Analysis of Algorithms via Extremal Combinatorics

L3szlé6 Kozma
Freie Universitat Berlin

Analysis of Algorithms, Bath, UK
June 2024

Extremal Combinatorics

Extremal Combinatorics

Typical question (informally):

How large/dense/frequent can X be if it avoids Y7

Extremal Combinatorics

Extremal Combinatorics

How many edges can a graph of n vertices have if it avoids k-cliques?

Extremal Combinatorics

How many edges can a graph of n vertices have if it avoids k-cliques?

Answer: At most (1 - ﬁ) "72 [Turdn, 1941]

Extremal Combinatorics

How many edges can a graph of n vertices have if it avoids k-cliques?

Answer: At most (1 - ﬁ) "72 [Turdn, 1941]

Extremal Combinatorics

How many edges can a graph of n vertices have if it avoids k-cliques?

Answer: At most (1 - ﬁ) "72 [Turdn, 1941]

This bound is sharp.

Extremal Combinatorics

How many edges can a graph of n vertices have if it avoids k-cliques?

[Turdn, 1941]

TL2

5 -

This bound is sharp.

Extremal Combinatorics

How many edges can a graph of n vertices have if it avoids k-cliques?

Answer: At most (1 - ﬁ) ”72 [Turdn, 1941]

Forbidden matrices

How many e's can an n-by-n matrix have if it avoids the pattern P?

Forbidden matrices

How many e's can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

Forbidden matrices

How many e's can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

Forbidden matrices

How many e's can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

Forbidden matrices

How many e's can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

Forbidden matrices

How many e's can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

Forbidden matrices

How many e's can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

Forbidden matrices

How many e's can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

Forbidden matrices

How many e's can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

Forbidden matrices

How many e's can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

ex(P,n): max number of e's, while avoiding P (0 < ex(P,n) < n?)

Forbidden matrices

How many e's can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

ex(P,n): max number of e's, while avoiding P (0 < ex(P,n) < n?)

(:2))-

Forbidden matrices

How many e's can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

ex(P,n): max number of e's, while avoiding P (0 < ex(P,n) < n?)

ex ((: :) ,n) = ©(n3/2) — Zarankiewicz problem: bipartite graph avoiding Cy

Forbidden matrices

How many e's can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

ex(P,n): max number of e's, while avoiding P (0 < ex(P,n) < n?)

ex ((: :) ,n) = ©(n3/2) — Zarankiewicz problem: bipartite graph avoiding Cy

Forbidden matrices

How many e's can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

ex(P,n): max number of e's, while avoiding P (0 < ex(P,n) < n?)

ex ((: :) ,n) = ©(n3/2) — Zarankiewicz problem: bipartite graph avoiding Cy

Forbidden matrices

How many e's can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

ex (() n) O(n 3/2) — Zarankiewicz problem: bipartite graph avoiding C4

Forbidden matrices

How many e's can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

ex (() n) O(n 3/2) — Zarankiewicz problem: bipartite graph avoiding C4

ex (()) = O(n-«(n)) — related to Davenport-Schinzel sequences

A broad class: permutation patterns, e.g., P, = | o

Conjecture [Fiiredi-Hajnal 1992]

A broad class: permutation patterns, e.g., P, = | o

Conjecture [Fiiredi-Hajnal 1992]
ex(P,r, n) € Oﬂ-(n), for any permutation m. — linear in n, for any fixed 7

A broad class: permutation patterns, e.g., P, = | o

Conjecture [Fiiredi-Hajnal 1992]
ex(P,r, n) € Oﬂ-(n), for any permutation m. — linear in n, for any fixed 7

The conjecture is true! [Marcus, Tardos, 2004]

A broad class: permutation patterns, e.g., P, = | o

Conjecture [Fiiredi-Hajnal 1992]
ex(P,r, n) € Oﬂ-(n), for any permutation m. — linear in n, for any fixed 7

The conjecture is true! [Marcus, Tardos, 2004]

ex(P,n) also characterized for many other patterns:
n
n - polylog(n)
— can be { n . 2%

nl+e

Use extremal combinatorics to:

I. Analyse algorithms

Il. Model input structure

Use extremal combinatorics to:

I. Analyse algorithms

Il. Model input structure

Example: Union-Find with path compression [Pettie, 2010]

Example: Union-Find with path compression [Pettie, 2010]

— Collection of disjoint sets:

find(x): return set containing
union(A, B): merge A and B

— Initially all singletons

Example: Union-Find with path compression [Pettie, 2010]

— Collection of disjoint sets: A B
find(x): return set containing
union(A, B): merge A and B

— Initially all singletons

Example: Union-Find with path compression [Pettie, 2010]

— Collection of disjoint sets: A B
find(x): return set containing
union(A, B): merge A and B

— Initially all singletons

Example: Union-Find with path compression [Pettie, 2010]

union(B, C): A B
make the root of one tree the child
of the other (arbitrarily)

Example: Union-Find with path compression [Pettie, 2010]

union(B, C): B
make the root of one tree the child
of the other (arbitrarily)

Example: Union-Find with path compression [Pettie, 2010]

union(B, C):
make the root of one tree the child
of the other (arbitrarily)

Bu

Example: Union-Find with path compression [Pettie, 2010]

find(z):
compress path from z to root [

Example: Union-Find with path compression [Pettie, 2010]

find(z):

compress path from x to root

Vo

U1

V2

U3

Example: Union-Find with path compression [Pettie, 2010]

find(z): Vo V0

compress path from z to root —>
U1
U1\ V2|\ U3

V2

U3

Example: Union-Find with path compression [Pettie, 2010]

What is the (amortized) cost of A B

operations?]

Example: Union-Find with path compression [Pettie, 2010]

— View operations in single tree T'

(suppose all unions done upfront) y

— General path compression:
x — y where y is ancestor of x

— Analyze cost of n general path
compressions in T’

Example: Union-Find with path compression [Pettie, 2010]

— Encode entire execution as an
n X n matrix M

Example: Union-Find with path compression [Pettie, 2010]

— Encode entire execution as an nodes of T in postorder
n X n matrix M €T

time

Example: Union-Find with path compression [Pettie, 2010]

— Encode entire execution as an nodes of T in postorder
n X n matrix M €T

M;; = @ < node z touched during time

j-th compression

total cost = number of e's in M

Example: Union-Find with path compression [Pettie, 2010]

— Encode entire execution as an nodes of T in postorder
n X n matrix M €T

time

Lemma: M avoids P = (”)
o o

Example: Union-Find with path compression [Pettie, 2010]

Lemma: M avoids P = <“)
L N)

Proof: suppose not, then
x — y — z on a path (because of
postorder and as nodes cannot —>
gains ancestors. ye

target of i-th compress

After i-th compress, x and y
become unrelated, cannot be on 1‘.
]_th COIPIESS path tOgether' O before i-th compress after i-th compress

