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How large/dense/frequent can X be if it avoids Y7
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Forbidden matrices

How many e's can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

ex (( ) n) O(n 3/2) — Zarankiewicz problem: bipartite graph avoiding C4

ex (( ) ) = O(n-«(n)) — related to Davenport-Schinzel sequences
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Conjecture [Fiiredi-Hajnal 1992]
ex(P,r, n) € Oﬂ-(n), for any permutation m.  — linear in n, for any fixed 7

The conjecture is true! [Marcus, Tardos, 2004]

ex(P,n) also characterized for many other patterns:
n
n - polylog(n)
— can be { n . 2%

nl+e
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find(z): Vo V0

compress path from z to root —>
U1
U1\ V2|\ U3

V2

U3
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What is the (amortized) cost of A B

operations? ]



Example: Union-Find with path compression [Pettie, 2010]

— View operations in single tree T'

(suppose all unions done upfront) y

— General path compression:
x — y where y is ancestor of x

— Analyze cost of n general path
compressions in T’
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— Encode entire execution as an nodes of T in postorder
n X n matrix M €T

M;; = @ < node z touched during time

j-th compression

total cost = number of e's in M
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o 00
Q encode execution 0000
—> {°® °
[ J
0/1 Matrix M

Algorithm A

show that avoids
some pattern P

e

bound on density of M
=bound on cost of A
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Permutation patterns

Permutation 7 contains permutation 7:
7 has a subsequence with the same ordering as 7.
(Otherwise T avoids 7.)

Example:
32451786 contains 1243 because2576~1243
(both are like o, °)

32451786 contains 1234 because2457~1234
(both are like ,° )

32451786 avoids 4321
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T avoids (2,1) <= 7 is increasing
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T avoids (2,3,1) <= 7 is sortable with a stack

» 5. [M28] Show that it is possible to obtain a permutation pips2 ... pn from 12...n
using a stack if and only if there are no indices i < j < k such that p; < pp < pi.
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T avoids (2,1) <= 7 is increasing
7 avoids (k+ 1,k,...,1) <= 7 is k-increasing
T avoids (2,3,1) <= 7 is sortable with a stack

7 avoids (1,3,2) and (3,1,2) <= every entry is a left-to-right min or max
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Conjecture [Stanley, Wilf, 1980s]
At most 20=(n) — single-exponential in n (K n!)

— equivalent with the Fiiredi-Hajnal conjecture on matrix density
[Klazar, 2000]

Both conjectures are true! [Marcus, Tardos, 2004]
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A new algorithmic question:

o Consider some algorithmic problem with sequential input
e Does its complexity change if input avoids pattern 7?

Example: Sorting n items via comparisons
o Complexity: ©(nlogn)

o Can we sort faster if input avoids some (arbitrary) fixed 7?

e Sort with O(n) comparisons?
e Sort in O(n) time?

e Want a general-purpose algorithm that is not tailored to each
pattern m
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Example: Sorting

Idea: Sort by inserting into a binary search tree (BST)

logn
— Use some dynamically balanced tree? mi

O(logn) per operation =—> O(nlogn) cost for sorting (too much!)

— To achieve O(n), we need some adaptive BST, like Splay tree
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When searching or inserting, rotate* the accessed element up,
until it becomes the root.

*in a funny way.




Self-adjusting tree: Splay tree [Sleator, Tarjan, 1983]

i11.6.1.2. Splay-Bdume 249

Schittle(7,T)
_

Abb. 95. 4 Schiittle-Operationen.

[K. Mehlhorn: Data structures and algorithms (German ed. 1986)]
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access sequence X time
eg.,4,56,1,2 3 A oe
— point set X ce
@ooco o
dynamic BST serving X ' 5 L
--------- Qeo
— pointset Y DO X Py
) >
nodes touched by pointer keys
moves and rotations
O X QX
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A matrix view of BSTs [Demaine, Harmon, lacono, Kane, P#trascu, SODA'09]

access sequence X time
eg.,4,56,1,2 3 A O@ .........
— point set X -

000 O
dynamic BST serving X e 0

cCeoO
— pointset Y DO X PY
t >

nodes touched by pointer
moves and rotations

Y is a BST execution of X <= Y is a satisfie(

!

no a,b € Y form an en
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0 &-1-6
[ J (o]
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Encode execution as a matrix

e = input sequence (avoids 7)

e = data structure operations
number of points (e + ) = total cost

Key Lemma
Follows from sweepline.

input X avoids 7

—> execution avoids T ® (, * o)

. . ED)
— cost of sorting X is n - 2°(™)

using [Klazar '00] [Keszegh '09]

o)
o® o
o
°
o) o
o
......... ®
o o]
[CGKMS'15]



Encode execution as a matrix

e = input sequence (avoids 7) .O :
e = data structure operations o o
number of points (e + ¢) = total cost o |
o
o )
Key Lemma i
Follows from sweepline. (e} i
[ ) :
......... e IS SR
input X avoids 7
—> execution avoids T ® (, * o)
— cost of sorting X is n - ge(m) @D [CGKMS'15]

using [Klazar '00] [Keszegh '09]

— for various special cases O(n) can be shown, e.g., for mr = k,..., 1.
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@ Result obtained via general-purpose BST;
pattern-avoidance only used in the analysis

e Can also do it via selection-sort with an adaptive heap [KS'1g]

o Result relies on extremal function ex (7 ® (4 *4),n)

. O(|x]) 2
Recent improvement: n - 2%(") — n - 2%)FOUTT)  (yight)
[Chalermsook, Pettie, Ying.'23]

Can we get to O(n)? [BKO'24] [Opler'24-+]
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(this bound is tight)
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Example: TSP

Given n points in [0, 1]? avoiding 7, find TSP-tour of min length.

