (Devroye, 2005)
For all t > 0 we have

t2
P(Hp = E[Hn] + t) < exp <_2(E[Hn] +1) + 2t/3>

2
P(Hp < E[Hy] — t) < exp <_2@E[I-:,,]+1)>
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Question of S. Evans and A. Wakolbinger

How high can a random PATRICIA tree grow?

(For arbitrary diffuse p on .)
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Results (with L. Addario-Berry and P. Morin)

Theorem 1: (The height is sublinear)
For any diffuse probability distribution z on {0,1}Y,

E[Hn]

n

— 0, — 0 almost surely.
n

Theorem 2: (Any sublinear height is possible)
For any sequence a = (ap)pen With a, — 00
there exists a diffuse y, on {0,1}Y, such that

E[Hn Hy

n/ag, ’ n/ag,

— oo almost surely.

Remark: Devroye (1992) has Theorem 1 for the density model
and Theorem 2 for a, = n°.
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Auxiliary distribution s on {0, 1} for N € N:

T uniformly on {0,..., N? — 1}
(Bj)i>1 i.i.d. Bernoulli(3) (indep. of T)

Conditional on {T = k},

0, if i <k,
g=4 1, ifi=k,
Bi_k, ifi>k.

i is defined as the distribution of = = (&;);en.

Lemma: For all n € {1,..., N} and pp we have

E[H,] > n— 2.
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a = (n)nen With a, — 00
Bn = |logy an| — 2.
B(n) :=max{meN|s, <n}, neN.

G geometric(3) distributed.

Conditional on {G = k}

0, ifi<k
pi=4 1, ifi=k
giflﬂ Ifl>k7

where = = ({;)ien is independent of G and has distribution pgy).

to = L((¢i)ien)-
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Aim: E[H,] > n/a, for all n > no.
X, = ‘{1 <j<n: (¢§”,...,¢gn)) :(O,...,O,l)}’

X, ~ B(n,277"). Note 27" > 4/a,

P (X,, < 2n> < exp <_n> (Okamoto)

Qp Qp

W.h.p. 2n/a, of the n strings start with (0%—1 1).
They have suffixes (Egj),Eg), ...) drawn ind. from ppgg,)
For all large n we have [2n/a,] < n < B(8,).

The Lemma implies the assertion.
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Almost sure behavior

Consider bad v with E[H,] > n/log a,.
Devroye (2005)

P (H, < E[H,] — t) < exp <_;2> .

n

This implies

(e ta) o)
log? o,y 2log™ n

Borel-Cantelli Lemma implies

— oo almost surely.
n/an



THANK YOU!
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Idea for Theorem 1

= =&8¢&. .. with £(Z) = p. Claim:
Ve>03dkeNVv=vi...v:P(&... &k=wvi... %) <e.
Assume
Je>0VkeNIv=vi...v P& ...&=v1...v) > e
By a diagonal argument exists v = vivav3... € {0, 1}V
P& ... k=vi...v) > g, for all k.

Then, by continuity of measure

P(E:V): lim ]P’(gl...gk:vl...vk)zs.

k—o0

Contradiction to diffuse.
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|dea for Theorem 1
Consider ¢ € (0,1/4) and k = k(e) as above. Sufficient is
P(3noVn>ng: H, < k+2en)=1.
For v =vi... v set
No=l{1<j<n:ef e =vi. w)l

Eny = { max N, > 25n} .
ve{0,1}k

Then
{3no:Vn>no:H, <k+2n} D {E, for finitely many n}
c
= <Iim sup E,,7k>
n—oo

Tail bound for Binomial plus Borel-Cantelli.