Example: Union-Find with path compression [Pettie, 2010]

Lemma: M avoids P = (“)
o o

Proof: suppose not, then ;target of i-th compress

x — y — z on a path (because of

postorder and as nodes cannot gain —>

ancestors). iy

After i-th compress, x and y

become unrelated, cannot be on 1‘.

j_th COIPIESS path tOgether' O before i-th compress after i-th compress

= (7))

= nlogyn + O(n)
[Tardos, 2005]

Example: Union-Find with path compression [Pettie, 2010]

Lemma: M avoids P = (“)
o o

Proof: suppose not, then ;target of i-th compress

x — y — z on a path (because of

postorder and as nodes cannot gain —>

ancestors). iy

After i-th compress, x and y

become unrelated, cannot be on 1‘.

j_th COIPIESS path tOgether' O before i-th compress after i-th compress

= (7))

= nlogyn + O(n)
[Tardos, 2005]

o 00
Q encode execution 0000
—> {°® °
[J
0/1 Matrix M

Algorithm A

show that avoids
some pattern P

e

bound on density of M
=bound on cost of A

Use extremal combinatorics to:

I. Analyse algorithms

Il. Model input structure

Use extremal combinatorics to:

I. Analyse algorithms

I1. Model input structure

Use extremal combinatorics to:

I. Analyse algorithms

I1. Model input structure

Permutation patterns

Permutation patterns

Permutation 7 contains permutation 7:
7 has a subsequence with the same ordering as 7.

Permutation patterns

Permutation 7 contains permutation 7:
7 has a subsequence with the same ordering as 7.
(Otherwise T avoids 7.)

Permutation patterns

Permutation 7 contains permutation 7:
7 has a subsequence with the same ordering as 7.
(Otherwise T avoids 7.)

Example:

Permutation patterns

Permutation 7 contains permutation 7:
7 has a subsequence with the same ordering as 7.
(Otherwise 7 avoids 7.)

Example:

324517896 contains 1243

Permutation patterns

Permutation 7 contains permutation 7:
7 has a subsequence with the same ordering as 7.
(Otherwise T avoids 7.)

Example:

32451786 contains 1243 because2576~1243

Permutation patterns

Permutation 7 contains permutation 7:
7 has a subsequence with the same ordering as 7.
(Otherwise T avoids 7.)

Example:

32451786 contains 1243 because2576~1243
(both are like o, °)

Permutation patterns

Permutation 7 contains permutation 7:
7 has a subsequence with the same ordering as 7.
(Otherwise T avoids 7.)

Example:
32451786 contains 1243 because2576~1243
(both are like o, °)

32451786 contains 1234

Permutation patterns

Permutation 7 contains permutation 7:
7 has a subsequence with the same ordering as 7.
(Otherwise T avoids 7.)

Example:
32451786 contains 1243 because2576~1243
(both are like o, °)

32451786 contains 1234 because2457~1234
(both are like ,°)

Permutation patterns

Permutation 7 contains permutation 7:
7 has a subsequence with the same ordering as 7.
(Otherwise T avoids 7.)

Example:
32451786 contains 1243 because2576~1243
(both are like o, °)

32451786 contains 1234 because2457~1234
(both are like ,°)

32451786 avoids 4321

Permutation patterns

Permutation patterns

®

2 4 7 1 5 3 6

contains 231

Permutation patterns

®

2 4 7 1 5 3 6

contains 231

Examples

T avoids (2,1) <=

Examples

T avoids (2,1) <= 7 is increasing

Examples

T avoids (2,1) <= 7 is increasing

T avoids (k + 1,k,...,1) <=

Examples

T avoids (2,1) <= 7 is increasing

7 avoids (k+ 1,k,...,1) <= 7 is k-increasing

Examples

T avoids (2,1) <= 7 is increasing

7 avoids (k+ 1,k,...,1) <= 7 is k-increasing

Examples

T avoids (2,1) <= 7 is increasing

7 avoids (k+ 1,k,...,1) <= 7 is k-increasing

Examples

T avoids (2,1) <= 7 is increasing
7 avoids (k+ 1,k,...,1) <= 7 is k-increasing

T avoids (2,3,1) <=

Examples

T avoids (2,1) <= 7 is increasing
7 avoids (k+ 1,k,...,1) <= 7 is k-increasing

T avoids (2,3,1) <= 7 is sortable with a stack

Examples

T avoids (2,1) <= 7 is increasing
7 avoids (k+ 1,k,...,1) <= 7 is k-increasing

T avoids (2,3,1) <= 7 is sortable with a stack

» 5. [M28] Show that it is possible to obtain a permutation pips2 ... pn from 12...n
using a stack if and only if there are no indices i < j < k such that p; < pp < pi.

Examples

T avoids (2,1) <= 7 is increasing
7 avoids (k+ 1,k,...,1) <= 7 is k-increasing

T avoids (2,3,1) <= 7 is sortable with a stack

» 5. [M28] Show that it is possible to obtain a permutation pips2 ... pn from 12...n
using a stack if and only if there are no indices i < j < k such that p; < pp < pi.

RRRRRRR

il
2/

Examples

T avoids (2,1) <= 7 is increasing
7 avoids (k+ 1,k,...,1) <= 7 is k-increasing

T avoids (2,3,1) <= 7 is sortable with a stack

Examples

T avoids (2,1) <= 7 is increasing
7 avoids (k+ 1,k,...,1) <= 7 is k-increasing
T avoids (2,3,1) <= 7 is sortable with a stack

7 avoids (1,3,2) and (3,1,2) <—

Examples

T avoids (2,1) <= 7 is increasing
7 avoids (k+ 1,k,...,1) <= 7 is k-increasing
T avoids (2,3,1) <= 7 is sortable with a stack

7 avoids (1,3,2) and (3,1,2) <= every entry is a left-to-right min or max

Examples

T avoids (2,1) <= 7 is increasing
7 avoids (k+ 1,k,...,1) <= 7 is k-increasing
T avoids (2,3,1) <= 7 is sortable with a stack

7 avoids (1,3,2) and (3,1,2) <= every entry is a left-to-right min or max

How many permutations of length n avoid a pattern 77

How many permutations of length n avoid a pattern 77

Conjecture [Stanley, Wilf, 1980s]

How many permutations of length n avoid a pattern 77

Conjecture [Stanley, Wilf, 1980s]
At most 20= ()

How many permutations of length n avoid a pattern 77

Conjecture [Stanley, Wilf, 1980s]
At most 20=(n) — single-exponential in n (K n!)

How many permutations of length n avoid a pattern 77

Conjecture [Stanley, Wilf, 1980s]
At most 20=(n) — single-exponential in n (K n!)

