Grammar-based tree compression: combinatorics and algorithms

Markus Lohrey

Universität Siegen

June 20, 2024

Grammar-based compression origins in string (text) compression.

Grammar-based compression origins in string (text) compression.

Idea: Compress a string *s* by a context-free grammar that only produces *s* (Storer, Szymansk 1982)

Grammar-based compression origins in string (text) compression.

Idea: Compress a string s by a context-free grammar that only produces s (Storer, Szymansk 1982)

Definition (straight-line program – SLP)

An SLP is a context-free grammar \mathcal{G} in Chomsky normal form that derives a unique word that is denoted by val(\mathcal{G}).

Grammar-based compression origins in string (text) compression.

Idea: Compress a string s by a context-free grammar that only produces s (Storer, Szymansk 1982)

Definition (straight-line program – SLP)

An SLP is a context-free grammar \mathcal{G} in Chomsky normal form that derives a unique word that is denoted by val(\mathcal{G}).

- For every variable A there is a unique production of the form A → BC or A → a, and
- there are no cycles in derivations.

Grammar-based compression origins in string (text) compression.

Idea: Compress a string s by a context-free grammar that only produces s (Storer, Szymansk 1982)

Definition (straight-line program – SLP)

An SLP is a context-free grammar \mathcal{G} in Chomsky normal form that derives a unique word that is denoted by val(\mathcal{G}).

- For every variable A there is a unique production of the form A → BC or A → a, and
- there are no cycles in derivations.

The size of \mathcal{G} is the number of variables (= number of productions).

 $A \rightarrow BC, B \rightarrow CD, C \rightarrow DE, D \rightarrow EF, E \rightarrow b, F \rightarrow a$

Grammar-based tree compression

 $A \rightarrow BC, B \rightarrow CD, C \rightarrow DE, D \rightarrow EF, E \rightarrow b, F \rightarrow a$

Grammar-based tree compression

An SLP \mathcal{G} can be seen as a compressed representation of val (\mathcal{G}) .

An SLP \mathcal{G} can be seen as a compressed representation of val (\mathcal{G}) .

Grammar-based compressor = algorithm that computes from a given word w a hopefully small SLP \mathcal{G} with val $(\mathcal{G}) = w$.

An SLP \mathcal{G} can be seen as a compressed representation of val (\mathcal{G}) .

Grammar-based compressor = algorithm that computes from a given word w a hopefully small SLP \mathcal{G} with val $(\mathcal{G}) = w$.

Examples: LZ78, BiSection, RePair, Sequitur, ...

An SLP \mathcal{G} can be seen as a compressed representation of val (\mathcal{G}) .

Grammar-based compressor = algorithm that computes from a given word w a hopefully small SLP \mathcal{G} with val $(\mathcal{G}) = w$.

Examples: LZ78, BiSection, RePair, Sequitur, ...

Let $w \in \Sigma^*$ be a word of length *n* and $\sigma = |\Sigma|$.

An SLP \mathcal{G} can be seen as a compressed representation of val (\mathcal{G}) .

Grammar-based compressor = algorithm that computes from a given word w a hopefully small SLP \mathcal{G} with val $(\mathcal{G}) = w$.

Examples: LZ78, BiSection, RePair, Sequitur, ...

Let $w \in \Sigma^*$ be a word of length *n* and $\sigma = |\Sigma|$.

Let opt(w) be the size of a smallest SLP for w.

An SLP \mathcal{G} can be seen as a compressed representation of val (\mathcal{G}) .

Grammar-based compressor = algorithm that computes from a given word w a hopefully small SLP \mathcal{G} with val $(\mathcal{G}) = w$.

Examples: LZ78, BiSection, RePair, Sequitur, ...

Let $w \in \Sigma^*$ be a word of length *n* and $\sigma = |\Sigma|$.

Let opt(w) be the size of a smallest SLP for w.

Lower bound: $opt(w) \ge \log_2 n$

An SLP \mathcal{G} can be seen as a compressed representation of val (\mathcal{G}) .

Grammar-based compressor = algorithm that computes from a given word w a hopefully small SLP \mathcal{G} with val $(\mathcal{G}) = w$.

Examples: LZ78, BiSection, RePair, Sequitur, ...

Let $w \in \Sigma^*$ be a word of length *n* and $\sigma = |\Sigma|$.

Let opt(w) be the size of a smallest SLP for w.

