
Grammar-based tree compression:

combinatorics and algorithms

Markus Lohrey

Universität Siegen

June 20, 2024

M. Lohrey Grammar-based tree compression June 20, 2024 1 / 26

What is grammar-based compression?

M. Lohrey Grammar-based tree compression June 20, 2024 2 / 26

What is grammar-based compression?

Grammar-based compression origins in string (text) compression.

M. Lohrey Grammar-based tree compression June 20, 2024 2 / 26

What is grammar-based compression?

Grammar-based compression origins in string (text) compression.

Idea: Compress a string s by a context-free grammar that only produces s
(Storer, Szymansk 1982)

M. Lohrey Grammar-based tree compression June 20, 2024 2 / 26

What is grammar-based compression?

Grammar-based compression origins in string (text) compression.

Idea: Compress a string s by a context-free grammar that only produces s
(Storer, Szymansk 1982)

Definition (straight-line program – SLP)

An SLP is a context-free grammar G in Chomsky normal form that derives
a unique word that is denoted by val(G).

M. Lohrey Grammar-based tree compression June 20, 2024 2 / 26

What is grammar-based compression?

Grammar-based compression origins in string (text) compression.

Idea: Compress a string s by a context-free grammar that only produces s
(Storer, Szymansk 1982)

Definition (straight-line program – SLP)

An SLP is a context-free grammar G in Chomsky normal form that derives
a unique word that is denoted by val(G).
▸ For every variable A there is a unique production of the form A→ BC

or A→ a, and

▸ there are no cycles in derivations.

M. Lohrey Grammar-based tree compression June 20, 2024 2 / 26

What is grammar-based compression?

Grammar-based compression origins in string (text) compression.

Idea: Compress a string s by a context-free grammar that only produces s
(Storer, Szymansk 1982)

Definition (straight-line program – SLP)

An SLP is a context-free grammar G in Chomsky normal form that derives
a unique word that is denoted by val(G).
▸ For every variable A there is a unique production of the form A→ BC

or A→ a, and

▸ there are no cycles in derivations.

The size of G is the number of variables (= number of productions).

M. Lohrey Grammar-based tree compression June 20, 2024 2 / 26

Example of an SLP

A→ BC , B → CD, C → DE , D → EF , E → b, F → a

M. Lohrey Grammar-based tree compression June 20, 2024 3 / 26

Example of an SLP

A→ BC , B → CD, C → DE , D → EF , E → b, F → a

A

M. Lohrey Grammar-based tree compression June 20, 2024 3 / 26

Example of an SLP

A→ BC , B → CD, C → DE , D → EF , E → b, F → a

A

B C

M. Lohrey Grammar-based tree compression June 20, 2024 3 / 26

Example of an SLP

A→ BC , B → CD, C → DE , D → EF , E → b, F → a

A

B C

C D D E

M. Lohrey Grammar-based tree compression June 20, 2024 3 / 26

Example of an SLP

A→ BC , B → CD, C → DE , D → EF , E → b, F → a

A

B C

C D D E

D E E F E F

b

M. Lohrey Grammar-based tree compression June 20, 2024 3 / 26

Example of an SLP

A→ BC , B → CD, C → DE , D → EF , E → b, F → a

A

B C

C D D E

D E E F E F

E F

bb b a b a

M. Lohrey Grammar-based tree compression June 20, 2024 3 / 26

Example of an SLP

A→ BC , B → CD, C → DE , D → EF , E → b, F → a

A

B C

C D D E

D E E F E F

E F

b a bb b a b a

M. Lohrey Grammar-based tree compression June 20, 2024 3 / 26

Example of an SLP

A→ BC , B → CD, C → DE , D → EF , E → b, F → a

A

B C

C D D E

D E E F E F

E F

b a bb b a b a

val(G) = babbabab ∣G∣ = 6

M. Lohrey Grammar-based tree compression June 20, 2024 3 / 26

Example of an SLP

A→ BC , B → CD, C → DE , D → EF , E → b, F → a

A

B C

C D D E

D E E F E F

E F

b a bb b a b a

A

B

C

D

E F

b a

val(G) = babbabab ∣G∣ = 6

M. Lohrey Grammar-based tree compression June 20, 2024 3 / 26

Grammar-based string compression

An SLP G can be seen as a compressed representation of val(G).

M. Lohrey Grammar-based tree compression June 20, 2024 4 / 26

Grammar-based string compression

An SLP G can be seen as a compressed representation of val(G).

Grammar-based compressor = algorithm that computes from a given word
w a hopefully small SLP G with val(G) = w .

M. Lohrey Grammar-based tree compression June 20, 2024 4 / 26

Grammar-based string compression

An SLP G can be seen as a compressed representation of val(G).

Grammar-based compressor = algorithm that computes from a given word
w a hopefully small SLP G with val(G) = w .

Examples: LZ78, BiSection, RePair, Sequitur, ...

M. Lohrey Grammar-based tree compression June 20, 2024 4 / 26

Grammar-based string compression

An SLP G can be seen as a compressed representation of val(G).

