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Grammar-based compression origins in string (text) compression.

Idea: Compress a string s by a context-free grammar that only produces s
(Storer, Szymansk 1982)

Definition (straight-line program – SLP)

An SLP is a context-free grammar G in Chomsky normal form that derives
a unique word that is denoted by val(G).
▸ For every variable A there is a unique production of the form A→ BC

or A→ a, and

▸ there are no cycles in derivations.

The size of G is the number of variables (= number of productions).

M. Lohrey Grammar-based tree compression June 20, 2024 2 / 26



Example of an SLP

A→ BC , B → CD, C → DE , D → EF , E → b, F → a
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Grammar-based string compression

An SLP G can be seen as a compressed representation of val(G).

Grammar-based compressor = algorithm that computes from a given word
w a hopefully small SLP G with val(G) = w .

Examples: LZ78, BiSection, RePair, Sequitur, ...

Let w ∈ Σ∗ be a word of length n and σ = ∣Σ∣.

Let opt(w) be the size of a smallest SLP for w .

Lower bound: opt(w) ≥ log2 n

Berstel, Brlek 1987

opt(w) ≤ O( n

log
σ
n
) (assuming σ ≥ 2).
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Computing small SLPs

The smallest grammar problem

INPUT: A word w

OUTPUT: An SLP G for w of size opt(w)

Charikar et al. 2002

The smallest grammar problem cannot be solved in polynomial time unless
P = NP.

Even worse: Unless P = NP, there is no polynomial time algorithm that
produces for every word w an SLP of size 8569/8568 ⋅ opt(w).

Charikar et al. 2002, Rytter 2004, Jez 2013

There is a linear time algorithm that produces for every word w of length
n an SLP of size at most O(log(n) ⋅ opt(w)).
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Balancing straight-line program

Ganardi, Jeż, L 2021

From a given SLP G of size n such that w ∶= val(G) has length N, one can
compute in time O(n) an SLP H such that:

▸ val(H) = val(G)
▸ ∣H∣ ∈ O(n)
▸ depth(H) ∈O(logN)
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Balancing straight-line program

Ganardi, Jeż, L 2021

From a given SLP G of size n such that w ∶= val(G) has length N, one can
compute in time O(n) an SLP H such that:

▸ val(H) = val(G)
▸ ∣H∣ ∈ O(n)
▸ depth(H) ∈O(logN)

Corollary: random access in logarithmic time on compressed words.

From a given SLP G one can built in linear time a data structure that
allows to solve for w = val(G) the following problem in time O(log ∣w ∣):
▸ Input: a position i ∈ [1, ∣w ∣]
▸ Output: the i -th symbol of w .

Has been shown by Bille et al. using several complicated data structures.
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Tree compression I: directed acyclic graphs

Fix an alphabet Γ of symbols.
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DAGs and tree grammars

A DAG can be seen as a regular tree grammar:
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DAGs and tree grammars

A DAG can be seen as a regular tree grammar:

▸ The nodes of the DAG are nonterminals of the grammar

▸ Productions are of the form A→ a(A1,A2, . . . ,Ak).

d
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CD

E

A → d(D,B ,C)
B → d(D,D,C ,C)
C → b(E)
D → c

E → a
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Minimal DAGs

Clearly, every tree has a unique minimal DAG: merge nodes in which
isomorphic subtrees are rooted as long as possible.

Downey, Sethi, Tarjan 1980

For a given tree, its minimal DAG can be computed in linear time.
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DAGs and asymptotic combinatorics

Bousquet-Mélou, L, Maneth, Noeth 2015

The average number of nodes of the minimal DAG for a uniformly chosen
tree of size n with k = ∣Γ∣ node labels is

√
ln(4k)
π

⋅
n√
lnn

⋅ (1 + o(1)).

▸ Extends a result of Flajolet, Sipala and Steyaert for binary unlabelled
trees.

▸ Similar results that apply to certain classes of random tree models
were recently shown by Seelbach-Benkner and Wagner.
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Tree compression II: forest straight-line programs

Let’s consider forests = ordered sequences of trees.
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Tree compression II: forest straight-line programs

Let’s consider forests = ordered sequences of trees.

There are two operations for constructing forests:

Horizontal
concatenation:

a b

b c
�

b

c c b
=

a b

b c

b

c c b

Vertical
concatenation:

a

b ∗
�

a

c c

a

c
=

a

b a a

c c c

A (forest) context is a forest, where exactly one leaf is labelled with the
special symbol ∗ ∉ Γ.
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Forest algebra expressions

Forests and forest contexts can be also written as parenthesized
expressions:

▸ A forest : a(b c) b(b(c c a)a) a
▸ A forest context: a(b c) b(b(c c ∗)a) a

Then we have

▸ F �G = F G

▸ F �G = F [∗→ G ]
A forest algebra expression is an expression that is built from the constants

▸ a and a∗ ∶= a(∗) for a ∈ Γ and

▸ the binary operations � and �.