Lower bound: $opt(w) \ge \log_2 n$

Berstel, Brlek 1987

 $opt(w) \leq O(\frac{n}{\log_{\sigma} n})$ (assuming $\sigma \geq 2$).

The smallest grammar problem

INPUT: A word wOUTPUT: An SLP G for w of size opt(w)

The smallest grammar problem

INPUT: A word w

OUTPUT: An SLP \mathcal{G} for w of size opt(w)

Charikar et al. 2002

The smallest grammar problem cannot be solved in polynomial time unless P = NP.

The smallest grammar problem

INPUT: A word w

OUTPUT: An SLP \mathcal{G} for w of size opt(w)

Charikar et al. 2002

The smallest grammar problem cannot be solved in polynomial time unless P = NP.

Even worse: Unless P = NP, there is no polynomial time algorithm that produces for every word w an SLP of size $8569/8568 \cdot opt(w)$.

The smallest grammar problem

INPUT: A word w

OUTPUT: An SLP \mathcal{G} for w of size opt(w)

Charikar et al. 2002

The smallest grammar problem cannot be solved in polynomial time unless P = NP.

Even worse: Unless P = NP, there is no polynomial time algorithm that produces for every word w an SLP of size $8569/8568 \cdot opt(w)$.

Charikar et al. 2002, Rytter 2004, Jez 2013

There is a linear time algorithm that produces for every word w of length n an SLP of size at most $\mathcal{O}(\log(n) \cdot \operatorname{opt}(w))$.

Ganardi, Jeż, L 2021

From a given SLP \mathcal{G} of size *n* such that $w \coloneqq val(\mathcal{G})$ has length *N*, one can compute in time $\mathcal{O}(n)$ an SLP \mathcal{H} such that:

- $val(\mathcal{H}) = val(\mathcal{G})$
- $\blacktriangleright |\mathcal{H}| \in \mathcal{O}(n)$
- depth(\mathcal{H}) $\in \mathcal{O}(\log N)$

Ganardi, Jeż, L 2021

From a given SLP \mathcal{G} of size *n* such that $w \coloneqq val(\mathcal{G})$ has length *N*, one can compute in time $\mathcal{O}(n)$ an SLP \mathcal{H} such that:

- $val(\mathcal{H}) = val(\mathcal{G})$
- $\bullet |\mathcal{H}| \in \mathcal{O}(n)$
- depth(\mathcal{H}) $\in \mathcal{O}(\log N)$

Corollary: random access in logarithmic time on compressed words.

Ganardi, Jeż, L 2021

From a given SLP \mathcal{G} of size *n* such that $w \coloneqq val(\mathcal{G})$ has length *N*, one can compute in time $\mathcal{O}(n)$ an SLP \mathcal{H} such that:

- $val(\mathcal{H}) = val(\mathcal{G})$
- $\blacktriangleright |\mathcal{H}| \in \mathcal{O}(n)$
- depth(\mathcal{H}) $\in \mathcal{O}(\log N)$

Corollary: random access in logarithmic time on compressed words.

From a given SLP \mathcal{G} one can built in linear time a data structure that allows to solve for $w = val(\mathcal{G})$ the following problem in time $\mathcal{O}(\log |w|)$:

- Input: a position $i \in [1, |w|]$
- Output: the *i*-th symbol of *w*.

Ganardi, Jeż, L 2021

From a given SLP \mathcal{G} of size *n* such that $w \coloneqq val(\mathcal{G})$ has length *N*, one can compute in time $\mathcal{O}(n)$ an SLP \mathcal{H} such that:

- $val(\mathcal{H}) = val(\mathcal{G})$
- $\blacktriangleright |\mathcal{H}| \in \mathcal{O}(n)$
- depth(\mathcal{H}) $\in \mathcal{O}(\log N)$

Corollary: random access in logarithmic time on compressed words.

From a given SLP \mathcal{G} one can built in linear time a data structure that allows to solve for $w = val(\mathcal{G})$ the following problem in time $\mathcal{O}(\log |w|)$:

- Input: a position $i \in [1, |w|]$
- Output: the *i*-th symbol of *w*.

Has been shown by Bille et al. using several complicated data structures.

M. Lohrey

Fix an alphabet Γ of symbols.

Fix an alphabet Γ of symbols.

We consider rooted trees, where nodes are labelled with symbols from Γ , and every node has arbitrarily many children that are ordered.