Grammar-based compressor = algorithm that computes from a given word
w a hopefully small SLP G with val(G) = w .

Examples: LZ78, BiSection, RePair, Sequitur, ...

Let w ∈ Σ∗ be a word of length n and σ = ∣Σ∣.

M. Lohrey Grammar-based tree compression June 20, 2024 4 / 26

Grammar-based string compression

An SLP G can be seen as a compressed representation of val(G).

Grammar-based compressor = algorithm that computes from a given word
w a hopefully small SLP G with val(G) = w .

Examples: LZ78, BiSection, RePair, Sequitur, ...

Let w ∈ Σ∗ be a word of length n and σ = ∣Σ∣.

Let opt(w) be the size of a smallest SLP for w .

M. Lohrey Grammar-based tree compression June 20, 2024 4 / 26

Grammar-based string compression

An SLP G can be seen as a compressed representation of val(G).

Grammar-based compressor = algorithm that computes from a given word
w a hopefully small SLP G with val(G) = w .

Examples: LZ78, BiSection, RePair, Sequitur, ...

Let w ∈ Σ∗ be a word of length n and σ = ∣Σ∣.

Let opt(w) be the size of a smallest SLP for w .

Lower bound: opt(w) ≥ log2 n

M. Lohrey Grammar-based tree compression June 20, 2024 4 / 26

Grammar-based string compression

An SLP G can be seen as a compressed representation of val(G).

Grammar-based compressor = algorithm that computes from a given word
w a hopefully small SLP G with val(G) = w .

Examples: LZ78, BiSection, RePair, Sequitur, ...

Let w ∈ Σ∗ be a word of length n and σ = ∣Σ∣.

Let opt(w) be the size of a smallest SLP for w .

Lower bound: opt(w) ≥ log2 n

Berstel, Brlek 1987

opt(w) ≤ O(n

log
σ
n
) (assuming σ ≥ 2).

M. Lohrey Grammar-based tree compression June 20, 2024 4 / 26

Computing small SLPs

The smallest grammar problem

INPUT: A word w

OUTPUT: An SLP G for w of size opt(w)

M. Lohrey Grammar-based tree compression June 20, 2024 5 / 26

Computing small SLPs

The smallest grammar problem

INPUT: A word w

OUTPUT: An SLP G for w of size opt(w)

Charikar et al. 2002

The smallest grammar problem cannot be solved in polynomial time unless
P = NP.

M. Lohrey Grammar-based tree compression June 20, 2024 5 / 26

Computing small SLPs

The smallest grammar problem

INPUT: A word w

OUTPUT: An SLP G for w of size opt(w)

Charikar et al. 2002

The smallest grammar problem cannot be solved in polynomial time unless
P = NP.

Even worse: Unless P = NP, there is no polynomial time algorithm that
produces for every word w an SLP of size 8569/8568 ⋅ opt(w).

M. Lohrey Grammar-based tree compression June 20, 2024 5 / 26

Computing small SLPs

The smallest grammar problem

INPUT: A word w

OUTPUT: An SLP G for w of size opt(w)

Charikar et al. 2002

The smallest grammar problem cannot be solved in polynomial time unless
P = NP.

Even worse: Unless P = NP, there is no polynomial time algorithm that
produces for every word w an SLP of size 8569/8568 ⋅ opt(w).

Charikar et al. 2002, Rytter 2004, Jez 2013

There is a linear time algorithm that produces for every word w of length
n an SLP of size at most O(log(n) ⋅ opt(w)).

M. Lohrey Grammar-based tree compression June 20, 2024 5 / 26

Balancing straight-line program

Ganardi, Jeż, L 2021

From a given SLP G of size n such that w ∶= val(G) has length N, one can
compute in time O(n) an SLP H such that:

▸ val(H) = val(G)
▸ ∣H∣ ∈ O(n)
▸ depth(H) ∈O(logN)

M. Lohrey Grammar-based tree compression June 20, 2024 6 / 26

Balancing straight-line program

Ganardi, Jeż, L 2021

From a given SLP G of size n such that w ∶= val(G) has length N, one can
compute in time O(n) an SLP H such that:

▸ val(H) = val(G)
▸ ∣H∣ ∈ O(n)
▸ depth(H) ∈O(logN)

Corollary: random access in logarithmic time on compressed words.

M. Lohrey Grammar-based tree compression June 20, 2024 6 / 26

Balancing straight-line program

Ganardi, Jeż, L 2021

From a given SLP G of size n such that w ∶= val(G) has length N, one can
compute in time O(n) an SLP H such that:

▸ val(H) = val(G)
▸ ∣H∣ ∈ O(n)
▸ depth(H) ∈O(logN)

Corollary: random access in logarithmic time on compressed words.

From a given SLP G one can built in linear time a data structure that
allows to solve for w = val(G) the following problem in time O(log ∣w ∣):
▸ Input: a position i ∈ [1, ∣w ∣]
▸ Output: the i -th symbol of w .