Expressions must be well-typed (F = type of forests, C = type of contexts):
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Forests and forest contexts can be also written as parenthesized
expressions:

▸ A forest : a(b c) b(b(c c a)a) a
▸ A forest context: a(b c) b(b(c c ∗)a) a

Then we have

▸ F �G = F G

▸ F �G = F [∗→ G ]
A forest algebra expression is an expression that is built from the constants

▸ a and a∗ ∶= a(∗) for a ∈ Γ and

▸ the binary operations � and �.

Expressions must be well-typed (F = type of forests, C = type of contexts):

F� F, F� C, C� F, C� F and C� C are allowed.
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Forest straight-line programs

A forest straight-line program (FSLP) is a forest algebra expression that is
represented as a DAG (Gascon, L, Maneth, Reh, Sieber 2018).
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For an FSLP G we denote with val(G) the forest produced by G.
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Forest straight-line programs

▸ Two related formalisms:

▸ tree straight-line programs (Bussato, L, Maneth 2005):
for node-labelled binary trees

▸ top DAGs (Bille, Gørtz, Landau, Weimann 2013):
very similar to FSLPs

▸ A (string) SLP is an FSLP that only uses the constants a for a ∈ Γ
and the operation �.

Such an FSLP produces a forest consisting of a chain of singleton
trees.
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Small FSLPs always exist

Hucke, L, Noeth 2014

There is an algorithm that produces in linear time from a tree (or forest)
of size n with k different node labels an FSLP of size O( n

logk n
).
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Proof idea:

1. Partition the input forest F of size n into Θ(n
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subcontexts of size in [ℓ,2ℓ].
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Small FSLPs always exist

Hucke, L, Noeth 2014

There is an algorithm that produces in linear time from a tree (or forest)
of size n with k different node labels an FSLP of size O( n

logk n
).

Proof idea:

1. Partition the input forest F of size n into Θ(n
ℓ
) many subforests and

subcontexts of size in [ℓ,2ℓ].
2. One can choose ℓ = Θ(logk n) such that the total number of forests

and contexts of size in [ℓ,2ℓ] is O( n

logk n
).

3. The FSLP consists of two parts, both of size O( n

logk n
):

▸ A forest algebra expression for the forest obtained by contracting
the subforests and subcontexts from 1.

▸ A DAG producing the subforests and subcontexts from 1.
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X0 → A� X1

X1 → B � X2

X2 → B � X3

X3 → B � X4

X4 → B � X5

X5 → C � X6

X6 → C � X7

X7 → C � X8

X7 → C � C

A → c∗ � a∗

B → a∗ � b

C → b � c
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Hucke, L, Noeth 2014

There is an algorithm that produces in linear time from a tree (or forest)
of size n with k different node labels an FSLP of size O( n

logk n
).

Related work:

▸ Ganardi, Hucke, L, Seelbach Benkner 2019:
used for universal tree coding

▸ Munro, Nicholson, Seelbach Benkner, Wild 2021:
similar two-step approach; universal tree coding + efficient querying

▸ L, Maneth, Mennicke 2013: TreeRePair; a practical algorithm for
computing small FSLPs
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The smallest grammar problem for trees

L, Jeż 2013

There is a linear time algorithm that produces for every forest F of size n

an FSLP of size O(log(n) ⋅ opt(F )).
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Balancing forest straight-line program

Ganardi, Jeż, L 2021

From a given FSLP G of size n such that F ∶= val(G) has size N, one can
compute in time O(n) an FSLP H such that:

▸ val(H) = val(G)
▸ ∣H∣ ∈ O(n)
▸ depth(H) ∈O(logN)
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Ganardi, Jeż, L 2021

From a given FSLP G of size n such that F ∶= val(G) has size N, one can
compute in time O(n) an FSLP H such that:

▸ val(H) = val(G)
▸ ∣H∣ ∈ O(n)
▸ depth(H) ∈O(logN)

Corollary: random access in logarithmic time on compressed forests.

