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PATRICIA tree
From Trie to PATRICIA tree:

Height: Hn

PATRICIA: Practical Algorithm To Retrieve Information Coded In
Alphanumeric (D. Morrison 1968, G. Gwehenberger 1968)
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Probabilistic models

Data random: X (1), . . . ,X (n) i.i.d. with a distribution µ on ΣN.
General assumption: µ diffuse (non-atomic)

Special cases of µ = L((X
(1)
j )j≥1):

Bernoulli model: X
(1)
1 ,X

(1)
2 , . . . i.i.d. Bernoulli(p)

Books of Knuth, Szpankowski, Mahmoud.
Devroye (2002), Janson(2012, 2022), Ischebeck (2023+)

Markov model: (X
(1)
j )j≥1 is a homogenous Markov chain

Szpankowski & Jacquet (1991) Leckey, N. & Szpankowski (2013),
Leckey, N. & Sulzbach (2014)

Density model: Z with density f on [0, 1].

Then binary expansion Z = 0.X
(1)
1 X

(1)
2 . . .

Devroye (1992)

Dynamical sources: Clément, Flajolet & Vallée (2001)
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Selected results for the height of PATRICIA trees

Symmetric Bernoulli model (p = 1
2):

Theorem: (Pittel, 1989)

lim
n→∞

Hn

log2 n
= 1 almost surely

Arbitrary diffuse distribution

Theorem: (Devroye, 2005)
For all t > 0 we have

P(Hn ≥ E[Hn] + t) ≤ exp

(
− t2

2(E[Hn] + 1) + 2t/3

)
P(Hn ≤ E[Hn]− t) ≤ exp

(
− t2

2(E[Hn] + 1)

)
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Results (with L. Addario-Berry and P. Morin)

Theorem 1: (The height is sublinear)
For any diffuse probability distribution µ on {0, 1}N,

E[Hn]

n
→ 0,

Hn

n
→ 0 almost surely.

Theorem 2: (Any sublinear height is possible)
For any sequence α = (αn)n∈N with αn →∞
there exists a diffuse µα on {0, 1}N, such that

E[Hn]

n/αn
→∞, Hn

n/αn
→∞ almost surely.

Remark: Devroye (1992) has Theorem 1 for the density model
and Theorem 2 for αn = nε.
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Idea for Theorem 2

Auxiliary distribution µN on {0, 1}N for N ∈ N:

T uniformly on {0, . . . ,N2 − 1}
(Bi )i≥1 i.i.d. Bernoulli(12) (indep. of T )

Conditional on {T = k},

ξi :=


0, if i < k ,
1, if i = k ,

Bi−k , if i > k .

µN is defined as the distribution of Ξ = (ξi )i∈N.

Lemma: For all n ∈ {1, . . . ,N} and µN we have

E[Hn] ≥ n − 2.
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Idea for Theorem 2

α = (αn)n∈N with αn →∞

βn := blog2 αnc − 2.

B(n) := max{m ∈ N |βm ≤ n}, n ∈ N.

G geometric(12) distributed.

Conditional on {G = k}

φi =


0, if i < k,
1, if i = k,
ξi−k , if i > k,

where Ξ = (ξi )i∈N is independent of G and has distribution µB(k).

µα := L((φi )i∈N).
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Idea for Theorem 2

Aim: E[Hn] ≥ n/αn for all n ≥ n0.

Xn :=
∣∣∣{1 ≤ j ≤ n :

(
Φ
(j)
1 , . . . ,Φ

(j)
βn

)
= (0, . . . , 0, 1)

}∣∣∣
Xn ∼ B(n, 2−βn). Note 2−βn ≥ 4/αn.

P
(
Xn <

2n

αn

)
≤ exp

(
− n

αn

)
(Okamoto)

W.h.p. 2n/αn of the n strings start with (0βn−1, 1).

They have suffixes (Ξ
(j)
1 ,Ξ

(j)
2 , . . .) drawn ind. from µB(βn)

For all large n we have d2n/αne ≤ n ≤ B(βn).

The Lemma implies the assertion. �



Idea for Theorem 2

Aim: E[Hn] ≥ n/αn for all n ≥ n0.