M. Lohrey Grammar-based tree compression June 20, 2024 6 / 26

Balancing straight-line program

Ganardi, Jeż, L 2021

From a given SLP G of size n such that w ∶= val(G) has length N, one can
compute in time O(n) an SLP H such that:

▸ val(H) = val(G)
▸ ∣H∣ ∈ O(n)
▸ depth(H) ∈O(logN)

Corollary: random access in logarithmic time on compressed words.

From a given SLP G one can built in linear time a data structure that
allows to solve for w = val(G) the following problem in time O(log ∣w ∣):
▸ Input: a position i ∈ [1, ∣w ∣]
▸ Output: the i -th symbol of w .

Has been shown by Bille et al. using several complicated data structures.
M. Lohrey Grammar-based tree compression June 20, 2024 6 / 26

Tree compression I: directed acyclic graphs

Fix an alphabet Γ of symbols.

M. Lohrey Grammar-based tree compression June 20, 2024 7 / 26

Tree compression I: directed acyclic graphs

Fix an alphabet Γ of symbols.

We consider rooted trees, where nodes are labelled with symbols from Γ,
and every node has arbitrarily many children that are ordered.

M. Lohrey Grammar-based tree compression June 20, 2024 7 / 26

Tree compression I: directed acyclic graphs

Fix an alphabet Γ of symbols.

We consider rooted trees, where nodes are labelled with symbols from Γ,
and every node has arbitrarily many children that are ordered.

Directed acyclic graphs (DAGs) are the standard way to compress trees.

M. Lohrey Grammar-based tree compression June 20, 2024 7 / 26

Tree compression I: directed acyclic graphs

Fix an alphabet Γ of symbols.

We consider rooted trees, where nodes are labelled with symbols from Γ,
and every node has arbitrarily many children that are ordered.

Directed acyclic graphs (DAGs) are the standard way to compress trees.

d

d bc

c c b b

a

a a

M. Lohrey Grammar-based tree compression June 20, 2024 7 / 26

Tree compression I: directed acyclic graphs

Fix an alphabet Γ of symbols.

We consider rooted trees, where nodes are labelled with symbols from Γ,
and every node has arbitrarily many children that are ordered.

Directed acyclic graphs (DAGs) are the standard way to compress trees.

d

d bc

c c b b

a

a a

→

d

d

bc

a

M. Lohrey Grammar-based tree compression June 20, 2024 7 / 26

DAGs and tree grammars

A DAG can be seen as a regular tree grammar:

M. Lohrey Grammar-based tree compression June 20, 2024 8 / 26

DAGs and tree grammars

A DAG can be seen as a regular tree grammar:

▸ The nodes of the DAG are nonterminals of the grammar

M. Lohrey Grammar-based tree compression June 20, 2024 8 / 26

DAGs and tree grammars

A DAG can be seen as a regular tree grammar:

▸ The nodes of the DAG are nonterminals of the grammar

▸ Productions are of the form A→ a(A1,A2, . . . ,Ak).

M. Lohrey Grammar-based tree compression June 20, 2024 8 / 26

DAGs and tree grammars

A DAG can be seen as a regular tree grammar:

▸ The nodes of the DAG are nonterminals of the grammar

▸ Productions are of the form A→ a(A1,A2, . . . ,Ak).

d

d

bc

a

A

B

CD

E

M. Lohrey Grammar-based tree compression June 20, 2024 8 / 26

DAGs and tree grammars

A DAG can be seen as a regular tree grammar:

▸ The nodes of the DAG are nonterminals of the grammar

▸ Productions are of the form A→ a(A1,A2, . . . ,Ak).

d

d

bc

a

A

B

CD

E

A → d(D,B ,C)
B → d(D,D,C ,C)
C → b(E)
D → c

E → a

M. Lohrey Grammar-based tree compression June 20, 2024 8 / 26

Minimal DAGs

Clearly, every tree has a unique minimal DAG: merge nodes in which
isomorphic subtrees are rooted as long as possible.

Downey, Sethi, Tarjan 1980

For a given tree, its minimal DAG can be computed in linear time.

M. Lohrey Grammar-based tree compression June 20, 2024 9 / 26

DAGs and asymptotic combinatorics

Bousquet-Mélou, L, Maneth, Noeth 2015

The average number of nodes of the minimal DAG for a uniformly chosen
tree of size n with k = ∣Γ∣ node labels is

√
ln(4k)
π

⋅
n√
lnn

⋅ (1 + o(1)).

▸ Extends a result of Flajolet, Sipala and Steyaert for binary unlabelled
trees.

▸ Similar results that apply to certain classes of random tree models
were recently shown by Seelbach-Benkner and Wagner.

M. Lohrey Grammar-based tree compression June 20, 2024 10 / 26

Tree compression II: forest straight-line programs

Let’s consider forests = ordered sequences of trees.

M. Lohrey Grammar-based tree compression June 20, 2024 11 / 26

Tree compression II: forest straight-line programs

Let’s consider forests = ordered sequences of trees.