From a given FSLP G one can built in linear time a data structure that
allows to solve for F = val(G) the following problem in time O(log ∣F ∣):
▸ Input: a preorder number of a node v in F

▸ Output: the label of the node v .
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FSLPs in database theory

Goal: For a given

▸ huge tree (e.g. an XML tree structure) that is stored compressed as
an FSLP and

▸ a query formulated in a suitable query language

we want to enumerate all query results.
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FSLPs in database theory

Goal: For a given

▸ huge tree (e.g. an XML tree structure) that is stored compressed as
an FSLP and

▸ a query formulated in a suitable query language

we want to enumerate all query results.

We assume that queries are formulated in MSO (monadic 2nd order logic):

▸ there are two types of variables:

▸ x , y , z , x ′ etc. for tree nodes

▸ X ,Y ,Z ,Z ′ etc. for sets of tree nodes
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FSLPs in database theory

▸ atomic formulas (x , y are node variables, X is a node set variable):

▸ x = y

▸ x ∈ X ,

▸ label(x) = a for a ∈ Γ

▸ parent(x , y) (x is the parent node of y)

▸ leftsibling(x , y) (x is the left sibling of y)
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▸ atomic formulas (x , y are node variables, X is a node set variable):

▸ x = y

▸ x ∈ X ,

▸ label(x) = a for a ∈ Γ

▸ parent(x , y) (x is the parent node of y)

▸ leftsibling(x , y) (x is the left sibling of y)

▸ larger formulas are constructed from atomic formulas using

▸ boolean operators (¬φ, φ ∧ ψ, φ ∨ ψ) and

▸ quantification (∃x ∶ φ, ∀x ∶ φ, ∃X ∶ φ, ∀X ∶ φ)

Consider now a forest F and an MSO formula φ(X ) where X is the only
free variable X in φ.

Then query(φ(X ),F ) is the sets A ⊆ nodes(F ) such that F ⊧ φ(A).
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FSLPs in database theory

Example: φ = ∃x(label(x) = a ∧ ∀y ∶ y ∈ X ←→ parent(x , y))
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a bc
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Note: query(φ(X ),F ) may have size 2∣F ∣, i.e., size 22
O(∣G∣)

if F is given by
the FSLP G.
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FSLPs in database theory

Example: φ = ∃x(label(x) = a ∧ ∀y ∶ y ∈ X ←→ parent(x , y))
A

a bc

c c b b

d

d d

Note: query(φ(X ),F ) may have size 2∣F ∣, i.e., size 22
O(∣G∣)

if F is given by
the FSLP G.

What does it mean to enumerate efficiently query(φ(X ), val(G))?
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Enumeration problems

▸ An enumeration problem is a function E that maps an input x to a
finite set E(x) = {y1, . . . , yk} of k different objects yi .
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finite set E(x) = {y1, . . . , yk} of k different objects yi .

▸ An enumeration algorithm A for E is an algorithm that prints on
input x sequentially a list yπ(1), yπ(1), . . . , yπ(k) for a permutation π.

▸ A starts with a preprocessing phase finishing at time t0 =∶ Tpre(x).
▸ A works in linear preprocessing time if Tpre(x) ≤ O(∣x ∣).
▸ Assume that printing yπ(i) is completed at time ti (t1 < t2 < ⋯ < tk).

▸ A works in output-linear delay if ti − ti−1 ≤ O(∣yi ∣) for all 1 ≤ i ≤ k .
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FSLPs in database theory

L, Schmid 2024

Fix a query φ(X ). One can enumerate query(φ(X ), val(G)) for a given
FSLP G in

▸ linear preprocessing time and

▸ output-linear delay.
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▸ output-linear delay.
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L, Schmid 2024

Fix a query φ(X ). One can enumerate query(φ(X ), val(G)) for a given
FSLP G in

▸ linear preprocessing time and

▸ output-linear delay.

Previous results:

▸ Bagan 2006, Courcelle 2009: linear preprocessing and output-linear
delay for uncompressed trees

▸ Schmid, Schweikardt 2021: linear preprocessing and logarithmic delay
for compressed strings (and a fragment of MSO)

▸ Muñoz, Riveros 2023: linear preprocessing and output-linear delay for
compressed strings (and a fragment of MSO)
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FSLPs in database theory

Proof strategy: Let Γ be the set node labels of our trees.

1. Translate the MSO-query φ(X ) into a node-selecting tree automaton
A (a tree automaton working on the label set Γ × {0,1}).

2. Reduce enumeration of query(A, val(G)) to the enumeration of
query(B,unfold(G)), where
▸ unfold(G) is the forest algebra expression obtained by unfolding
G and

▸ B is a leaf-selecting tree automaton.

3. Bagan solved the previous enumeration problem for the case where
the tree unfold(G) is given explicitly.

We extend Bagan’s algorithm to DAG-compressed trees.
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