Fix an alphabet Γ of symbols.

We consider rooted trees, where nodes are labelled with symbols from Γ , and every node has arbitrarily many children that are ordered.

Directed acyclic graphs (DAGs) are the standard way to compress trees.

Fix an alphabet Γ of symbols.

We consider rooted trees, where nodes are labelled with symbols from Γ , and every node has arbitrarily many children that are ordered.

Directed acyclic graphs (DAGs) are the standard way to compress trees.

Fix an alphabet Γ of symbols.

We consider rooted trees, where nodes are labelled with symbols from Γ , and every node has arbitrarily many children that are ordered.

Directed acyclic graphs (DAGs) are the standard way to compress trees.

A DAG can be seen as a regular tree grammar:

The nodes of the DAG are nonterminals of the grammar

- The nodes of the DAG are nonterminals of the grammar
- Productions are of the form $A \rightarrow a(A_1, A_2, \dots, A_k)$.

- The nodes of the DAG are nonterminals of the grammar
- Productions are of the form $A \rightarrow a(A_1, A_2, \dots, A_k)$.

- The nodes of the DAG are nonterminals of the grammar
- Productions are of the form $A \rightarrow a(A_1, A_2, \dots, A_k)$.

$$\begin{array}{rcl} A & \rightarrow & d(D,B,C) \\ B & \rightarrow & d(D,D,C,C) \\ C & \rightarrow & b(E) \\ D & \rightarrow & c \\ F & \rightarrow & a \end{array}$$

Clearly, every tree has a unique minimal DAG: merge nodes in which isomorphic subtrees are rooted as long as possible.

Downey, Sethi, Tarjan 1980

For a given tree, its minimal DAG can be computed in linear time.

DAGs and asymptotic combinatorics

Bousquet-Mélou, L, Maneth, Noeth 2015

The average number of nodes of the minimal DAG for a uniformly chosen tree of size *n* with $k = |\Gamma|$ node labels is

$$\sqrt{\frac{\ln(4k)}{\pi}} \cdot \frac{n}{\sqrt{\ln n}} \cdot (1 + o(1)).$$

- Extends a result of Flajolet, Sipala and Steyaert for binary unlabelled trees.
- Similar results that apply to certain classes of random tree models were recently shown by Seelbach-Benkner and Wagner.

Let's consider forests = ordered sequences of trees.

Let's consider forests = ordered sequences of trees.

There are two operations for constructing forests:

Let's consider forests = ordered sequences of trees.

There are two operations for constructing forests:

Let's consider forests = ordered sequences of trees.

There are two operations for constructing forests:

Let's consider forests = ordered sequences of trees.

There are two operations for constructing forests:

A (forest) context is a forest, where exactly one leaf is labelled with the special symbol $* \notin \Gamma$.

Forest algebra expressions

Forests and forest contexts can be also written as parenthesized expressions:

- A forest : a(bc) b(b(cca)a) a
- A forest context: a(bc) b(b(cc*)a) a

Then we have

- $\blacktriangleright F \ominus G = F G$
- $F \oplus G = F[* \to G]$

A forest algebra expression is an expression that is built from the constants

- a and $a_* := a(*)$ for $a \in \Gamma$ and
- the binary operations \ominus and \oplus .

Expressions must be well-typed (F = type of forests, C = type of contexts):

Forest algebra expressions

Forests and forest contexts can be also written as parenthesized expressions:

- A forest : a(bc) b(b(cca)a) a
- A forest context: a(bc) b(b(cc*)a) a

Then we have

- $\blacktriangleright F \ominus G = F G$
- $F \oplus G = F[* \to G]$

A forest algebra expression is an expression that is built from the constants

- a and $a_* := a(*)$ for $a \in \Gamma$ and
- the binary operations \ominus and \oplus .

Expressions must be well-typed (F = type of forests, C = type of contexts): $F \ominus F$, $F \ominus C$, $C \ominus F$, $C \oplus F$ and $C \oplus C$ are allowed.

A forest straight-line program (FSLP) is a forest algebra expression that is represented as a DAG (Gascon, L, Maneth, Reh, Sieber 2018).