There are two operations for constructing forests:

M. Lohrey Grammar-based tree compression June 20, 2024 11 / 26

Tree compression II: forest straight-line programs

Let’s consider forests = ordered sequences of trees.

There are two operations for constructing forests:

Horizontal
concatenation:

a b

b c
�

b

c c b
=

a b

b c

b

c c b

M. Lohrey Grammar-based tree compression June 20, 2024 11 / 26

Tree compression II: forest straight-line programs

Let’s consider forests = ordered sequences of trees.

There are two operations for constructing forests:

Horizontal
concatenation:

a b

b c
�

b

c c b
=

a b

b c

b

c c b

Vertical
concatenation:

a

b ∗
�

a

c c

a

c
=

a

b a a

c c c

M. Lohrey Grammar-based tree compression June 20, 2024 11 / 26

Tree compression II: forest straight-line programs

Let’s consider forests = ordered sequences of trees.

There are two operations for constructing forests:

Horizontal
concatenation:

a b

b c
�

b

c c b
=

a b

b c

b

c c b

Vertical
concatenation:

a

b ∗
�

a

c c

a

c
=

a

b a a

c c c

A (forest) context is a forest, where exactly one leaf is labelled with the
special symbol ∗ ∉ Γ.

M. Lohrey Grammar-based tree compression June 20, 2024 11 / 26

Forest algebra expressions

Forests and forest contexts can be also written as parenthesized
expressions:

▸ A forest : a(b c) b(b(c c a)a) a
▸ A forest context: a(b c) b(b(c c ∗)a) a

Then we have

▸ F �G = F G

▸ F �G = F [∗→ G]
A forest algebra expression is an expression that is built from the constants

▸ a and a∗ ∶= a(∗) for a ∈ Γ and

▸ the binary operations � and �.

Expressions must be well-typed (F = type of forests, C = type of contexts):

M. Lohrey Grammar-based tree compression June 20, 2024 12 / 26

Forest algebra expressions

Forests and forest contexts can be also written as parenthesized
expressions:

▸ A forest : a(b c) b(b(c c a)a) a
▸ A forest context: a(b c) b(b(c c ∗)a) a

Then we have

▸ F �G = F G

▸ F �G = F [∗→ G]
A forest algebra expression is an expression that is built from the constants

▸ a and a∗ ∶= a(∗) for a ∈ Γ and

▸ the binary operations � and �.

Expressions must be well-typed (F = type of forests, C = type of contexts):

F� F, F� C, C� F, C� F and C� C are allowed.

M. Lohrey Grammar-based tree compression June 20, 2024 12 / 26

Forest straight-line programs

A forest straight-line program (FSLP) is a forest algebra expression that is
represented as a DAG (Gascon, L, Maneth, Reh, Sieber 2018).

M. Lohrey Grammar-based tree compression June 20, 2024 13 / 26

Forest straight-line programs

A forest straight-line program (FSLP) is a forest algebra expression that is
represented as a DAG (Gascon, L, Maneth, Reh, Sieber 2018).

b c b c b c b c

a b

a b

a b

a b

a

forest F

M. Lohrey Grammar-based tree compression June 20, 2024 13 / 26

Forest straight-line programs

A forest straight-line program (FSLP) is a forest algebra expression that is
represented as a DAG (Gascon, L, Maneth, Reh, Sieber 2018).

b c b c b c b c

a b

a b

a b

a b

a �

�

�

�

�

cb

�

cb

�

�

cb

�

cb

�

�

�

ba∗

�

ba∗

�

�

ba∗

�

ba∗

a∗

forest F forest algebra expression for F

M. Lohrey Grammar-based tree compression June 20, 2024 13 / 26

Forest straight-line programs

A forest straight-line program (FSLP) is a forest algebra expression that is
represented as a DAG (Gascon, L, Maneth, Reh, Sieber 2018).

b c b c b c b c

a b

a b

a b

a b

a �

�

�

�

�

cb

�

cb

�

�

cb

�

cb

�

�

�

ba∗

�

ba∗

�

�

ba∗

�

ba∗

a∗
�

�

� �

� �

� �

a∗ b c

forest F forest algebra expression for F FSLP for F

M. Lohrey Grammar-based tree compression June 20, 2024 13 / 26

Forest straight-line programs

A forest straight-line program (FSLP) is a forest algebra expression that is
represented as a DAG (Gascon, L, Maneth, Reh, Sieber 2018).

b c b c b c b c

a b

a b

a b

a b

a �

�

�

�

�

cb

�

cb

�

�

cb

�

cb

�

�

�

ba∗

�

ba∗

�

�

ba∗

�

ba∗

a∗
�

�

� �

� �

� �

a∗ b c

forest F forest algebra expression for F FSLP for F

For an FSLP G we denote with val(G) the forest produced by G.