— equivalent with the Fiiredi-Hajnal conjecture on matrix density
[Klazar, 2000]

How many permutations of length n avoid a pattern 77

Conjecture [Stanley, Wilf, 1980s]
At most 20=(n) — single-exponential in n (K n!)

— equivalent with the Fiiredi-Hajnal conjecture on matrix density
[Klazar, 2000]

Both conjectures are true! [Marcus, Tardos, 2004]

The two results:

o At most (s,)™ permutations of length n that avoid 7.
[Stanley-Wilf]

o The density of an n x n matrix that avoids Py is at most ¢, - n.
[Fiiredi-Hajnal]

The two results:

o At most (s,)™ permutations of length n that avoid 7.
[Stanley-Wilf]

o The density of an n x n matrix that avoids Py is at most ¢, - n.
[Fiiredi-Hajnal]

— ¢ and s, are polynomially related

The two results:

o At most (s,)™ permutations of length n that avoid 7.
[Stanley-Wilf]

o The density of an n x n matrix that avoids Py is at most ¢, - n.
[Fiiredi-Hajnal]

— ¢ and s, are polynomially related

A new algorithmic question:

A new algorithmic question:

o Consider some algorithmic problem with sequential input

A new algorithmic question:

o Consider some algorithmic problem with sequential input
e Does its complexity change if input avoids pattern 7?

A new algorithmic question:

o Consider some algorithmic problem with sequential input
e Does its complexity change if input avoids pattern 7?

Example: Sorting n items via comparisons

A new algorithmic question:

o Consider some algorithmic problem with sequential input
e Does its complexity change if input avoids pattern 7?

Example: Sorting n items via comparisons

o Complexity: ©(nlogn)

A new algorithmic question:

o Consider some algorithmic problem with sequential input
e Does its complexity change if input avoids pattern 7?

Example: Sorting n items via comparisons
o Complexity: ©(nlogn)
o Can we sort faster if input avoids some (arbitrary) fixed 7?

A new algorithmic question:

o Consider some algorithmic problem with sequential input
e Does its complexity change if input avoids pattern 7?

Example: Sorting n items via comparisons
o Complexity: ©(nlogn)

o Can we sort faster if input avoids some (arbitrary) fixed 7?
e Sort with O(n) comparisons?

A new algorithmic question:

o Consider some algorithmic problem with sequential input
e Does its complexity change if input avoids pattern 7?

Example: Sorting n items via comparisons
o Complexity: ©(nlogn)

o Can we sort faster if input avoids some (arbitrary) fixed 7?

e Sort with O(n) comparisons?
e Sort in O(n) time?

A new algorithmic question:

o Consider some algorithmic problem with sequential input
e Does its complexity change if input avoids pattern 7?

Example: Sorting n items via comparisons
o Complexity: ©(nlogn)

o Can we sort faster if input avoids some (arbitrary) fixed 7?

e Sort with O(n) comparisons?
e Sort in O(n) time?

e Want a general-purpose algorithm that is not tailored to each
pattern m

Why study this?

Why study this?

o Generalizes known easy inputs: 21-avoiding, 231-avoiding, etc.

Why study this?
o Generalizes known easy inputs: 21-avoiding, 231-avoiding, etc.

o There are 29" such inputs = sorting lower bound just O(n)

Why study this?
o Generalizes known easy inputs: 21-avoiding, 231-avoiding, etc.
o There are 29" such inputs = sorting lower bound just O(n)

o Make [Marcus-Tardos] results “algorithmic”

Why study this?
o Generalizes known easy inputs: 21-avoiding, 231-avoiding, etc.

o There are 29" such inputs = sorting lower bound just O(n)

Make [Marcus-Tardos| results “algorithmic”

Analogy to avoided minors in graphs
— sparsity, decompositions, efficient algorithms

Why study this?
o Generalizes known easy inputs: 21-avoiding, 231-avoiding, etc.

o There are 29" such inputs = sorting lower bound just O(n)

Make [Marcus-Tardos| results “algorithmic”

Analogy to avoided minors in graphs
— sparsity, decompositions, efficient algorithms

Example: Sorting

Example: Sorting

Idea: Sort by inserting into a binary search tree (BST)

Example: Sorting

Idea: Sort by inserting into a binary search tree (BST)

logn
— Use some dynamically balanced tree? mi

Example: Sorting

Idea: Sort by inserting into a binary search tree (BST)

logn
— Use some dynamically balanced tree? mi

O(logn) per operation =—> O(nlogn) cost for sorting (too much!)

Example: Sorting

Idea: Sort by inserting into a binary search tree (BST)

logn
— Use some dynamically balanced tree? mi

O(logn) per operation =—> O(nlogn) cost for sorting (too much!)

— To achieve O(n), we need some adaptive BST, like Splay tree

Self-adjusting tree: Splay tree [Sleator, Tarjan, 1983]

Self-adjusting tree: Splay tree [Sleator, Tarjan, 1983]

When searching or inserting, rotate® the accessed element up,
until it becomes the root.

Self-adjusting tree: Splay tree [Sleator, Tarjan, 1983]

When searching or inserting, rotate® the accessed element up,
until it becomes the root.

*in a funny way.

Self-adjusting tree: Splay tree [Sleator, Tarjan, 1983]

When searching or inserting, rotate® the accessed element up,
until it becomes the root.

*in a funny way.

Self-adjusting tree: Splay tree [Sleator, Tarjan, 1983]

When searching or inserting, rotate* the accessed element up,
until it becomes the root.

*in a funny way.

Self-adjusting tree: Splay tree [Sleator, Tarjan, 1983]

i11.6.1.2. Splay-Bdume 249

Schittle(7,T)
_

Abb. 95. 4 Schiittle-Operationen.