A forest straight-line program (FSLP) is a forest algebra expression that is represented as a DAG (Gascon, L, Maneth, Reh, Sieber 2018).

forest F

A forest straight-line program (FSLP) is a forest algebra expression that is represented as a DAG (Gascon, L, Maneth, Reh, Sieber 2018).

forest *F* forest algebra expression for *F*

A forest straight-line program (FSLP) is a forest algebra expression that is represented as a DAG (Gascon, L, Maneth, Reh, Sieber 2018).

A forest straight-line program (FSLP) is a forest algebra expression that is represented as a DAG (Gascon, L, Maneth, Reh, Sieber 2018).

For an FSLP \mathcal{G} we denote with val(\mathcal{G}) the forest produced by \mathcal{G} .

M. Lohrey

Grammar-based tree compression

Two related formalisms:

- Two related formalisms:
 - tree straight-line programs (Bussato, L, Maneth 2005): for node-labelled binary trees

- Two related formalisms:
 - tree straight-line programs (Bussato, L, Maneth 2005): for node-labelled binary trees
 - top DAGs (Bille, Gørtz, Landau, Weimann 2013): very similar to FSLPs
- A (string) SLP is an FSLP that only uses the constants a for a ∈ Γ and the operation ⊖.

Such an FSLP produces a forest consisting of a chain of singleton trees.

Hucke, L, Noeth 2014

There is an algorithm that produces in linear time from a tree (or forest) of size *n* with *k* different node labels an FSLP of size $O(\frac{n}{\log_k n})$.

Hucke, L, Noeth 2014

There is an algorithm that produces in linear time from a tree (or forest) of size *n* with *k* different node labels an FSLP of size $O(\frac{n}{\log_k n})$.

Proof idea:

1. Partition the input forest F of size n into $\Theta(\frac{n}{\ell})$ many subforests and subcontexts of size in $[\ell, 2\ell]$.

Hucke, L, Noeth 2014

There is an algorithm that produces in linear time from a tree (or forest) of size *n* with *k* different node labels an FSLP of size $O(\frac{n}{\log_k n})$.

Proof idea:

- 1. Partition the input forest F of size n into $\Theta(\frac{n}{\ell})$ many subforests and subcontexts of size in $[\ell, 2\ell]$.
- 2. One can choose $\ell = \Theta(\log_k n)$ such that the total number of forests and contexts of size in $[\ell, 2\ell]$ is $\mathcal{O}(\frac{n}{\log_k n})$.

Hucke, L, Noeth 2014

There is an algorithm that produces in linear time from a tree (or forest) of size *n* with *k* different node labels an FSLP of size $O(\frac{n}{\log_k n})$.

Proof idea:

- 1. Partition the input forest F of size n into $\Theta(\frac{n}{\ell})$ many subforests and subcontexts of size in $[\ell, 2\ell]$.
- 2. One can choose $\ell = \Theta(\log_k n)$ such that the total number of forests and contexts of size in $[\ell, 2\ell]$ is $\mathcal{O}(\frac{n}{\log_k n})$.
- 3. The FSLP consists of two parts, both of size $\mathcal{O}(\frac{n}{\log_k n})$:

Hucke, L, Noeth 2014

There is an algorithm that produces in linear time from a tree (or forest) of size *n* with *k* different node labels an FSLP of size $O(\frac{n}{\log_k n})$.

Proof idea:

- 1. Partition the input forest F of size n into $\Theta(\frac{n}{\ell})$ many subforests and subcontexts of size in $[\ell, 2\ell]$.
- 2. One can choose $\ell = \Theta(\log_k n)$ such that the total number of forests and contexts of size in $[\ell, 2\ell]$ is $\mathcal{O}(\frac{n}{\log_k n})$.
- 3. The FSLP consists of two parts, both of size $O(\frac{n}{\log_{e} n})$:
 - A forest algebra expression for the forest obtained by contracting the subforests and subcontexts from 1.

Hucke, L, Noeth 2014

There is an algorithm that produces in linear time from a tree (or forest) of size *n* with *k* different node labels an FSLP of size $O(\frac{n}{\log_k n})$.

Proof idea:

- 1. Partition the input forest F of size n into $\Theta(\frac{n}{\ell})$ many subforests and subcontexts of size in $[\ell, 2\ell]$.
- 2. One can choose $\ell = \Theta(\log_k n)$ such that the total number of forests and contexts of size in $[\ell, 2\ell]$ is $\mathcal{O}(\frac{n}{\log_k n})$.
- 3. The FSLP consists of two parts, both of size $O(\frac{n}{\log_k n})$:
 - A forest algebra expression for the forest obtained by contracting the subforests and subcontexts from 1.
 - A DAG producing the subforests and subcontexts from 1.