M. Lohrey Grammar-based tree compression June 20, 2024 13 / 26

Forest straight-line programs

▸ Two related formalisms:

M. Lohrey Grammar-based tree compression June 20, 2024 14 / 26

Forest straight-line programs

▸ Two related formalisms:

▸ tree straight-line programs (Bussato, L, Maneth 2005):
for node-labelled binary trees

M. Lohrey Grammar-based tree compression June 20, 2024 14 / 26

Forest straight-line programs

▸ Two related formalisms:

▸ tree straight-line programs (Bussato, L, Maneth 2005):
for node-labelled binary trees

▸ top DAGs (Bille, Gørtz, Landau, Weimann 2013):
very similar to FSLPs

▸ A (string) SLP is an FSLP that only uses the constants a for a ∈ Γ
and the operation �.

Such an FSLP produces a forest consisting of a chain of singleton
trees.

M. Lohrey Grammar-based tree compression June 20, 2024 14 / 26

Small FSLPs always exist

Hucke, L, Noeth 2014

There is an algorithm that produces in linear time from a tree (or forest)
of size n with k different node labels an FSLP of size O(n

logk n
).

M. Lohrey Grammar-based tree compression June 20, 2024 15 / 26

Small FSLPs always exist

Hucke, L, Noeth 2014

There is an algorithm that produces in linear time from a tree (or forest)
of size n with k different node labels an FSLP of size O(n

logk n
).

Proof idea:

1. Partition the input forest F of size n into Θ(n
ℓ
) many subforests and

subcontexts of size in [ℓ,2ℓ].

M. Lohrey Grammar-based tree compression June 20, 2024 15 / 26

Small FSLPs always exist

Hucke, L, Noeth 2014

There is an algorithm that produces in linear time from a tree (or forest)
of size n with k different node labels an FSLP of size O(n

logk n
).

Proof idea:

1. Partition the input forest F of size n into Θ(n
ℓ
) many subforests and

subcontexts of size in [ℓ,2ℓ].
2. One can choose ℓ = Θ(logk n) such that the total number of forests

and contexts of size in [ℓ,2ℓ] is O(n

logk n
).

M. Lohrey Grammar-based tree compression June 20, 2024 15 / 26

Small FSLPs always exist

Hucke, L, Noeth 2014

There is an algorithm that produces in linear time from a tree (or forest)
of size n with k different node labels an FSLP of size O(n

logk n
).

Proof idea:

1. Partition the input forest F of size n into Θ(n
ℓ
) many subforests and

subcontexts of size in [ℓ,2ℓ].
2. One can choose ℓ = Θ(logk n) such that the total number of forests

and contexts of size in [ℓ,2ℓ] is O(n

logk n
).

3. The FSLP consists of two parts, both of size O(n

logk n
):

M. Lohrey Grammar-based tree compression June 20, 2024 15 / 26

Small FSLPs always exist

Hucke, L, Noeth 2014

There is an algorithm that produces in linear time from a tree (or forest)
of size n with k different node labels an FSLP of size O(n

logk n
).

Proof idea:

1. Partition the input forest F of size n into Θ(n
ℓ
) many subforests and

subcontexts of size in [ℓ,2ℓ].
2. One can choose ℓ = Θ(logk n) such that the total number of forests

and contexts of size in [ℓ,2ℓ] is O(n

logk n
).

3. The FSLP consists of two parts, both of size O(n

logk n
):

▸ A forest algebra expression for the forest obtained by contracting
the subforests and subcontexts from 1.

M. Lohrey Grammar-based tree compression June 20, 2024 15 / 26

Small FSLPs always exist

Hucke, L, Noeth 2014

There is an algorithm that produces in linear time from a tree (or forest)
of size n with k different node labels an FSLP of size O(n

logk n
).

Proof idea:

1. Partition the input forest F of size n into Θ(n
ℓ
) many subforests and

subcontexts of size in [ℓ,2ℓ].
2. One can choose ℓ = Θ(logk n) such that the total number of forests

and contexts of size in [ℓ,2ℓ] is O(n

logk n
).

3. The FSLP consists of two parts, both of size O(n

logk n
):

▸ A forest algebra expression for the forest obtained by contracting
the subforests and subcontexts from 1.

▸ A DAG producing the subforests and subcontexts from 1.
M. Lohrey Grammar-based tree compression June 20, 2024 15 / 26

Small FSLPs always exist

b c b c b c b c

a b

a b

a b

a b

a

c

M. Lohrey Grammar-based tree compression June 20, 2024 16 / 26

Small FSLPs always exist

b c b c b c b c

a b

a b

a b

a b

a

c

M. Lohrey Grammar-based tree compression June 20, 2024 16 / 26

Small FSLPs always exist

b c b c b c b c

a b

a b

a b

a b

a

c

C C C C

B

B

B

B

A

A → c∗ � a∗

B → a∗ � b

C → b � c

M. Lohrey Grammar-based tree compression June 20, 2024 16 / 26

Small FSLPs always exist

b c b c b c b c

a b

a b

a b

a b

a

c

X0 → A� X1

X1 → B � X2

X2 → B � X3

X3 → B � X4

X4 → B � X5

X5 → C � X6

X6 → C � X7

X7 → C � X8

X7 → C � C

A → c∗ � a∗

B → a∗ � b

C → b � c

M. Lohrey Grammar-based tree compression June 20, 2024 16 / 26

Small FSLPs always exist

Hucke, L, Noeth 2014

There is an algorithm that produces in linear time from a tree (or forest)
of size n with k different node labels an FSLP of size O(n

logk n
).