Xn :=
∣∣∣{1 ≤ j ≤ n :

(
Φ
(j)
1 , . . . ,Φ

(j)
βn

)
= (0, . . . , 0, 1)

}∣∣∣

Xn ∼ B(n, 2−βn). Note 2−βn ≥ 4/αn.

P
(
Xn <

2n

αn

)
≤ exp

(
− n

αn

)
(Okamoto)

W.h.p. 2n/αn of the n strings start with (0βn−1, 1).

They have suffixes (Ξ
(j)
1 ,Ξ

(j)
2 , . . .) drawn ind. from µB(βn)

For all large n we have d2n/αne ≤ n ≤ B(βn).

The Lemma implies the assertion. �



Idea for Theorem 2

Aim: E[Hn] ≥ n/αn for all n ≥ n0.

Xn :=
∣∣∣{1 ≤ j ≤ n :

(
Φ
(j)
1 , . . . ,Φ

(j)
βn

)
= (0, . . . , 0, 1)

}∣∣∣
Xn ∼ B(n, 2−βn).

Note 2−βn ≥ 4/αn.

P
(
Xn <

2n

αn

)
≤ exp

(
− n

αn

)
(Okamoto)

W.h.p. 2n/αn of the n strings start with (0βn−1, 1).

They have suffixes (Ξ
(j)
1 ,Ξ

(j)
2 , . . .) drawn ind. from µB(βn)

For all large n we have d2n/αne ≤ n ≤ B(βn).

The Lemma implies the assertion. �



Idea for Theorem 2

Aim: E[Hn] ≥ n/αn for all n ≥ n0.

Xn :=
∣∣∣{1 ≤ j ≤ n :

(
Φ
(j)
1 , . . . ,Φ

(j)
βn

)
= (0, . . . , 0, 1)

}∣∣∣
Xn ∼ B(n, 2−βn). Note 2−βn ≥ 4/αn.

P
(
Xn <

2n

αn

)
≤ exp

(
− n

αn

)
(Okamoto)

W.h.p. 2n/αn of the n strings start with (0βn−1, 1).

They have suffixes (Ξ
(j)
1 ,Ξ

(j)
2 , . . .) drawn ind. from µB(βn)

For all large n we have d2n/αne ≤ n ≤ B(βn).

The Lemma implies the assertion. �



Idea for Theorem 2

Aim: E[Hn] ≥ n/αn for all n ≥ n0.

Xn :=
∣∣∣{1 ≤ j ≤ n :

(
Φ
(j)
1 , . . . ,Φ

(j)
βn

)
= (0, . . . , 0, 1)

}∣∣∣
Xn ∼ B(n, 2−βn). Note 2−βn ≥ 4/αn.

P
(
Xn <

2n

αn

)
≤ exp

(
− n

αn

)
(Okamoto)

W.h.p. 2n/αn of the n strings start with (0βn−1, 1).

They have suffixes (Ξ
(j)
1 ,Ξ

(j)
2 , . . .) drawn ind. from µB(βn)

For all large n we have d2n/αne ≤ n ≤ B(βn).

The Lemma implies the assertion. �



Idea for Theorem 2

Aim: E[Hn] ≥ n/αn for all n ≥ n0.

Xn :=
∣∣∣{1 ≤ j ≤ n :

(
Φ
(j)
1 , . . . ,Φ

(j)
βn

)
= (0, . . . , 0, 1)

}∣∣∣
Xn ∼ B(n, 2−βn). Note 2−βn ≥ 4/αn.

P
(
Xn <

2n

αn

)
≤ exp

(
− n

αn

)
(Okamoto)

W.h.p. 2n/αn of the n strings start with (0βn−1, 1).

They have suffixes (Ξ
(j)
1 ,Ξ

(j)
2 , . . .) drawn ind. from µB(βn)

For all large n we have d2n/αne ≤ n ≤ B(βn).

The Lemma implies the assertion. �



Idea for Theorem 2

Aim: E[Hn] ≥ n/αn for all n ≥ n0.