M. Lohrey

Grammar-based tree compression

Hucke, L, Noeth 2014

There is an algorithm that produces in linear time from a tree (or forest) of size *n* with *k* different node labels an FSLP of size $O(\frac{n}{\log_k n})$.

Hucke, L, Noeth 2014

There is an algorithm that produces in linear time from a tree (or forest) of size *n* with *k* different node labels an FSLP of size $O(\frac{n}{\log n})$.

Related work:

 Ganardi, Hucke, L, Seelbach Benkner 2019: used for universal tree coding

Hucke, L, Noeth 2014

There is an algorithm that produces in linear time from a tree (or forest) of size *n* with *k* different node labels an FSLP of size $O(\frac{n}{\log n})$.

Related work:

- Ganardi, Hucke, L, Seelbach Benkner 2019: used for universal tree coding
- Munro, Nicholson, Seelbach Benkner, Wild 2021: similar two-step approach; universal tree coding + efficient querying

Hucke, L, Noeth 2014

There is an algorithm that produces in linear time from a tree (or forest) of size *n* with *k* different node labels an FSLP of size $O(\frac{n}{\log n})$.

Related work:

- Ganardi, Hucke, L, Seelbach Benkner 2019: used for universal tree coding
- Munro, Nicholson, Seelbach Benkner, Wild 2021: similar two-step approach; universal tree coding + efficient querying
- L, Maneth, Mennicke 2013: TreeRePair; a practical algorithm for computing small FSLPs
The smallest grammar problem for trees

L, Jeż 2013

There is a linear time algorithm that produces for every forest F of size n an FSLP of size $O(\log(n) \cdot \operatorname{opt}(F))$.

Balancing forest straight-line program

Ganardi, Jeż, L 2021

From a given FSLP \mathcal{G} of size *n* such that $F := val(\mathcal{G})$ has size *N*, one can compute in time $\mathcal{O}(n)$ an FSLP \mathcal{H} such that:

- $val(\mathcal{H}) = val(\mathcal{G})$
- $\blacktriangleright |\mathcal{H}| \in \mathcal{O}(n)$
- depth(\mathcal{H}) $\in \mathcal{O}(\log N)$

Balancing forest straight-line program

Ganardi, Jeż, L 2021

From a given FSLP \mathcal{G} of size *n* such that $F := val(\mathcal{G})$ has size *N*, one can compute in time $\mathcal{O}(n)$ an FSLP \mathcal{H} such that:

- $val(\mathcal{H}) = val(\mathcal{G})$
- $\mid \mathcal{H} \mid \in \mathcal{O}(n)$
- depth(\mathcal{H}) $\in \mathcal{O}(\log N)$

Corollary: random access in logarithmic time on compressed forests.

Balancing forest straight-line program

Ganardi, Jeż, L 2021

From a given FSLP \mathcal{G} of size *n* such that $F := val(\mathcal{G})$ has size *N*, one can compute in time $\mathcal{O}(n)$ an FSLP \mathcal{H} such that:

- $val(\mathcal{H}) = val(\mathcal{G})$
- $\mid \mathcal{H} \mid \in \mathcal{O}(n)$
- depth(\mathcal{H}) $\in \mathcal{O}(\log N)$

Corollary: random access in logarithmic time on compressed forests.

From a given FSLP \mathcal{G} one can built in linear time a data structure that allows to solve for $F = val(\mathcal{G})$ the following problem in time $\mathcal{O}(\log |F|)$:

- Input: a preorder number of a node v in F
- Output: the label of the node v.

Goal: For a given

- huge tree (e.g. an XML tree structure) that is stored compressed as an FSLP and
- a query formulated in a suitable query language

we want to enumerate all query results.

Goal: For a given

- huge tree (e.g. an XML tree structure) that is stored compressed as an FSLP and
- a query formulated in a suitable query language

we want to enumerate all query results.

We assume that queries are formulated in MSO (monadic 2nd order logic):

Goal: For a given

- huge tree (e.g. an XML tree structure) that is stored compressed as an FSLP and
- a query formulated in a suitable query language

we want to enumerate all query results.