M. Lohrey Grammar-based tree compression June 20, 2024 17 / 26

Small FSLPs always exist

Hucke, L, Noeth 2014

There is an algorithm that produces in linear time from a tree (or forest)
of size n with k different node labels an FSLP of size O(n

logk n
).

Related work:

▸ Ganardi, Hucke, L, Seelbach Benkner 2019:
used for universal tree coding

M. Lohrey Grammar-based tree compression June 20, 2024 17 / 26

Small FSLPs always exist

Hucke, L, Noeth 2014

There is an algorithm that produces in linear time from a tree (or forest)
of size n with k different node labels an FSLP of size O(n

logk n
).

Related work:

▸ Ganardi, Hucke, L, Seelbach Benkner 2019:
used for universal tree coding

▸ Munro, Nicholson, Seelbach Benkner, Wild 2021:
similar two-step approach; universal tree coding + efficient querying

M. Lohrey Grammar-based tree compression June 20, 2024 17 / 26

Small FSLPs always exist

Hucke, L, Noeth 2014

There is an algorithm that produces in linear time from a tree (or forest)
of size n with k different node labels an FSLP of size O(n

logk n
).

Related work:

▸ Ganardi, Hucke, L, Seelbach Benkner 2019:
used for universal tree coding

▸ Munro, Nicholson, Seelbach Benkner, Wild 2021:
similar two-step approach; universal tree coding + efficient querying

▸ L, Maneth, Mennicke 2013: TreeRePair; a practical algorithm for
computing small FSLPs

M. Lohrey Grammar-based tree compression June 20, 2024 17 / 26

The smallest grammar problem for trees

L, Jeż 2013

There is a linear time algorithm that produces for every forest F of size n

an FSLP of size O(log(n) ⋅ opt(F)).

M. Lohrey Grammar-based tree compression June 20, 2024 18 / 26

Balancing forest straight-line program

Ganardi, Jeż, L 2021

From a given FSLP G of size n such that F ∶= val(G) has size N, one can
compute in time O(n) an FSLP H such that:

▸ val(H) = val(G)
▸ ∣H∣ ∈ O(n)
▸ depth(H) ∈O(logN)

M. Lohrey Grammar-based tree compression June 20, 2024 19 / 26

Balancing forest straight-line program

Ganardi, Jeż, L 2021

From a given FSLP G of size n such that F ∶= val(G) has size N, one can
compute in time O(n) an FSLP H such that:

▸ val(H) = val(G)
▸ ∣H∣ ∈ O(n)
▸ depth(H) ∈O(logN)

Corollary: random access in logarithmic time on compressed forests.

M. Lohrey Grammar-based tree compression June 20, 2024 19 / 26

Balancing forest straight-line program

Ganardi, Jeż, L 2021

From a given FSLP G of size n such that F ∶= val(G) has size N, one can
compute in time O(n) an FSLP H such that:

▸ val(H) = val(G)
▸ ∣H∣ ∈ O(n)
▸ depth(H) ∈O(logN)

Corollary: random access in logarithmic time on compressed forests.

From a given FSLP G one can built in linear time a data structure that
allows to solve for F = val(G) the following problem in time O(log ∣F ∣):
▸ Input: a preorder number of a node v in F

▸ Output: the label of the node v .

M. Lohrey Grammar-based tree compression June 20, 2024 19 / 26

FSLPs in database theory

Goal: For a given

▸ huge tree (e.g. an XML tree structure) that is stored compressed as
an FSLP and

▸ a query formulated in a suitable query language

we want to enumerate all query results.

M. Lohrey Grammar-based tree compression June 20, 2024 20 / 26

FSLPs in database theory

Goal: For a given

▸ huge tree (e.g. an XML tree structure) that is stored compressed as
an FSLP and

▸ a query formulated in a suitable query language

we want to enumerate all query results.

We assume that queries are formulated in MSO (monadic 2nd order logic):

M. Lohrey Grammar-based tree compression June 20, 2024 20 / 26

FSLPs in database theory

Goal: For a given

▸ huge tree (e.g. an XML tree structure) that is stored compressed as
an FSLP and

▸ a query formulated in a suitable query language

we want to enumerate all query results.