[K. Mehlhorn: Data structures and algorithms (German ed. 1986)]

A matrix view of BSTS [Demaine, Harmon, lacono, Kane, Ptrascu, SODA’09]

A matrix view of BSTs [Demaine, Harmon, lacono, Kane, P4trascu, SODA'09)

access sequence X
eg. 4,56, 1,23

A matrix view of BSTs [Demaine, Harmon, lacono, Kane, P3trascu, SODA'09]

access sequence X
eg.,4,56,1,2 3

— point set X

A matrix view of BSTs [Demaine, Harmon, lacono, Kane, P#trascu, SODA'09]

access sequence X time
eg.,4,56,1,2 3 A (]
— point set X L
[J
([
[
[J

A matrix view of BSTs [Demaine, Harmon, lacono, Kane, P#trascu, SODA'09]

access sequence X time
eg.,4,56,1,2 3 A (]
— point set X L
[J
dynamic BST serving X . ®
[J

A matrix view of BSTs [Demaine, Harmon, lacono, Kane, P#trascu, SODA'09]

access sequence X time
eg. 4506123 } oo
— point set X ce
® 00O ©)
dynamic BST serving X ®
(O N©)
— pointset Y DO X PY

keys

A matrix view of BSTs [Demaine, Harmon, lacono, Kane, P#trascu, SODA'09]

access sequence X time
eg. 456 1,23 1 oce

— point set X ce
[NeNeNe] (©)

dynamic BST serving X ®
(O N©)
— pointset Y DO X PY

T o~
nodes touched by pointer keys
moves and rotations

A matrix view of BSTs [Demaine, Harmon, lacono, Kane, P#trascu, SODA'09]

access sequence X time
eg, 456 1,23 A

— point set X ce
@000 O

dynamic BST serving X o
[ON N6)
— pointset Y D X PY

/]\
nodes touched by pointer keys
moves and rotations

Y is a BST execution of X <= Y is a satisfied superset of X

A matrix view of BSTs [Demaine, Harmon, lacono, Kane, P#trascu, SODA'09]

access sequence X time
eg.,4,56,1,2 3 A oe

— point set X ce
[NeNeNe] (©)

dynamic BST serving X ®
(O N©)
— pointset Y DO X PY

T o~
nodes touched by pointer keys
moves and rotations

Y is a BST execution of X <= Y is a satisfied superset of X

A matrix view of BSTs [Demaine, Harmon, lacono, Kane, P#trascu, SODA'09]

access sequence X time
eg. 456 1,23 1 oce

— point set X ce
[NeNeNe] (©)

dynamic BST serving X ®
(O N©)
— pointset Y DO X PY

T o~
nodes touched by pointer keys
moves and rotations

Y is a BST execution of X <= Y is a satisfied superset of X
+

no a,b € Y form an empty rectangle

A matrix view of BSTs [Demaine, Harmon, lacono, Kane, P#trascu, SODA'09]

access sequence X time
eg. 4506123 } oo
— point set X ce

® 00O ©)
dynamic BST serving X ®

(O N©)
— pointset Y DO X PY
) >

nodes touched by pointer
moves and rotations

Y is a BST execution of X <= Y is a satisfie(

!

no a,b € Y form an en

A matrix view of BSTs [Demaine, Harmon, lacono, Kane, P#trascu, SODA'09]

access sequence X time
eg.,4,56,1,2 3 A oe
— point set X ce
@ooco o
dynamic BST serving X ' 5 L
--------- Qeo
— pointset Y DO X Py
) >
nodes touched by pointer keys
moves and rotations
O X QX
Y is a BST execution of X <= Y is a satisfieq L@ @
i
no a,b € Y form an en ®0 @ @
T o g

A matrix view of BSTs [Demaine, Harmon, lacono, Kane, P#trascu, SODA'09]

access sequence X time
eg.,4,56,1,2 3 A O@
— point set X -

000 O
dynamic BST serving X e 0

cCeoO
— pointset Y DO X PY
t >

nodes touched by pointer
moves and rotations

Y is a BST execution of X <= Y is a satisfie(

!

no a,b € Y form an en

A matrix view of BSTs

A matrix view of BSTs

Suggests a natural algorithm:

A matrix view of BSTs

Suggests a natural algorithm:

Geometric sweepline
bottom-up.

time

A matrix view of BSTs

Suggests a natural algorithm:

Geometric sweepline
bottom-up.

Can be implemented as a
BST, similar to splay trees.

time

A matrix view of BSTs

Suggests a natural algorithm:

Geometric sweepline
bottom-up.

Can be implemented as a
BST, similar to splay trees.

time

A matrix view of BSTs

Suggests a natural algorithm:

Geometric sweepline
bottom-up.

Can be implemented as a
BST, similar to splay trees.

time

A matrix view of BSTs

Suggests a natural algorithm:

Geometric sweepline
bottom-up.

Can be implemented as a
BST, similar to splay trees.

time

A matrix view of BSTs

Suggests a natural algorithm:

Geometric sweepline
bottom-up.

Can be implemented as a
BST, similar to splay trees.

time

A matrix view of BSTs

Suggests a natural algorithm:

Geometric sweepline
bottom-up.

Can be implemented as a
BST, similar to splay trees.

time

A matrix view of BSTs

Suggests a natural algorithm:

Geometric sweepline
bottom-up.

Can be implemented as a
BST, similar to splay trees.

time

A matrix view of BSTs

Suggests a natural algorithm: time
[]
Geometric sweepline o0 TP
bottom-up. P é) o
Can be implemented as a ce
BST, similar to splay trees. oce
[]

A matrix view of BSTs

Suggests a natural algorithm:

Geometric sweepline
bottom-up.

Can be implemented as a
BST, similar to splay trees.

time

»»»»»»»»» Qi
0 &-1-6
[J (o]
ce
oce
[J

A matrix view of BSTs

Suggests a natural algorithm: time
O/touched node
ce

Geometric sweepline oe O
bottom-up.) 00 e

. O
Can be implemented as a ole
BST, similar to splay trees. -

keys

This describes an insertion-sort execution.

A matrix view of BSTs

Suggests a natural algorithm: time
O/touched node
ce

Geometric sweepline oe O
bottom-up.) 00 e

. O
Can be implemented as a ole
BST, similar to splay trees. -

keys

This describes an insertion-sort execution.

Task: Bound the cost

A matrix view of BSTs

Suggests a natural algorithm: time
O/touched node
ce

Geometric sweepline oe O
bottom-up.) 00 e

. O
Can be implemented as a ole
BST, similar to splay trees. -

keys

This describes an insertion-sort execution.

Task: Bound the cost

!

number of dots in matrix

A matrix view of BSTs

Suggests a natural algorithm: time
O/touched node
ce

Geometric sweepline oe O
bottom-up.) 00 e

. O
Can be implemented as a ole
BST, similar to splay trees. -

keys

This describes an insertion-sort execution.