We assume that queries are formulated in MSO (monadic 2nd order logic):

- there are two types of variables:
 - x, y, z, x' etc. for tree nodes
 - X, Y, Z, Z' etc. for sets of tree nodes

- ▶ atomic formulas (*x*, *y* are node variables, *X* is a node set variable):
 - ▶ *x* = *y*
 - $x \in X$,
 - label(x) = a for $a \in \Gamma$
 - parent(x, y) (x is the parent node of y)
 - leftsibling(x, y) (x is the left sibling of y)

- ▶ atomic formulas (*x*, *y* are node variables, *X* is a node set variable):
 - ▶ *x* = *y*
 - ► *x* ∈ *X*,
 - label(x) = a for $a \in \Gamma$
 - parent(x, y) (x is the parent node of y)
 - leftsibling(x, y) (x is the left sibling of y)
- larger formulas are constructed from atomic formulas using
 - ▶ boolean operators (¬ ϕ , $\phi \land \psi$, $\phi \lor \psi$) and
 - quantification $(\exists x : \phi, \forall x : \phi, \exists X : \phi, \forall X : \phi)$

- ▶ atomic formulas (*x*, *y* are node variables, *X* is a node set variable):
 - ▶ *x* = *y*
 - ► *x* ∈ *X*,
 - label(x) = a for $a \in \Gamma$
 - parent(x, y) (x is the parent node of y)
 - leftsibling(x, y) (x is the left sibling of y)
- larger formulas are constructed from atomic formulas using
 - ▶ boolean operators (¬ ϕ , $\phi \land \psi$, $\phi \lor \psi$) and
 - quantification $(\exists x : \phi, \forall x : \phi, \exists X : \phi, \forall X : \phi)$

Consider now a forest F and an MSO formula $\phi(X)$ where X is the only free variable X in ϕ .

- ▶ atomic formulas (*x*, *y* are node variables, *X* is a node set variable):
 - ▶ *x* = *y*
 - $x \in X$,
 - label(x) = a for $a \in \Gamma$
 - parent(x, y) (x is the parent node of y)
 - leftsibling(x, y) (x is the left sibling of y)
- larger formulas are constructed from atomic formulas using
 - ▶ boolean operators (¬ ϕ , $\phi \land \psi$, $\phi \lor \psi$) and
 - quantification $(\exists x : \phi, \forall x : \phi, \exists X : \phi, \forall X : \phi)$

Consider now a forest F and an MSO formula $\phi(X)$ where X is the only free variable X in ϕ .

Then query $(\phi(X), F)$ is the sets $A \subseteq \text{nodes}(F)$ such that $F \models \phi(A)$.

Grammar-based tree compression

Example: $\phi = \exists x (label(x) = a \land \forall y : y \in X \leftrightarrow parent(x, y))$

Example: $\phi = \exists x (label(x) = a \land \forall y : y \in X \leftrightarrow parent(x, y))$

Example: $\phi = \exists x (\mathsf{label}(x) = a \land \forall y : y \in X \iff \mathsf{parent}(x, y))$

Note: query($\phi(X), F$) may have size $2^{|F|}$, i.e., size $2^{2^{\mathcal{O}(|G|)}}$ if F is given by the FSLP \mathcal{G} .

Example: $\phi = \exists x (label(x) = a \land \forall y : y \in X \leftrightarrow parent(x, y))$

Note: query($\phi(X), F$) may have size $2^{|F|}$, i.e., size $2^{2^{\mathcal{O}(|\mathcal{G}|)}}$ if F is given by the FSLP \mathcal{G} .

What does it mean to enumerate efficiently query($\phi(X)$, val(\mathcal{G}))?

M. Lohrey

Grammar-based tree compression

An enumeration problem is a function E that maps an input x to a finite set E(x) = {y₁,..., y_k} of k different objects y_i.

- An enumeration problem is a function E that maps an input x to a finite set E(x) = {y₁,..., y_k} of k different objects y_i.
- An enumeration algorithm A for E is an algorithm that prints on input x sequentially a list y_{π(1)}, y_{π(1)},..., y_{π(k)} for a permutation π.

- An enumeration problem is a function E that maps an input x to a finite set E(x) = {y₁,..., y_k} of k different objects y_i.
- An enumeration algorithm A for E is an algorithm that prints on input x sequentially a list y_{π(1)}, y_{π(1)},..., y_{π(k)} for a permutation π.
- \mathcal{A} starts with a preprocessing phase finishing at time $t_0 =: T_{pre}(x)$.

