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Forbidden matrices
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A broad class: permutation patterns, e.g., Pπ =




•
•
•


.

Conjecture [Füredi-Hajnal 1992]

ex(Pπ, n) ∈ Oπ(n), for any permutation π. → linear in n, for any fixed π

The conjecture is true! [Marcus, Tardos, 2004]

ex(P, n) also characterized for many other patterns:

→ can be



n

n · polylog(n)
n · 2α(n)

n1+ε

. . .
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compress path from x to root



Example: Union-Find with path compression [Pettie, 2010]

What is the (amortized) cost of
operations?

A B C D



Example: Union-Find with path compression [Pettie, 2010]

→ View operations in single tree T

(suppose all unions done upfront)

→ General path compression:
x→ y where y is ancestor of x

→ Analyze cost of n general path
compressions in T
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→ Encode entire execution as an
n× n matrix M
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time
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n× n matrix M
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(
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• •

)
. (   )

nodes of T in postorder

time



Example: Union-Find with path compression [Pettie, 2010]

Lemma: M avoids P =

(
••
• •

)
.

Proof: suppose not, then
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postorder and as nodes cannot
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become unrelated, cannot be on
j-th compress path together.
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target of i-th compress
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Lemma: M avoids P =

(
••
• •

)
.

Proof: suppose not, then
x→ y → z on a path (because of
postorder and as nodes cannot gain
ancestors).

After i-th compress, x and y
become unrelated, cannot be on
j-th compress path together.
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encode execution

show that avoids 
some pattern P

bound on density of M
=bound on cost of A

0/1 Matrix M

(  )
Algorithm A
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Permutation τ contains permutation π:
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τ avoids (2, 1) ⇐⇒

τ is increasing

τ avoids (k + 1, k, . . . , 1) ⇐⇒ τ is k-increasing

τ avoids (2, 3, 1) ⇐⇒ τ is sortable with a stack

τ avoids (1, 3, 2) and (3, 1, 2) ⇐⇒ every entry is a left-to-right min or max
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How many permutations of length n avoid a pattern π?

Conjecture [Stanley, Wilf, 1980s]

At most 2Oπ(n). → single-exponential in n (� n!)

→ equivalent with the Füredi-Hajnal conjecture on matrix density

[Klazar, 2000]

Both conjectures are true! [Marcus, Tardos, 2004]
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→ equivalent with the Füredi-Hajnal conjecture on matrix density

[Klazar, 2000]

Both conjectures are true! [Marcus, Tardos, 2004]



How many permutations of length n avoid a pattern π?

Conjecture [Stanley, Wilf, 1980s]

At most 2Oπ(n).

→ single-exponential in n (� n!)
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The density of an n× n matrix that avoids Pπ is at most cπ · n.
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→ cπ and sπ are polynomially related



The two results:

At most (sπ)n permutations of length n that avoid π.
[Stanley-Wilf]

The density of an n× n matrix that avoids Pπ is at most cπ · n.
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A new algorithmic question:

Consider some algorithmic problem with sequential input

Does its complexity change if input avoids pattern π?

Example: Sorting n items via comparisons

Complexity: Θ(n log n)

Can we sort faster if input avoids some (arbitrary) fixed π?
Sort with O(n) comparisons?
Sort in O(n) time?

Want a general-purpose algorithm that is not tailored to each
pattern π
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Why study this?

Generalizes known easy inputs: 21-avoiding, 231-avoiding, etc.

There are 2O(n) such inputs =⇒ sorting lower bound just O(n)

Make [Marcus-Tardos] results “algorithmic”

Analogy to avoided minors in graphs
→ sparsity, decompositions, efficient algorithms
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Example: Sorting

Idea: Sort by inserting into a binary search tree (BST)

→ Use some dynamically balanced tree?

O(log n) per operation =⇒ O(n log n) cost for sorting (too much!)

→ To achieve O(n), we need some adaptive BST, like Splay tree
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Self-adjusting tree: Splay tree [Sleator, Tarjan, 1983]

When searching or inserting, rotate∗ the accessed element up,
until it becomes the root.

∗in a funny way.
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Self-adjusting tree: Splay tree [Sleator, Tarjan, 1983]

[K. Mehlhorn: Data structures and algorithms (German ed. 1986)]



A matrix view of BSTs [Demaine, Harmon, Iacono, Kane, Pǎtraşcu, SODA’09]

access sequence X
e.g., 4, 5, 6, 1, 2, 3

→ point set X

dynamic BST serving X

→ point set Y ⊇ X
↑

nodes touched by pointer
moves and rotations

Y is a BST execution of X ⇐⇒ Y is a satisfied superset of X
↓

no a, b ∈ Y form an empty rectangle
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access sequence X
e.g., 4, 5, 6, 1, 2, 3

→ point set X

dynamic BST serving X

→ point set Y ⊇ X
↑

nodes touched by pointer
moves and rotations

keys

time

Y is a BST execution of X ⇐⇒ Y is a satisfied superset of X

↓
no a, b ∈ Y form an empty rectangle



A matrix view of BSTs [Demaine, Harmon, Iacono, Kane, Pǎtraşcu, SODA’09]
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A matrix view of BSTs

Suggests a natural algorithm:

Geometric sweepline
bottom-up.

Can be implemented as a
BST, similar to splay trees.

This describes an insertion-sort execution.

Task: Bound the cost
↓

number of dots in matrix
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Encode execution as a matrix
• = input sequence (avoids π)
• = data structure operations
number of points (•+ •) = total cost

Key Lemma
Follows from sweepline.

→ input-revealing gadget

=⇒ execution avoids

 •
• •

•
• •

•
• •


→ for various special cases O(n) can be shown, e.g., for π = k, . . . , 1.
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rectangle families is d-wide.
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(repeat)

Claim:
(a) Result is arborally satisfied
(b) # of added points is O(d2 · n) (proof now)
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# of added points

Claim: In every step, we add O(d2) points.

Proof idea: Rectangle sees ≤ d other rectangles/points
=⇒ ≤ 4d grid lines

Conclusion: The optimum for every input sequence of twin-width d is O(d2 · n).

=⇒ The optimum for every π-avoiding input sequence is O(c2
π · n).
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Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n − i)). [NEW]

Spanning tree construction: Whenever we merge
two rectangles, connect arbitrary points within them.

Every π-avoiding point set has a O(cπ)-wide distance-balanced merge sequence.

Length:
n−1X

i=1

1
n−i ≈ log n