Task: Bound the cost

!

number of dots in matrix

Encode execution as a matrix

e = input sequence (avoids 7)

e = data structure operations
number of points (e + o) = total cost

Encode execution as a matrix time

e = input sequence (avoids) Ly o et
e = data structure operations oe O
number of points (e + o) = total cost ° ® @ jnput
@)
ce
[]

keys

Encode execution as a matrix time

e = input sequence (avoids) Ly o et
e = data structure operations oe O
number of points (e + o) = total cost ° ® @ jnput
@)
ce
[]

keys

Encode execution as a matrix time

e = input sequence (avoids) Ly o et
e = data structure operations oe O
number of points (e + o) = total cost ° ® @ jnput
@)
ce
[]

keys

Encode execution as a matrix time

e = input sequence (avoids) Ly o et
e = data structure operations oe O
number of points (e + o) = total cost ° ® @ jnput
@)
ce
[]

keys

Encode execution as a matrix time

e = input sequence (avoids) Ly o et
e = data structure operations oe O
number of points (e + o) = total cost ° ® @ jnput
@)
ce
[]

keys

Encode execution as a matrix

e = input sequence (avoids 7)

e = data structure operations
number of points (e + o) = total cost

If execution contains the pattern:

Key Lemma

Encode execution as a matrix

e = input sequence (avoids 7)

e = data structure operations
number of points (e + o) = total cost

Key Lemma

there must be an input point inside

Encode execution as a matrix

e = input sequence (avoids 7)

e = data structure operations
number of points (e + o) = total cost

Key Lemma

there must be an input point inside

maybe here

Encode execution as a matrix

e = input sequence (avoids 7)

e = data structure operations
number of points (e + o) = total cost

Key Lemma

Encode execution as a matrix

e = input sequence (avoids 7)

e = data structure operations
number of points (e + o) = total cost

Key Lemma
Follows from sweepline.

Encode execution as a matrix

e = input sequence (avoids 7)

e = data structure operations
number of points (e + o) = total cost

Key Lemma
Follows from sweepline.

— input-revealing gadget

Encode execution as a matrix ——
e = input sequence (avoids 7) i
e = data structure operations 10 o

number of points (e + o) = total cost e

Key Lemma
Follows from sweepline.

— input-revealing gadget T

Encode execution as a matrix ——
e = input sequence (avoids 7) |

e = data structure operations o O
number of points (e + o) = total cost ST
: o |
o o
Key Lemma T
Follows from sweepline. 0T ;
o o

— input-revealing gadget T

Encode execution as a matrix

e = input sequence (avoids 7)

e = data structure operations
number of points (e + o) = total cost

Key Lemma
Follows from sweepline.

— input-revealing gadget

Encode execution as a matrix

e = input sequence (avoids 7)

e = data structure operations
number of points (e + o) = total cost

Key Lemma
Follows from sweepline.

— input-revealing gadget

Encode execution as a matrix

e = input sequence (avoids) '
" 0® o P

e = data structure operations P
number of points (e +) = total cost o i
R

o o

Key Lemma
Follows from sweepline. @) P
[] i

O O |

— input-revealing gadget
input X avoids (. ~)

Encode execution as a matrix

e = input sequence (avoids)

e = data structure operations
number of points (e +) = total cost

Key Lemma
Follows from sweepline.

— input-revealing gadget
input X avoids (. . ~)

— execution avoids

Encode execution as a matrix o

Key Lemma
Follows from sweepline.

e = input sequence (avoids 7) | .O ————————————————————————————
e = data structure operations O o
number of points (e + o) = total cost ®

| °

| o o)

input X avoids (. . .)

—> execution avoids o e

—> cost of sorting X is < n - 9Poly(a(n)) [CGKMS'15]

using [Klazar '00] [Keszegh '09]

Encode execution as a matrix

e = input sequence (avoids 7)

e = data structure operations
number of points (e +) = total cost

Key Lemma
Follows from sweepline.

input X avoids 7

—> execution avoids T ® (, * o)

. . ED)
— cost of sorting X is n - 2°(™)

using [Klazar '00] [Keszegh '09]

o)
o® o
o
°
o) o
o
......... ®
o o]
[CGKMS'15]

Encode execution as a matrix

e = input sequence (avoids 7) .O :
e = data structure operations o o
number of points (e + ¢) = total cost o |
o
o)
Key Lemma i
Follows from sweepline. (e} i
[) :
......... e IS SR
input X avoids 7
—> execution avoids T ® (, * o)
— cost of sorting X is n - ge(m) @D [CGKMS'15]

using [Klazar '00] [Keszegh '09]

— for various special cases O(n) can be shown, e.g., for mr = k,..., 1.

Remarks:

o Result obtained via general-purpose BST;
pattern-avoidance only used in the analysis

Remarks:

o Result obtained via general-purpose BST;
pattern-avoidance only used in the analysis

e Can also do it via selection-sort with an adaptive heap [KS'1g]

Remarks:

o Result obtained via general-purpose BST;
pattern-avoidance only used in the analysis

e Can also do it via selection-sort with an adaptive heap [KS'1g]

o Result relies on extremal function ex (7 ® (4 *4),n)

Remarks:

o Result obtained via general-purpose BST;
pattern-avoidance only used in the analysis

e Can also do it via selection-sort with an adaptive heap [KS'1g]

o Result relies on extremal function ex (7 ® (4 *4),n)

. O(|x]) 2
Recent improvement: n - 2%(") — n - 2%)FOUTT) (yight)
[Chalermsook, Pettie, Ying.'23]

Remarks:

o Result obtained via general-purpose BST;
pattern-avoidance only used in the analysis

e Can also do it via selection-sort with an adaptive heap [KS'1g]

o Result relies on extremal function ex (7 ® (4 *4),n)

. O(|x]) 2
Recent improvement: n - 2%(") — n - 2%)FOUTT) (yight)
[Chalermsook, Pettie, Ying.'23]

Remarks:

o Result obtained via general-purpose BST;
pattern-avoidance only used in the analysis

e Can also do it via selection-sort with an adaptive heap [KS'1g]

o Result relies on extremal function ex (7 ® (4 *4),n)

. O(|x]) 2
Recent improvement: n - 2%(") — n - 2%)FOUTT) (yight)
[Chalermsook, Pettie, Ying.'23]

Can we get to O(n)?

Remarks:

@ Result obtained via general-purpose BST;
pattern-avoidance only used in the analysis

e Can also do it via selection-sort with an adaptive heap [KS'1g]

o Result relies on extremal function ex (7 ® (4 *4),n)

. O(|x]) 2
Recent improvement: n - 2%(") — n - 2%)FOUTT) (yight)
[Chalermsook, Pettie, Ying.'23]

Can we get to O(n)? [BKO'24] [Opler'24-+]

Example: TSP

Example: TSP

Given n points in [0, 1]?, find TSP-tour of min length.

(1,1)
[]
® 9
P o
[]
° [] []
[]) °
[
[]

Example: TSP

Given n points in [0, 1]?, find TSP-tour of min length.

(1,1)
[]
oo
Y o
(]
pe [J [)
[] Y ¢
L J
[J

Example: TSP

Given n points in [0,1]?, find TSP-tour of min length.

(1,1)
[]
L)
° [J
o
pe [J []
[] Y -
L J
[

Example: TSP

Given n points in [0,1]?, find TSP-tour of min length.

Worst-case OPT length =

(1,1)
[]
L)
° [J
o
pe [J []
[] Y -
L J
[

(0,0)

Example: TSP

Given n points in [0,1]?, find TSP-tour of min length.