- An enumeration problem is a function E that maps an input x to a finite set E(x) = {y₁,..., y_k} of k different objects y_i.
- An enumeration algorithm A for E is an algorithm that prints on input x sequentially a list y_{π(1)}, y_{π(1)},..., y_{π(k)} for a permutation π.
- \mathcal{A} starts with a preprocessing phase finishing at time $t_0 =: T_{pre}(x)$.
- \mathcal{A} works in linear preprocessing time if $\mathcal{T}_{pre}(x) \leq \mathcal{O}(|x|)$.

- An enumeration problem is a function E that maps an input x to a finite set E(x) = {y₁,..., y_k} of k different objects y_i.
- An enumeration algorithm A for E is an algorithm that prints on input x sequentially a list y_{π(1)}, y_{π(1)},..., y_{π(k)} for a permutation π.
- \mathcal{A} starts with a preprocessing phase finishing at time $t_0 =: T_{pre}(x)$.
- \mathcal{A} works in linear preprocessing time if $\mathcal{T}_{pre}(x) \leq \mathcal{O}(|x|)$.
- Assume that printing $y_{\pi(i)}$ is completed at time t_i $(t_1 < t_2 < \cdots < t_k)$.

- An enumeration problem is a function E that maps an input x to a finite set E(x) = {y₁,..., y_k} of k different objects y_i.
- An enumeration algorithm A for E is an algorithm that prints on input x sequentially a list y_{π(1)}, y_{π(1)},..., y_{π(k)} for a permutation π.
- \mathcal{A} starts with a preprocessing phase finishing at time $t_0 =: T_{pre}(x)$.
- \mathcal{A} works in linear preprocessing time if $\mathcal{T}_{pre}(x) \leq \mathcal{O}(|x|)$.
- Assume that printing $y_{\pi(i)}$ is completed at time t_i $(t_1 < t_2 < \cdots < t_k)$.
- \mathcal{A} works in output-linear delay if $t_i t_{i-1} \leq \mathcal{O}(|y_i|)$ for all $1 \leq i \leq k$.

L, Schmid 2024

Fix a query $\phi(X)$. One can enumerate query $(\phi(X), val(\mathcal{G}))$ for a given FSLP \mathcal{G} in

- linear preprocessing time and
- output-linear delay.

L, Schmid 2024

Fix a query $\phi(X)$. One can enumerate query $(\phi(X), val(\mathcal{G}))$ for a given FSLP \mathcal{G} in

- linear preprocessing time and
- output-linear delay.

Previous results:

 Bagan 2006, Courcelle 2009: linear preprocessing and output-linear delay for uncompressed trees

L, Schmid 2024

Fix a query $\phi(X)$. One can enumerate query $(\phi(X), val(\mathcal{G}))$ for a given FSLP \mathcal{G} in

- linear preprocessing time and
- output-linear delay.

Previous results:

- Bagan 2006, Courcelle 2009: linear preprocessing and output-linear delay for uncompressed trees
- Schmid, Schweikardt 2021: linear preprocessing and logarithmic delay for compressed strings (and a fragment of MSO)

L, Schmid 2024

Fix a query $\phi(X)$. One can enumerate query $(\phi(X), val(\mathcal{G}))$ for a given FSLP \mathcal{G} in

- linear preprocessing time and
- output-linear delay.

Previous results:

- Bagan 2006, Courcelle 2009: linear preprocessing and output-linear delay for uncompressed trees
- Schmid, Schweikardt 2021: linear preprocessing and logarithmic delay for compressed strings (and a fragment of MSO)
- Muñoz, Riveros 2023: linear preprocessing and output-linear delay for compressed strings (and a fragment of MSO)

Proof strategy: Let Γ be the set node labels of our trees.

- 1. Translate the MSO-query $\phi(X)$ into a node-selecting tree automaton \mathcal{A} (a tree automaton working on the label set $\Gamma \times \{0, 1\}$).
- 2. Reduce enumeration of query(A, val(G)) to the enumeration of query(B, unfold(G)), where
 - \blacktriangleright unfold($\mathcal{G})$ is the forest algebra expression obtained by unfolding \mathcal{G} and
 - \mathcal{B} is a leaf-selecting tree automaton.
- Bagan solved the previous enumeration problem for the case where the tree unfold(G) is given explicitly.

We extend Bagan's algorithm to DAG-compressed trees.