We assume that queries are formulated in MSO (monadic 2nd order logic):

▸ there are two types of variables:

▸ x , y , z , x ′ etc. for tree nodes

▸ X ,Y ,Z ,Z ′ etc. for sets of tree nodes

M. Lohrey Grammar-based tree compression June 20, 2024 20 / 26

FSLPs in database theory

▸ atomic formulas (x , y are node variables, X is a node set variable):

▸ x = y

▸ x ∈ X ,

▸ label(x) = a for a ∈ Γ

▸ parent(x , y) (x is the parent node of y)

▸ leftsibling(x , y) (x is the left sibling of y)

M. Lohrey Grammar-based tree compression June 20, 2024 21 / 26

FSLPs in database theory

▸ atomic formulas (x , y are node variables, X is a node set variable):

▸ x = y

▸ x ∈ X ,

▸ label(x) = a for a ∈ Γ

▸ parent(x , y) (x is the parent node of y)

▸ leftsibling(x , y) (x is the left sibling of y)

▸ larger formulas are constructed from atomic formulas using

▸ boolean operators (¬φ, φ ∧ ψ, φ ∨ ψ) and

▸ quantification (∃x ∶ φ, ∀x ∶ φ, ∃X ∶ φ, ∀X ∶ φ)

M. Lohrey Grammar-based tree compression June 20, 2024 21 / 26

FSLPs in database theory

▸ atomic formulas (x , y are node variables, X is a node set variable):

▸ x = y

▸ x ∈ X ,

▸ label(x) = a for a ∈ Γ

▸ parent(x , y) (x is the parent node of y)

▸ leftsibling(x , y) (x is the left sibling of y)

▸ larger formulas are constructed from atomic formulas using

▸ boolean operators (¬φ, φ ∧ ψ, φ ∨ ψ) and

▸ quantification (∃x ∶ φ, ∀x ∶ φ, ∃X ∶ φ, ∀X ∶ φ)

Consider now a forest F and an MSO formula φ(X) where X is the only
free variable X in φ.

M. Lohrey Grammar-based tree compression June 20, 2024 21 / 26

FSLPs in database theory

▸ atomic formulas (x , y are node variables, X is a node set variable):

▸ x = y

▸ x ∈ X ,

▸ label(x) = a for a ∈ Γ

▸ parent(x , y) (x is the parent node of y)

▸ leftsibling(x , y) (x is the left sibling of y)

▸ larger formulas are constructed from atomic formulas using

▸ boolean operators (¬φ, φ ∧ ψ, φ ∨ ψ) and

▸ quantification (∃x ∶ φ, ∀x ∶ φ, ∃X ∶ φ, ∀X ∶ φ)

Consider now a forest F and an MSO formula φ(X) where X is the only
free variable X in φ.

Then query(φ(X),F) is the sets A ⊆ nodes(F) such that F ⊧ φ(A).
M. Lohrey Grammar-based tree compression June 20, 2024 21 / 26

FSLPs in database theory

Example: φ = ∃x(label(x) = a ∧ ∀y ∶ y ∈ X ←→ parent(x , y))

M. Lohrey Grammar-based tree compression June 20, 2024 22 / 26

FSLPs in database theory

Example: φ = ∃x(label(x) = a ∧ ∀y ∶ y ∈ X ←→ parent(x , y))
A

a bc

c c b b

d

d d

M. Lohrey Grammar-based tree compression June 20, 2024 22 / 26

FSLPs in database theory

Example: φ = ∃x(label(x) = a ∧ ∀y ∶ y ∈ X ←→ parent(x , y))
A

a bc

c c b b

d

d d

Note: query(φ(X),F) may have size 2∣F ∣, i.e., size 22
O(∣G∣)

if F is given by
the FSLP G.

M. Lohrey Grammar-based tree compression June 20, 2024 22 / 26

FSLPs in database theory

Example: φ = ∃x(label(x) = a ∧ ∀y ∶ y ∈ X ←→ parent(x , y))
A

a bc

c c b b

d

d d

Note: query(φ(X),F) may have size 2∣F ∣, i.e., size 22
O(∣G∣)

if F is given by
the FSLP G.

What does it mean to enumerate efficiently query(φ(X), val(G))?

M. Lohrey Grammar-based tree compression June 20, 2024 22 / 26

Enumeration problems

▸ An enumeration problem is a function E that maps an input x to a
finite set E(x) = {y1, . . . , yk} of k different objects yi .

M. Lohrey Grammar-based tree compression June 20, 2024 23 / 26

Enumeration problems

▸ An enumeration problem is a function E that maps an input x to a
finite set E(x) = {y1, . . . , yk} of k different objects yi .

▸ An enumeration algorithm A for E is an algorithm that prints on
input x sequentially a list yπ(1), yπ(1), . . . , yπ(k) for a permutation π.

M. Lohrey Grammar-based tree compression June 20, 2024 23 / 26

Enumeration problems

▸ An enumeration problem is a function E that maps an input x to a
finite set E(x) = {y1, . . . , yk} of k different objects yi .

▸ An enumeration algorithm A for E is an algorithm that prints on
input x sequentially a list yπ(1), yπ(1), . . . , yπ(k) for a permutation π.

▸ A starts with a preprocessing phase finishing at time t0 =∶ Tpre(x).

M. Lohrey Grammar-based tree compression June 20, 2024 23 / 26

Enumeration problems

▸ An enumeration problem is a function E that maps an input x to a
finite set E(x) = {y1, . . . , yk} of k different objects yi .