Xn :=
∣∣∣{1 ≤ j ≤ n :

(
Φ
(j)
1 , . . . ,Φ

(j)
βn

)
= (0, . . . , 0, 1)

}∣∣∣
Xn ∼ B(n, 2−βn). Note 2−βn ≥ 4/αn.

P
(
Xn <

2n

αn

)
≤ exp

(
− n

αn

)
(Okamoto)

W.h.p. 2n/αn of the n strings start with (0βn−1, 1).

They have suffixes (Ξ
(j)
1 ,Ξ

(j)
2 , . . .) drawn ind. from µB(βn)

For all large n we have d2n/αne ≤ n ≤ B(βn).

The Lemma implies the assertion. �



Idea for Theorem 2

Aim: E[Hn] ≥ n/αn for all n ≥ n0.

Xn :=
∣∣∣{1 ≤ j ≤ n :

(
Φ
(j)
1 , . . . ,Φ

(j)
βn

)
= (0, . . . , 0, 1)

}∣∣∣
Xn ∼ B(n, 2−βn). Note 2−βn ≥ 4/αn.

P
(
Xn <

2n

αn

)
≤ exp

(
− n

αn

)
(Okamoto)

W.h.p. 2n/αn of the n strings start with (0βn−1, 1).

They have suffixes (Ξ
(j)
1 ,Ξ

(j)
2 , . . .) drawn ind. from µB(βn)

For all large n we have d2n/αne ≤ n ≤ B(βn).

The Lemma implies the assertion. �



Idea for Theorem 2

Aim: E[Hn] ≥ n/αn for all n ≥ n0.

Xn :=
∣∣∣{1 ≤ j ≤ n :

(
Φ
(j)
1 , . . . ,Φ

(j)
βn

)
= (0, . . . , 0, 1)

}∣∣∣
Xn ∼ B(n, 2−βn). Note 2−βn ≥ 4/αn.

P
(
Xn <

2n

αn

)
≤ exp

(
− n

αn

)
(Okamoto)

W.h.p. 2n/αn of the n strings start with (0βn−1, 1).

They have suffixes (Ξ
(j)
1 ,Ξ

(j)
2 , . . .) drawn ind. from µB(βn)

For all large n we have d2n/αne ≤ n ≤ B(βn).

The Lemma implies the assertion. �



Almost sure behavior

Consider bad ν with E[Hn] ≥ n/ logαn.

Devroye (2005)

P (Hn ≤ E[Hn]− t) ≤ exp

(
− t2

2n

)
.

This implies

P
(
Hn ≤

n

log2 αn

)
≤ exp

(
− n

2 log4 n

)
Borel–Cantelli Lemma implies

Hn

n/αn
→∞ almost surely.
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Idea for Theorem 1

Ξ = ξ1ξ2ξ3 . . . with L(Ξ) = µ. Claim:

∀ ε > 0∃ k ∈ N∀ v = v1 . . . vk : P(ξ1 . . . ξk = v1 . . . vk) < ε.

Assume

∃ ε > 0∀ k ∈ N∃ v = v1 . . . vk : P(ξ1 . . . ξk = v1 . . . vk) ≥ ε.

By a diagonal argument exists v = v1v2v3 . . . ∈ {0, 1}N:

P(ξ1 . . . ξk = v1 . . . vk) ≥ ε, for all k.

Then, by continuity of measure

P(Ξ = v) = lim
k→∞

P(ξ1 . . . ξk = v1 . . . vk) ≥ ε.

Contradiction to diffuse.
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Idea for Theorem 1

Consider ε ∈ (0, 1/4) and k = k(ε) as above.

Sufficient is

P(∃ n0 ∀ n ≥ n0 : Hn ≤ k + 2εn) = 1.

For v = v1 . . . vk set

Nv := |{1 ≤ j ≤ n : ξ
(j)
1 . . . ξ

(j)
k = v1 . . . vk}|,

En,k :=

{
max

v∈{0,1}k
Nv ≥ 2εn

}
.

Then

{∃ n0 : ∀ n ≥ n0 : Hn ≤ k + 2εn} ⊃ {En,k for finitely many n}

=

(
lim sup
n→∞

En,k

)c

Tail bound for Binomial plus Borel–Cantelli.
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