Worst-case OPT length = O(y/n).

1/vn
()
o e
» o
()
° e 0
¢ o,
[
[J

Example: TSP

Given n points in [0,1]?, find TSP-tour of min length.

Worst-case OPT length = O(y/n).

1/vn
()
o e
» o
()
° e 0
¢ o,
[
[J

Example: TSP

Given n points in [0,1]?, find TSP-tour of min length.

Worst-case OPT length = O(y/n).

1/vn
()
o e
» o
()
° e 0
¢ o,
[
[J
(0,0)

(this bound is tight)

Example: TSP

Given n points in [0, 1], find TSP-tour of min length.

(1,1)
[]
L)
° o
[]
pe [J []
[] ® -
L J
[J

Example: TSP

Given n points in [0, 1]? avoiding 7, find TSP-tour of min length.

(1,1)
[]
L)
° o
[]
pe [J []
[] ® -
L J
[J

Example: TSP

Given n points in [0, 1]? avoiding 7, find TSP-tour of min length.

(1,1)
[]
L)
° o
[]
pe [J []
[] ® -
L J
[J

Example: TSP

Given n points in [0,1]? avoiding 7, find TSP-tour of min length.
eg. m™=(3,2,1) cost € O(1)

(1,1)

Example: TSP

Given n points in [0,1]? avoiding 7, find TSP-tour of min length.
eg. m™=(3,2,1) cost € O(1)

(1,1)

Example: TSP

Given n points in [0,1]% avoiding 7, find TSP-tour of min length.

For arbitrary 77

Example: TSP

Given n points in [0, 1]? avoiding 7, find TSP-tour of min length.

Example: TSP

Given n points in [0, 1]? avoiding 7, find TSP-tour of min length.

(1,1)

(0,0)

Example: TSP

Given n points in [0, 1]? avoiding 7, find TSP-tour of min length.

(1,1)

(0,0)

Consider y/n X /n grid. Only ¢r - /n cells touched. (by [Marcus-Tardos])

Example: TSP

Given n points in [0, 1]? avoiding 7, find TSP-tour of min length.

(1,1)
e
(0,0)
Consider y/n X /n grid. Only ¢r - /n cells touched. (by [Marcus-Tardos])

Cost f(n) < + (tours within cells).

Example: TSP

Given n points in [0, 1]? avoiding 7, find TSP-tour of min length.

(1,1)

(0,0)

Consider y/n X /n grid. Only ¢r - /n cells touched. (by [Marcus-Tardos])

Cost f(n) < + (tours within cells).
fn) < +cr - f(Vn/ex)

Example: TSP

Given n points in [0, 1]? avoiding 7, find TSP-tour of min length.

(1,1)

(0,0)
Consider v/n x y/n grid. Only ¢, - y/n cells touched.

Cost f(n) < + (tours within cells).
fn) < +cn - f(Vn/ex)
< (logn)Psen) « \/n. [BKO'24]

(by [Marcus-Tardos])

Example: TSP

Given n points in [0, 1]? avoiding 7, find TSP-tour of min length.

(1,1)

(0,0)

Consider y/n X /n grid. Only ¢r - /n cells touched. (by [Marcus-Tardos])

Cost f(n) < + (tours within cells).
+cn - f(Vn/ex)

fn) <
< (logn)Psen) « \/n. [BKO'24]
— with more work, we can reduce to O(cy - logn).

X is m-avoiding

X is m-avoiding

= twin-width(X) < ¢,

X is m-avoiding

= twin-width(X) < ¢; <= X has a c,-wide merge-sequence
[Guillemot, Marx '14]

X is m-avoiding

= twin-width(X) < ¢; <= X has a c,-wide merge-sequence
[Guillemot, Marx '14]

— Can use merge-sequence to construct O (logn) cost TSP tour. [BKO '24]

X is m-avoiding

= twin-width(X) < ¢; <= X has a c,-wide merge-sequence
[Guillemot, Marx '14]

— Can use merge-sequence to construct O (logn) cost TSP tour. [BKO '24]

— Can use merge-sequence to construct O (n) cost BST execution. [BKO '24]

X is m-avoiding

= twin-width(X) < ¢; <= X has a c,-wide merge-sequence
[Guillemot, Marx '14]

— Can use merge-sequence to construct O (logn) cost TSP tour. [BKO '24]

— Can use merge-sequence to construct O (n) cost BST execution. [BKO '24]

Merge sequences

Merge: Replace two points/rectangles by their

Merge sequence: Sequence of rectangle/point

families obtained by successive merges

Merge sequences

Merge: Replace two points/rectangles by their
bounding box

Merge sequence: Sequence of rectangle/point
families obtained by successive merges

Merge sequences

Merge: Replace two points/rectangles by their
bounding box

Merge sequence: Sequence of rectangle/point
families obtained by successive merges

Merge sequences

Merge: Replace two points/rectangles by their
bounding box

Merge sequence: Sequence of rectangle/point
families obtained by successive merges

Merge sequences

Merge: Replace two points/rectangles by their
bounding box

Merge sequence: Sequence of rectangle/point
families obtained by successive merges

Merge sequences

Merge: Replace two points/rectangles by their
bounding box

Merge sequence: Sequence of rectangle/point
families obtained by successive merges

Merge sequences

Merge: Replace two points/rectangles by their
bounding box

Merge sequence: Sequence of rectangle/point
families obtained by successive merges

Merge sequences

Merge: Replace two points/rectangles by their
bounding box

Merge sequence: Sequence of rectangle/point
families obtained by successive merges

Merge sequences

Merge: Replace two points/rectangles by their
bounding box

Merge sequence: Sequence of rectangle/point
families obtained by successive merges

Merge sequences

Merge: Replace two points/rectangles by their
bounding box

Merge sequence: Sequence of rectangle/point
families obtained by successive merges

Merge sequences

Merge: Replace two points/rectangles by their
bounding box

Merge sequence: Sequence of rectangle/point
families obtained by successive merges

Merge sequences

Merge: Replace two points/rectangles by their
bounding box

Merge sequence: Sequence of rectangle/point
families obtained by successive merges

Two rectangles/points see each other if their
projections on the x- or y-axis overlap.

Merge sequences

Merge: Replace two points/rectangles by their
bounding box

Merge sequence: Sequence of rectangle/point
families obtained by successive merges

Two rectangles/points see each other if their
projections on the x- or y-axis overlap.

A rectangle family is d-wide if no rectangle/point
sees more than d other rectangles/points.

Merge sequences

Merge: Replace two points/rectangles by their

bounding box

Merge sequence: Sequence of rectangle/point

families obtained by successive merges

Two rectangles/points see each other if their [

projections on the x- or y-axis overlap.