(1,1)

(0,0)

Consider y/n X /n grid. Only ¢r - /n cells touched. (by [Marcus-Tardos])

Cost f(n) < + (tours within cells).
+cn - f(Vn/ex)

fn) <
< (logn)Psen) « \/n.  [BKO'24]
— with more work, we can reduce to O(cy - logn).
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Merge sequences

Merge: Replace two points/rectangles by their

bounding box

Merge sequence: Sequence of rectangle/point

families obtained by successive merges

Two rectangles/points see each other if their [

projections on the x- or y-axis overlap.

A rectangle family is d-wide if no rectangle/point 2

sees more than d other rectangles/points. 1
1

A merge sequence is d-wide if each of its

rectangle families is d-wide.
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X is m-avoiding

= twin-width(X) < ¢ <= X has a c,-wide merge-sequence
[Guillemot, Marx '14]
— Can use merge-sequence to construct Or(logn) cost TSP tour. [BKO '24]
— Can use merge-sequence to construct Or(n) cost BST execution. [BKO '24]

—> Sorting can be implemented by O(n)-cost insertion-sort in BST...

...but this is computed offline in O(nlogn) time, so no O(n)-time sort yet.

— Splay tree achieves O(n)-time sorting assuming dynamic optimality
conjecture

Very recent: O(n)-time sort of pattern-avoiding input via
careful mergesort + forbidden submatrix analysis. [Opler '24-+].
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Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

—» 2. Execute next merge .

3. Add all grid points in new rectangle
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Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge .

—» 3. Add all grid points in new rectangle

(repeat)
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Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

— 1. Form grid from all points (and rectangle sides)

2. Execute next merge .

3. Add all grid points in new rectangle
(repeat)
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Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

—» 2. Execute next merge

3. Add all grid points in new rectangle
(repeat)
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Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

—» 3. Add all grid points in new rectangle
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Given: d-wide merge sequence of P

— 1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle
(repeat)




Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P [ T

L 2
L 2

1. Form grid from all points (and rectangle sides)

—» 2. Execute next merge

3. Add all grid points in new rectangle
(repeat)




Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P [ T

L 2
L 2

1. Form grid from all points (and rectangle sides)

2. Execute next merge

—» 3. Add all grid points in new rectangle

(repeat)




Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

— 1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle
(repeat)




Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P T

1. Form grid from all points (and rectangle sides) : 1 J |

—» 2. Execute next merge ° o o
3. Add all grid points in new rectangle ¢ 1 :
(repeat) .
[ 2
& L g ‘ L 2
[ 1




Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)
2. Execute next merge
—» 3. Add all grid points in new rectangle

(repeat)
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Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)
2. Execute next merge

3. Add all grid points in new rectangle

(repeat)




Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)
2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Claim:
(a) Result is arborally satisfied
(b) # of added points is O(d? - n) (proof now)




# of added points

Claim: In every step, we add O(d?) points.



# of added points

Claim: In every step, we add O(d?) points.

Proof idea: Rectangle sees < d other rectangles/points
= < 4d grid lines

Seen by R —» R

® Not seen by R




# of added points

Claim: In every step, we add O(d?) points.

Proof idea: Rectangle sees < d other rectangles/points
= < 4d grid lines

Seen by R —» R

@ Not seen by R

Conclusion: The optimum for every input sequence of twin-width d is O(d? - n).

= The optimum for every m-avoiding input sequence is O(c2 - n).



Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n —4)). [NEW]

Every m-avoiding point set has a O(c,)-wide distance-balanced merge sequence.
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In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n —4)). [NEW]

Every m-avoiding point set has a O(c,)-wide distance-balanced merge sequence.

Spanning tree construction: Whenever we merge
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Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n —4)). [NEW]

Every m-avoiding point set has a O(c,)-wide distance-balanced merge sequence.

Spanning tree construction: Whenever we merge
two rectangles, connect arbitrary points within them.
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Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n —4)). [NEW]

Every m-avoiding point set has a O(c,)-wide distance-balanced merge sequence.

Spanning tree construction: Whenever we merge

two rectangles, connect arbitrary points within them.
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Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n —4)). [NEW]

Every m-avoiding point set has a O(c,)-wide distance-balanced merge sequence.

Spanning tree construction: Whenever we merge

two rectangles, connect arbitrary points within them.
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Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n —4)). [NEW]

Every m-avoiding point set has a O(c,)-wide distance-balanced merge sequence.

Spanning tree construction: Whenever we merge
two rectangles, connect arbitrary points within them.



Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n —4)). [NEW]

Every m-avoiding point set has a O(c,)-wide distance-balanced merge sequence.

Spanning tree construction: Whenever we merge
two rectangles, connect arbitrary points within them.
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