▸ An enumeration algorithm A for E is an algorithm that prints on
input x sequentially a list yπ(1), yπ(1), . . . , yπ(k) for a permutation π.

▸ A starts with a preprocessing phase finishing at time t0 =∶ Tpre(x).
▸ A works in linear preprocessing time if Tpre(x) ≤ O(∣x ∣).

M. Lohrey Grammar-based tree compression June 20, 2024 23 / 26

Enumeration problems

▸ An enumeration problem is a function E that maps an input x to a
finite set E(x) = {y1, . . . , yk} of k different objects yi .

▸ An enumeration algorithm A for E is an algorithm that prints on
input x sequentially a list yπ(1), yπ(1), . . . , yπ(k) for a permutation π.

▸ A starts with a preprocessing phase finishing at time t0 =∶ Tpre(x).
▸ A works in linear preprocessing time if Tpre(x) ≤ O(∣x ∣).
▸ Assume that printing yπ(i) is completed at time ti (t1 < t2 < ⋯ < tk).

M. Lohrey Grammar-based tree compression June 20, 2024 23 / 26

Enumeration problems

▸ An enumeration problem is a function E that maps an input x to a
finite set E(x) = {y1, . . . , yk} of k different objects yi .

▸ An enumeration algorithm A for E is an algorithm that prints on
input x sequentially a list yπ(1), yπ(1), . . . , yπ(k) for a permutation π.

▸ A starts with a preprocessing phase finishing at time t0 =∶ Tpre(x).
▸ A works in linear preprocessing time if Tpre(x) ≤ O(∣x ∣).
▸ Assume that printing yπ(i) is completed at time ti (t1 < t2 < ⋯ < tk).

▸ A works in output-linear delay if ti − ti−1 ≤ O(∣yi ∣) for all 1 ≤ i ≤ k .

M. Lohrey Grammar-based tree compression June 20, 2024 23 / 26

FSLPs in database theory

L, Schmid 2024

Fix a query φ(X). One can enumerate query(φ(X), val(G)) for a given
FSLP G in

▸ linear preprocessing time and

▸ output-linear delay.

M. Lohrey Grammar-based tree compression June 20, 2024 24 / 26

FSLPs in database theory

L, Schmid 2024

Fix a query φ(X). One can enumerate query(φ(X), val(G)) for a given
FSLP G in

▸ linear preprocessing time and

▸ output-linear delay.

Previous results:

▸ Bagan 2006, Courcelle 2009: linear preprocessing and output-linear
delay for uncompressed trees

M. Lohrey Grammar-based tree compression June 20, 2024 24 / 26

FSLPs in database theory

L, Schmid 2024

Fix a query φ(X). One can enumerate query(φ(X), val(G)) for a given
FSLP G in

▸ linear preprocessing time and

▸ output-linear delay.

Previous results:

▸ Bagan 2006, Courcelle 2009: linear preprocessing and output-linear
delay for uncompressed trees

▸ Schmid, Schweikardt 2021: linear preprocessing and logarithmic delay
for compressed strings (and a fragment of MSO)

M. Lohrey Grammar-based tree compression June 20, 2024 24 / 26

FSLPs in database theory

L, Schmid 2024

Fix a query φ(X). One can enumerate query(φ(X), val(G)) for a given
FSLP G in

▸ linear preprocessing time and

▸ output-linear delay.

Previous results:

▸ Bagan 2006, Courcelle 2009: linear preprocessing and output-linear
delay for uncompressed trees

▸ Schmid, Schweikardt 2021: linear preprocessing and logarithmic delay
for compressed strings (and a fragment of MSO)

▸ Muñoz, Riveros 2023: linear preprocessing and output-linear delay for
compressed strings (and a fragment of MSO)

M. Lohrey Grammar-based tree compression June 20, 2024 24 / 26

FSLPs in database theory

Proof strategy: Let Γ be the set node labels of our trees.

1. Translate the MSO-query φ(X) into a node-selecting tree automaton
A (a tree automaton working on the label set Γ × {0,1}).

2. Reduce enumeration of query(A, val(G)) to the enumeration of
query(B,unfold(G)), where
▸ unfold(G) is the forest algebra expression obtained by unfolding
G and

▸ B is a leaf-selecting tree automaton.

3. Bagan solved the previous enumeration problem for the case where
the tree unfold(G) is given explicitly.

We extend Bagan’s algorithm to DAG-compressed trees.

M. Lohrey Grammar-based tree compression June 20, 2024 25 / 26

Grammar-based
Compression

String Data

Structures

Algorithmic

Verification

Complexity

Theory

Word

Equations

Algorithmic

Group

Theory

Information

Theory

compressed indices

dynamic string collections

recursive programs

hierarchical models

bisimulation checking

interprocedural analysis

leaf languages

noncommutative identity
testing

compressed word problem

automorphism groups

data compression

universal coding

compressible solutions

recompression

M. Lohrey Grammar-based tree compression June 20, 2024 26 / 26