A rectangle family is d-wide if no rectangle/point 2

sees more than d other rectangles/points. 1
1

A merge sequence is d-wide if each of its

rectangle families is d-wide.

X is m-avoiding

= twin-width(X) < ¢ <= X has a c,-wide merge-sequence
[Guillemot, Marx '14]

— Can use merge-sequence to construct Or(logn) cost TSP tour. [BKO '24]

— Can use merge-sequence to construct Or(n) cost BST execution. [BKO '24]

X is m-avoiding

= twin-width(X) < ¢ <= X has a c,-wide merge-sequence
[Guillemot, Marx '14]
— Can use merge-sequence to construct Or(logn) cost TSP tour. [BKO '24]
— Can use merge-sequence to construct Or(n) cost BST execution. [BKO '24]

—> Sorting can be implemented by O(n)-cost insertion-sort in BST...

X is m-avoiding

= twin-width(X) < ¢ <= X has a c,-wide merge-sequence
[Guillemot, Marx '14]
— Can use merge-sequence to construct Or(logn) cost TSP tour. [BKO '24]
— Can use merge-sequence to construct Or(n) cost BST execution. [BKO '24]

—> Sorting can be implemented by O(n)-cost insertion-sort in BST...

...but this is computed offline in O(nlogn) time, so no O(n)-time sort yet.

X is m-avoiding

= twin-width(X) < ¢ <= X has a c,-wide merge-sequence
[Guillemot, Marx '14]
— Can use merge-sequence to construct Or(logn) cost TSP tour. [BKO '24]
— Can use merge-sequence to construct Or(n) cost BST execution. [BKO '24]

—> Sorting can be implemented by O(n)-cost insertion-sort in BST...

...but this is computed offline in O(nlogn) time, so no O(n)-time sort yet.

— Splay tree achieves O(n)-time sorting assuming dynamic optimality
conjecture

X is m-avoiding

= twin-width(X) < ¢ <= X has a c,-wide merge-sequence
[Guillemot, Marx '14]
— Can use merge-sequence to construct Or(logn) cost TSP tour. [BKO '24]
— Can use merge-sequence to construct Or(n) cost BST execution. [BKO '24]

—> Sorting can be implemented by O(n)-cost insertion-sort in BST...

...but this is computed offline in O(nlogn) time, so no O(n)-time sort yet.

— Splay tree achieves O(n)-time sorting assuming dynamic optimality
conjecture

Very recent: O(n)-time sort of pattern-avoiding input via
careful mergesort + forbidden submatrix analysis. [Opler '24-+].

Conclusions

#1. Extremal combinatorics used to analyse algorithms

Conclusions

#1. Extremal combinatorics used to analyse algorithms

o Examples mostly from data structures

Conclusions

#1. Extremal combinatorics used to analyse algorithms

o Examples mostly from data structures

o TODO: find more examples, when does it work?

Conclusions

#1. Extremal combinatorics used to analyse algorithms

o Examples mostly from data structures

o TODO: find more examples, when does it work?

#£2. Pattern-avoidance reduces complexity

Conclusions

#1. Extremal combinatorics used to analyse algorithms

o Examples mostly from data structures

o TODO: find more examples, when does it work?

#£2. Pattern-avoidance reduces complexity

o data structures, sorting [CGKMS'15] [KS'18] [BKO'24] [Opler'24]

Conclusions

#1. Extremal combinatorics used to analyse algorithms

o Examples mostly from data structures

o TODO: find more examples, when does it work?

#£2. Pattern-avoidance reduces complexity

o data structures, sorting [CGKMS'15] [KS'18] [BKO'24] [Opler'24]
@ geometric problems: TSP, MST, Steiner-tree, Manhattan-netw. [BKO'24]

Conclusions

#1. Extremal combinatorics used to analyse algorithms

o Examples mostly from data structures

o TODO: find more examples, when does it work?

#£2. Pattern-avoidance reduces complexity

o data structures, sorting [CGKMS'15] [KS'18] [BKO'24] [Opler'24]
@ geometric problems: TSP, MST, Steiner-tree, Manhattan-netw. [BKO'24]

@ online problems: k-server [BKO'24]

Conclusions

#1. Extremal combinatorics used to analyse algorithms

o Examples mostly from data structures

o TODO: find more examples, when does it work?

#£2. Pattern-avoidance reduces complexity

o data structures, sorting [CGKMS'15] [KS'18] [BKO'24] [Opler'24]
@ geometric problems: TSP, MST, Steiner-tree, Manhattan-netw. [BKO'24]

online problems: k-server [BKO'24]

@ Matching lower bounds + stronger bounds for families of patterns 7

Conclusions

#1. Extremal combinatorics used to analyse algorithms

o Examples mostly from data structures

o TODO: find more examples, when does it work?

#£2. Pattern-avoidance reduces complexity

o data structures, sorting [CGKMS'15] [KS'18] [BKO'24] [Opler'24]
@ geometric problems: TSP, MST, Steiner-tree, Manhattan-netw. [BKO'24]

online problems: k-server [BKO'24]

@ Matching lower bounds + stronger bounds for families of patterns 7

TODO: find more examples, when does it work?

Conclusions

#1. Extremal combinatorics used to analyse algorithms

o Examples mostly from data structures

o TODO: find more examples, when does it work?

#£2. Pattern-avoidance reduces complexity

o data structures, sorting [CGKMS'15] [KS'18] [BKO'24] [Opler'24]
@ geometric problems: TSP, MST, Steiner-tree, Manhattan-netw. [BKO'24]

online problems: k-server [BKO'24]

@ Matching lower bounds + stronger bounds for families of patterns 7

TODO: find more examples, when does it work?

References

Optimization with pattern-avoiding input

B. A. Berendsohn, L. Kozma, M. Opler. [STOC 2024]

Smooth heaps and a dual view of self-adjusting data structures
L. Kozma, T. Saranurak. [STOC 2018]

Pattern-avoiding access in binary search trees
P. Chalermsook, M. Goswami, L. Kozma, K. Mehlhorn, T. Saranurak. [FOCS 2015]

References

Optimization with pattern-avoiding input
B. A. Berendsohn, L. Kozma, M. Opler. [STOC 2024]

Smooth heaps and a dual view of self-adjusting data structures
L. Kozma, T. Saranurak. [STOC 2018]

Pattern-avoiding access in binary search trees
P. Chalermsook, M. Goswami, L. Kozma, K. Mehlhorn, T. Saranurak. [FOCS 2015]

On an extremal problem in graph theory
P. Turdn. [Matematikai és Fizikai Lapok 1941]

Davenport-Schinzel theory of matrices
Z. Firedi, P. Hajnal. [Discrete Mathematics 1992]

Excluded permutation matrices and the Stanley-Wilf conjecture
A. Marcus, G. Tardos. [J. Combin. Theory Ser. A 2004]

On 0-1 matrices and small excluded submatrices
G. Tardos. [J. Combin. Theory Ser. A 2005]

Applications of Forbidden 0-1 Matrices to Search Tree and Path Compression-Based Data
Structures
S. Pettie. [SODA 2010]

Finding small patterns in permutations in linear time
S. Guillemot, D. Marx. [SODA 2014]

Optimization with pattern-avoiding input
Benjamin Aram Berendsohn, L. Kozma, Michal Opler. [STOC 2024]

Optimization with pattern-avoiding input
Benjamin Aram Berendsohn, L. Kozma, Michal Opler. [STOC 2024]

...thanks...

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)
2. Execute next merge .
3. Add all grid points in new rectangle
(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

— 1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

—» 2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

—» 3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

— 1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

—» 2. Execute next merge .
3. Add all grid points in new rectangle
(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

—» 3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

— 1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)
—» 2. Execute next merge .

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)
2. Execute next merge .

—» 3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

— 1. Form grid from all points (and rectangle sides)
2. Execute next merge .
3. Add all grid points in new rectangle
(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)
—» 2. Execute next merge .

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)
2. Execute next merge .

—» 3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

— 1. Form grid from all points (and rectangle sides)
2. Execute next merge .

3. Add all grid points in new rectangle

(repeat)

L 4 L]
*—o o

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)
—» 2. Execute next merge .

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)
2. Execute next merge .

—» 3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

— 1. Form grid from all points (and rectangle sides)
2. Execute next merge .

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P T

1. Form grid from all points (and rectangle sides)

—» 2. Execute next merge .

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P T

1. Form grid from all points (and rectangle sides)

2. Execute next merge .

—» 3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

— 1. Form grid from all points (and rectangle sides)

2. Execute next merge .

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

—» 2. Execute next merge .

3. Add all grid points in new rectangle
(repeat)

*—0—&

90000 @

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge .

—» 3. Add all grid points in new rectangle

(repeat)

*—0—&

90000 @

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

— 1. Form grid from all points (and rectangle sides)

2. Execute next merge .

3. Add all grid points in new rectangle
(repeat)

*—0—&

*—0—0—0—&

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

—» 2. Execute next merge

3. Add all grid points in new rectangle
(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

—» 3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

— 1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle
(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P [T

L 2
L 2

1. Form grid from all points (and rectangle sides)

—» 2. Execute next merge

3. Add all grid points in new rectangle
(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P [T

L 2
L 2

1. Form grid from all points (and rectangle sides)

2. Execute next merge

—» 3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

— 1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle
(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P T

1. Form grid from all points (and rectangle sides) : 1 J |

—» 2. Execute next merge ° o o
3. Add all grid points in new rectangle ¢ 1 :
(repeat) .
[2
& L g ‘ L 2
[1

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)
2. Execute next merge
—» 3. Add all grid points in new rectangle

(repeat)

9 —o—@

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)
2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)
2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Claim:
(a) Result is arborally satisfied
(b) # of added points is O(d? - n) (proof now)

of added points

Claim: In every step, we add O(d?) points.

of added points

Claim: In every step, we add O(d?) points.

Proof idea: Rectangle sees < d other rectangles/points
= < 4d grid lines

Seen by R —» R

® Not seen by R

of added points

Claim: In every step, we add O(d?) points.

Proof idea: Rectangle sees < d other rectangles/points
= < 4d grid lines

Seen by R —» R

@ Not seen by R

Conclusion: The optimum for every input sequence of twin-width d is O(d? - n).

= The optimum for every m-avoiding input sequence is O(c2 - n).

Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n —4)). [NEW]

Every m-avoiding point set has a O(c,)-wide distance-balanced merge sequence.

Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n —4)). [NEW]

Every m-avoiding point set has a O(c,)-wide distance-balanced merge sequence.

Spanning tree construction: Whenever we merge
two rectangles, connect arbitrary points within them.

Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n —4)). [NEW]

Every m-avoiding point set has a O(c,)-wide distance-balanced merge sequence.

Spanning tree construction: Whenever we merge
two rectangles, connect arbitrary points within them. .

Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n —4)). [NEW]

Every m-avoiding point set has a O(c,)-wide distance-balanced merge sequence.

Spanning tree construction: Whenever we merge
two rectangles, connect arbitrary points within them. N
[]

Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n —4)). [NEW]

Every m-avoiding point set has a O(c,)-wide distance-balanced merge sequence.

Spanning tree construction: Whenever we merge
two rectangles, connect arbitrary points within them. N
[]

Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n —4)). [NEW]

Every m-avoiding point set has a O(c,)-wide distance-balanced merge sequence.

Spanning tree construction: Whenever we merge
two rectangles, connect arbitrary points within them. N
[]

Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n —4)). [NEW]

Every m-avoiding point set has a O(c,)-wide distance-balanced merge sequence.

Spanning tree construction: Whenever we merge
two rectangles, connect arbitrary points within them. N
[]

Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n —4)). [NEW]

Every m-avoiding point set has a O(c,)-wide distance-balanced merge sequence.

Spanning tree construction: Whenever we merge
two rectangles, connect arbitrary points within them.

Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n —4)). [NEW]

Every m-avoiding point set has a O(c,)-wide distance-balanced merge sequence.

Spanning tree construction: Whenever we merge
two rectangles, connect arbitrary points within them.

/\

Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n —4)). [NEW]

Every m-avoiding point set has a O(c,)-wide distance-balanced merge sequence.

Spanning tree construction: Whenever we merge
two rectangles, connect arbitrary points within them.
N\

/\

Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n —4)). [NEW]

Every m-avoiding point set has a O(c,)-wide distance-balanced merge sequence.

Spanning tree construction: Whenever we merge
two rectangles, connect arbitrary points within them.
N\

=

Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n —4)). [NEW]

Every m-avoiding point set has a O(c,)-wide distance-balanced merge sequence.

Spanning tree construction: Whenever we merge

two rectangles, connect arbitrary points within them.

\/\
/)
/\

Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n —4)). [NEW]

Every m-avoiding point set has a O(c,)-wide distance-balanced merge sequence.

Spanning tree construction: Whenever we merge

two rectangles, connect arbitrary points within them.

T
A
o/

/™

N

Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n —4)). [NEW]

Every m-avoiding point set has a O(c,)-wide distance-balanced merge sequence.

Spanning tree construction: Whenever we merge
two rectangles, connect arbitrary points within them.

Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n —4)). [NEW]

Every m-avoiding point set has a O(c,)-wide distance-balanced merge sequence.

Spanning tree construction: Whenever we merge
two rectangles, connect arbitrary points within them.

1~
—— ~logn

Length:

