
Analysis of Algorithms via Extremal Combinatorics

László Kozma
Freie Universität Berlin

Analysis of Algorithms, Bath, UK
June 2024

Extremal Combinatorics

Typical question (informally):

How large/dense/frequent can X be if it avoids Y ?

Extremal Combinatorics

Typical question (informally):

How large/dense/frequent can X be if it avoids Y ?

Extremal Combinatorics

How many edges can a graph of n vertices have if it avoids k-cliques?

Answer: At most
(

1− 1
k−1

)
n2

2 . [Turán, 1941]

Extremal Combinatorics

How many edges can a graph of n vertices have if it avoids k-cliques?

Answer: At most
(

1− 1
k−1

)
n2

2 . [Turán, 1941]

Extremal Combinatorics

How many edges can a graph of n vertices have if it avoids k-cliques?

Answer: At most
(

1− 1
k−1

)
n2

2 . [Turán, 1941]

Extremal Combinatorics

How many edges can a graph of n vertices have if it avoids k-cliques?

Answer: At most
(

1− 1
k−1

)
n2

2 . [Turán, 1941]

Extremal Combinatorics

How many edges can a graph of n vertices have if it avoids k-cliques?

Answer: At most
(

1− 1
k−1

)
n2

2 . [Turán, 1941]

This bound is sharp.

Extremal Combinatorics

How many edges can a graph of n vertices have if it avoids k-cliques?

Answer: At most
(

1− 1
k−1

)
n2

2 . [Turán, 1941]

This bound is sharp.

source: Wikipedia

Extremal Combinatorics

How many edges can a graph of n vertices have if it avoids k-cliques?

Answer: At most
(

1− 1
k−1

)
n2

2 . [Turán, 1941]

Forbidden matrices

How many •’s can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

ex(P, n): max number of •’s, while avoiding P (0 ≤ ex(P, n) ≤ n2)

ex

((
• •
• •

)
, n

)
= Θ(n3/2) → Zarankiewicz problem: bipartite graph avoiding C4

ex

• •
•

 , n

 = Θ(n)

ex

((
• •
• •

)
, n

)
= Θ(n · α(n)) → related to Davenport-Schinzel sequences

Forbidden matrices

How many •’s can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

ex(P, n): max number of •’s, while avoiding P (0 ≤ ex(P, n) ≤ n2)

ex

((
• •
• •

)
, n

)
= Θ(n3/2) → Zarankiewicz problem: bipartite graph avoiding C4

ex

• •
•

 , n

 = Θ(n)

ex

((
• •
• •

)
, n

)
= Θ(n · α(n)) → related to Davenport-Schinzel sequences

Forbidden matrices

How many •’s can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

ex(P, n): max number of •’s, while avoiding P (0 ≤ ex(P, n) ≤ n2)

ex

((
• •
• •

)
, n

)
= Θ(n3/2) → Zarankiewicz problem: bipartite graph avoiding C4

ex

• •
•

 , n

 = Θ(n)

ex

((
• •
• •

)
, n

)
= Θ(n · α(n)) → related to Davenport-Schinzel sequences

Forbidden matrices

How many •’s can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

ex(P, n): max number of •’s, while avoiding P (0 ≤ ex(P, n) ≤ n2)

ex

((
• •
• •

)
, n

)
= Θ(n3/2) → Zarankiewicz problem: bipartite graph avoiding C4

ex

• •
•

 , n

 = Θ(n)

ex

((
• •
• •

)
, n

)
= Θ(n · α(n)) → related to Davenport-Schinzel sequences

Forbidden matrices

How many •’s can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

ex(P, n): max number of •’s, while avoiding P (0 ≤ ex(P, n) ≤ n2)

ex

((
• •
• •

)
, n

)
= Θ(n3/2) → Zarankiewicz problem: bipartite graph avoiding C4

ex

• •
•

 , n

 = Θ(n)

ex

((
• •
• •

)
, n

)
= Θ(n · α(n)) → related to Davenport-Schinzel sequences

Forbidden matrices

How many •’s can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

ex(P, n): max number of •’s, while avoiding P (0 ≤ ex(P, n) ≤ n2)

ex

((
• •
• •

)
, n

)
= Θ(n3/2) → Zarankiewicz problem: bipartite graph avoiding C4

ex

• •
•

 , n

 = Θ(n)

ex

((
• •
• •

)
, n

)
= Θ(n · α(n)) → related to Davenport-Schinzel sequences

Forbidden matrices

How many •’s can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

ex(P, n): max number of •’s, while avoiding P (0 ≤ ex(P, n) ≤ n2)

ex

((
• •
• •

)
, n

)
= Θ(n3/2) → Zarankiewicz problem: bipartite graph avoiding C4

ex

• •
•

 , n

 = Θ(n)

ex

((
• •
• •

)
, n

)
= Θ(n · α(n)) → related to Davenport-Schinzel sequences

Forbidden matrices

How many •’s can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

ex(P, n): max number of •’s, while avoiding P (0 ≤ ex(P, n) ≤ n2)

ex

((
• •
• •

)
, n

)
= Θ(n3/2) → Zarankiewicz problem: bipartite graph avoiding C4

ex

• •
•

 , n

 = Θ(n)

ex

((
• •
• •

)
, n

)
= Θ(n · α(n)) → related to Davenport-Schinzel sequences

Forbidden matrices

How many •’s can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

ex(P, n): max number of •’s, while avoiding P (0 ≤ ex(P, n) ≤ n2)

ex

((
• •
• •

)
, n

)
= Θ(n3/2) → Zarankiewicz problem: bipartite graph avoiding C4

ex

• •
•

 , n

 = Θ(n)

ex

((
• •
• •

)
, n

)
= Θ(n · α(n)) → related to Davenport-Schinzel sequences

Forbidden matrices

How many •’s can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

ex(P, n): max number of •’s, while avoiding P (0 ≤ ex(P, n) ≤ n2)

ex

((
• •
• •

)
, n

)
= Θ(n3/2) → Zarankiewicz problem: bipartite graph avoiding C4

ex

• •
•

 , n

 = Θ(n)

ex

((
• •
• •

)
, n

)
= Θ(n · α(n)) → related to Davenport-Schinzel sequences

Forbidden matrices

How many •’s can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

ex(P, n): max number of •’s, while avoiding P (0 ≤ ex(P, n) ≤ n2)

ex

((
• •
• •

)
, n

)
=

Θ(n3/2) → Zarankiewicz problem: bipartite graph avoiding C4

ex

• •
•

 , n

 = Θ(n)

ex

((
• •
• •

)
, n

)
= Θ(n · α(n)) → related to Davenport-Schinzel sequences

Forbidden matrices

How many •’s can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

ex(P, n): max number of •’s, while avoiding P (0 ≤ ex(P, n) ≤ n2)

ex

((
• •
• •

)
, n

)
= Θ(n3/2) → Zarankiewicz problem: bipartite graph avoiding C4

ex

• •
•

 , n

 = Θ(n)

ex

((
• •
• •

)
, n

)
= Θ(n · α(n)) → related to Davenport-Schinzel sequences

Forbidden matrices

How many •’s can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

ex(P, n): max number of •’s, while avoiding P (0 ≤ ex(P, n) ≤ n2)

ex

((
• •
• •

)
, n

)
= Θ(n3/2) → Zarankiewicz problem: bipartite graph avoiding C4

ex

• •
•

 , n

 =

Θ(n)

ex

((
• •
• •

)
, n

)
= Θ(n · α(n)) → related to Davenport-Schinzel sequences

Forbidden matrices

How many •’s can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

ex(P, n): max number of •’s, while avoiding P (0 ≤ ex(P, n) ≤ n2)

ex

((
• •
• •

)
, n

)
= Θ(n3/2) → Zarankiewicz problem: bipartite graph avoiding C4

ex

• •
•

 , n

 = Θ(n)

ex

((
• •
• •

)
, n

)
= Θ(n · α(n)) → related to Davenport-Schinzel sequences

Forbidden matrices

How many •’s can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

ex(P, n): max number of •’s, while avoiding P (0 ≤ ex(P, n) ≤ n2)

ex

((
• •
• •

)
, n

)
= Θ(n3/2) → Zarankiewicz problem: bipartite graph avoiding C4

ex

• •
•

 , n

 = Θ(n)

ex

((
• •
• •

)
, n

)
=

Θ(n · α(n)) → related to Davenport-Schinzel sequences

Forbidden matrices

How many •’s can an n-by-n matrix have if it avoids the pattern P?

Matrix pattern containment:

ex(P, n): max number of •’s, while avoiding P (0 ≤ ex(P, n) ≤ n2)

ex

((
• •
• •

)
, n

)
= Θ(n3/2) → Zarankiewicz problem: bipartite graph avoiding C4

ex

• •
•

 , n

 = Θ(n)

ex

((
• •
• •

)
, n

)
= Θ(n · α(n)) → related to Davenport-Schinzel sequences

A broad class: permutation patterns, e.g., Pπ =




•
•
•


.

Conjecture [Füredi-Hajnal 1992]

ex(Pπ, n) ∈ Oπ(n), for any permutation π. → linear in n, for any fixed π

The conjecture is true! [Marcus, Tardos, 2004]

ex(P, n) also characterized for many other patterns:

→ can be



n

n · polylog(n)
n · 2α(n)

n1+ε

. . .

A broad class: permutation patterns, e.g., Pπ =




•
•
•


.

Conjecture [Füredi-Hajnal 1992]

ex(Pπ, n) ∈ Oπ(n), for any permutation π. → linear in n, for any fixed π

The conjecture is true! [Marcus, Tardos, 2004]

ex(P, n) also characterized for many other patterns:

→ can be



n

n · polylog(n)
n · 2α(n)

n1+ε

. . .

A broad class: permutation patterns, e.g., Pπ =




•
•
•


.

Conjecture [Füredi-Hajnal 1992]

ex(Pπ, n) ∈ Oπ(n), for any permutation π. → linear in n, for any fixed π

The conjecture is true! [Marcus, Tardos, 2004]

ex(P, n) also characterized for many other patterns:

→ can be



n

n · polylog(n)
n · 2α(n)

n1+ε

. . .

A broad class: permutation patterns, e.g., Pπ =




•
•
•


.

Conjecture [Füredi-Hajnal 1992]

ex(Pπ, n) ∈ Oπ(n), for any permutation π. → linear in n, for any fixed π

The conjecture is true! [Marcus, Tardos, 2004]

ex(P, n) also characterized for many other patterns:

→ can be



n

n · polylog(n)
n · 2α(n)

n1+ε

. . .

Use extremal combinatorics to:

I. Analyse algorithms

II. Model input structure

Use extremal combinatorics to:

I. Analyse algorithms

II. Model input structure

Example: Union-Find with path compression [Pettie, 2010]

Example: Union-Find with path compression [Pettie, 2010]

→ Collection of disjoint sets:

find(x): return set containing x
union(A,B): merge A and B

→ Initially all singletons

Example: Union-Find with path compression [Pettie, 2010]

→ Collection of disjoint sets:

find(x): return set containing x
union(A,B): merge A and B

→ Initially all singletons

A B C D

Example: Union-Find with path compression [Pettie, 2010]

→ Collection of disjoint sets:

find(x): return set containing x
union(A,B): merge A and B

→ Initially all singletons

A B C D

Example: Union-Find with path compression [Pettie, 2010]

union(B,C):

make the root of one tree the child
of the other (arbitrarily)

A B C D

Example: Union-Find with path compression [Pettie, 2010]

union(B,C):

make the root of one tree the child
of the other (arbitrarily)

B C

Example: Union-Find with path compression [Pettie, 2010]

union(B,C):

make the root of one tree the child
of the other (arbitrarily)

B CU

Example: Union-Find with path compression [Pettie, 2010]

find(x):

compress path from x to root
B CU

Example: Union-Find with path compression [Pettie, 2010]

find(x):

compress path from x to root

Example: Union-Find with path compression [Pettie, 2010]

find(x):

compress path from x to root

Example: Union-Find with path compression [Pettie, 2010]

What is the (amortized) cost of
operations?

A B C D

Example: Union-Find with path compression [Pettie, 2010]

→ View operations in single tree T

(suppose all unions done upfront)

→ General path compression:
x→ y where y is ancestor of x

→ Analyze cost of n general path
compressions in T

Example: Union-Find with path compression [Pettie, 2010]

→ Encode entire execution as an
n× n matrix M

Example: Union-Find with path compression [Pettie, 2010]

→ Encode entire execution as an
n× n matrix M

()
nodes of T in postorder

time

Example: Union-Find with path compression [Pettie, 2010]

→ Encode entire execution as an
n× n matrix M

Mxj = • ⇔ node x touched during
j-th compression

total cost = number of •’s in M ()
nodes of T in postorder

time

Example: Union-Find with path compression [Pettie, 2010]

→ Encode entire execution as an
n× n matrix M

Lemma: M avoids P =

(
••
• •

)
. ()

nodes of T in postorder

time

Example: Union-Find with path compression [Pettie, 2010]

Lemma: M avoids P =

(
••
• •

)
.

Proof: suppose not, then
x→ y → z on a path (because of
postorder and as nodes cannot
gains ancestors.

After i-th compress, x and y
become unrelated, cannot be on
j-th compress path together.

()

before i-th compress after i-th compress

target of i-th compress

Example: Union-Find with path compression [Pettie, 2010]

Lemma: M avoids P =

(
••
• •

)
.

Proof: suppose not, then
x→ y → z on a path (because of
postorder and as nodes cannot gain
ancestors).

After i-th compress, x and y
become unrelated, cannot be on
j-th compress path together.

=⇒ Cost ≤ ex

((
••
• •

)
, n

)
= n log2 n+O(n)

[Tardos, 2005]

()

before i-th compress after i-th compress

target of i-th compress

Example: Union-Find with path compression [Pettie, 2010]

Lemma: M avoids P =

(
••
• •

)
.

Proof: suppose not, then
x→ y → z on a path (because of
postorder and as nodes cannot gain
ancestors).

After i-th compress, x and y
become unrelated, cannot be on
j-th compress path together.

=⇒ Cost ≤ ex

((
••
• •

)
, n

)
= n log2 n+O(n)

[Tardos, 2005]

()

before i-th compress after i-th compress

target of i-th compress

encode execution

show that avoids
some pattern P

bound on density of M
=bound on cost of A

0/1 Matrix M

()
Algorithm A

Use extremal combinatorics to:

I. Analyse algorithms

II. Model input structure

Use extremal combinatorics to:

I. Analyse algorithms

II. Model input structure

Use extremal combinatorics to:

I. Analyse algorithms

II. Model input structure

Permutation patterns

Permutation τ contains permutation π:
τ has a subsequence with the same ordering as π.

(Otherwise τ avoids π.)

Example:

3 2 4 5 1 7 8 6 contains 1 2 4 3 because 2 5 7 6 ∼ 1 2 4 3

(both are like
•
•

•
•

)

3 2 4 5 1 7 8 6 contains 1 2 3 4 because 2 4 5 7 ∼ 1 2 3 4

(both are like
•
•
•
•

)

3 2 4 5 1 7 8 6 avoids 4 3 2 1

Permutation patterns

Permutation τ contains permutation π:
τ has a subsequence with the same ordering as π.

(Otherwise τ avoids π.)

Example:

3 2 4 5 1 7 8 6 contains 1 2 4 3 because 2 5 7 6 ∼ 1 2 4 3

(both are like
•
•

•
•

)

3 2 4 5 1 7 8 6 contains 1 2 3 4 because 2 4 5 7 ∼ 1 2 3 4

(both are like
•
•
•
•

)

3 2 4 5 1 7 8 6 avoids 4 3 2 1

Permutation patterns

Permutation τ contains permutation π:
τ has a subsequence with the same ordering as π.

(Otherwise τ avoids π.)

Example:

3 2 4 5 1 7 8 6 contains 1 2 4 3 because 2 5 7 6 ∼ 1 2 4 3

(both are like
•
•

•
•

)

3 2 4 5 1 7 8 6 contains 1 2 3 4 because 2 4 5 7 ∼ 1 2 3 4

(both are like
•
•
•
•

)

3 2 4 5 1 7 8 6 avoids 4 3 2 1

Permutation patterns

Permutation τ contains permutation π:
τ has a subsequence with the same ordering as π.

(Otherwise τ avoids π.)

Example:

3 2 4 5 1 7 8 6 contains 1 2 4 3 because 2 5 7 6 ∼ 1 2 4 3

(both are like
•
•

•
•

)

3 2 4 5 1 7 8 6 contains 1 2 3 4 because 2 4 5 7 ∼ 1 2 3 4

(both are like
•
•
•
•

)

3 2 4 5 1 7 8 6 avoids 4 3 2 1

Permutation patterns

Permutation τ contains permutation π:
τ has a subsequence with the same ordering as π.

(Otherwise τ avoids π.)

Example:

3 2 4 5 1 7 8 9 6 contains 1 2 4 3

3 2 4 5 1 7 8 6
contains 1 2 4 3 because 2 5 7 6 ∼ 1 2 4 3

(both are like
•
•

•
•

)

3 2 4 5 1 7 8 6 contains 1 2 3 4 because 2 4 5 7 ∼ 1 2 3 4

(both are like
•
•
•
•

)

3 2 4 5 1 7 8 6 avoids 4 3 2 1

Permutation patterns

Permutation τ contains permutation π:
τ has a subsequence with the same ordering as π.

(Otherwise τ avoids π.)

Example:

3 2 4 5 1 7 8 6 contains 1 2 4 3 because 2 5 7 6 ∼ 1 2 4 3

(both are like
•
•

•
•

)

3 2 4 5 1 7 8 6 contains 1 2 3 4 because 2 4 5 7 ∼ 1 2 3 4

(both are like
•
•
•
•

)

3 2 4 5 1 7 8 6 avoids 4 3 2 1

Permutation patterns

Permutation τ contains permutation π:
τ has a subsequence with the same ordering as π.

(Otherwise τ avoids π.)

Example:

3 2 4 5 1 7 8 6 contains 1 2 4 3 because 2 5 7 6 ∼ 1 2 4 3

(both are like
•
•

•
•

)

3 2 4 5 1 7 8 6 contains 1 2 3 4 because 2 4 5 7 ∼ 1 2 3 4

(both are like
•
•
•
•

)

3 2 4 5 1 7 8 6 avoids 4 3 2 1

Permutation patterns

Permutation τ contains permutation π:
τ has a subsequence with the same ordering as π.

(Otherwise τ avoids π.)

Example:

3 2 4 5 1 7 8 6 contains 1 2 4 3 because 2 5 7 6 ∼ 1 2 4 3

(both are like
•
•

•
•

)

3 2 4 5 1 7 8 6 contains 1 2 3 4

because 2 4 5 7 ∼ 1 2 3 4

(both are like
•
•
•
•

)

3 2 4 5 1 7 8 6 avoids 4 3 2 1

Permutation patterns

Permutation τ contains permutation π:
τ has a subsequence with the same ordering as π.

(Otherwise τ avoids π.)

Example:

3 2 4 5 1 7 8 6 contains 1 2 4 3 because 2 5 7 6 ∼ 1 2 4 3

(both are like
•
•

•
•

)

3 2 4 5 1 7 8 6 contains 1 2 3 4 because 2 4 5 7 ∼ 1 2 3 4

(both are like
•
•
•
•

)

3 2 4 5 1 7 8 6 avoids 4 3 2 1

Permutation patterns

Permutation τ contains permutation π:
τ has a subsequence with the same ordering as π.

(Otherwise τ avoids π.)

Example:

3 2 4 5 1 7 8 6 contains 1 2 4 3 because 2 5 7 6 ∼ 1 2 4 3

(both are like
•
•

•
•

)

3 2 4 5 1 7 8 6 contains 1 2 3 4 because 2 4 5 7 ∼ 1 2 3 4

(both are like
•
•
•
•

)

3 2 4 5 1 7 8 6 avoids 4 3 2 1

Permutation patterns

2 4 7 1 5 3 6

contains 2 3 1

Permutation patterns

2 4 7 1 5 3 6

contains 2 3 1

2 4 7 1 5 3 6

contains 2 3 1

Permutation patterns

2 4 7 1 5 3 6

contains 2 3 1

Examples

τ avoids (2, 1) ⇐⇒

τ is increasing

τ avoids (k + 1, k, . . . , 1) ⇐⇒ τ is k-increasing

τ avoids (2, 3, 1) ⇐⇒ τ is sortable with a stack

τ avoids (1, 3, 2) and (3, 1, 2) ⇐⇒ every entry is a left-to-right min or max

Examples

τ avoids (2, 1) ⇐⇒ τ is increasing

τ avoids (k + 1, k, . . . , 1) ⇐⇒ τ is k-increasing

τ avoids (2, 3, 1) ⇐⇒ τ is sortable with a stack

τ avoids (1, 3, 2) and (3, 1, 2) ⇐⇒ every entry is a left-to-right min or max

Examples

τ avoids (2, 1) ⇐⇒ τ is increasing

τ avoids (k + 1, k, . . . , 1) ⇐⇒

τ is k-increasing

τ avoids (2, 3, 1) ⇐⇒ τ is sortable with a stack

τ avoids (1, 3, 2) and (3, 1, 2) ⇐⇒ every entry is a left-to-right min or max

Examples

τ avoids (2, 1) ⇐⇒ τ is increasing

τ avoids (k + 1, k, . . . , 1) ⇐⇒ τ is k-increasing

τ avoids (2, 3, 1) ⇐⇒ τ is sortable with a stack

τ avoids (1, 3, 2) and (3, 1, 2) ⇐⇒ every entry is a left-to-right min or max

Examples

τ avoids (2, 1) ⇐⇒ τ is increasing

τ avoids (k + 1, k, . . . , 1) ⇐⇒ τ is k-increasing

τ avoids (2, 3, 1) ⇐⇒ τ is sortable with a stack

τ avoids (1, 3, 2) and (3, 1, 2) ⇐⇒ every entry is a left-to-right min or max

Examples

τ avoids (2, 1) ⇐⇒ τ is increasing

τ avoids (k + 1, k, . . . , 1) ⇐⇒ τ is k-increasing

τ avoids (2, 3, 1) ⇐⇒ τ is sortable with a stack

τ avoids (1, 3, 2) and (3, 1, 2) ⇐⇒ every entry is a left-to-right min or max

Examples

τ avoids (2, 1) ⇐⇒ τ is increasing

τ avoids (k + 1, k, . . . , 1) ⇐⇒ τ is k-increasing

τ avoids (2, 3, 1) ⇐⇒

τ is sortable with a stack

τ avoids (1, 3, 2) and (3, 1, 2) ⇐⇒ every entry is a left-to-right min or max

Examples

τ avoids (2, 1) ⇐⇒ τ is increasing

τ avoids (k + 1, k, . . . , 1) ⇐⇒ τ is k-increasing

τ avoids (2, 3, 1) ⇐⇒ τ is sortable with a stack

τ avoids (1, 3, 2) and (3, 1, 2) ⇐⇒ every entry is a left-to-right min or max

Examples

τ avoids (2, 1) ⇐⇒ τ is increasing

τ avoids (k + 1, k, . . . , 1) ⇐⇒ τ is k-increasing

τ avoids (2, 3, 1) ⇐⇒ τ is sortable with a stack

[Knuth 1968]

τ avoids (1, 3, 2) and (3, 1, 2) ⇐⇒ every entry is a left-to-right min or max

Examples

τ avoids (2, 1) ⇐⇒ τ is increasing

τ avoids (k + 1, k, . . . , 1) ⇐⇒ τ is k-increasing

τ avoids (2, 3, 1) ⇐⇒ τ is sortable with a stack

[Knuth 1968]

τ avoids (1, 3, 2) and (3, 1, 2) ⇐⇒ every entry is a left-to-right min or max

Examples

τ avoids (2, 1) ⇐⇒ τ is increasing

τ avoids (k + 1, k, . . . , 1) ⇐⇒ τ is k-increasing

τ avoids (2, 3, 1) ⇐⇒ τ is sortable with a stack

τ avoids (1, 3, 2) and (3, 1, 2) ⇐⇒ every entry is a left-to-right min or max

Examples

τ avoids (2, 1) ⇐⇒ τ is increasing

τ avoids (k + 1, k, . . . , 1) ⇐⇒ τ is k-increasing

τ avoids (2, 3, 1) ⇐⇒ τ is sortable with a stack

τ avoids (1, 3, 2) and (3, 1, 2) ⇐⇒

every entry is a left-to-right min or max

Examples

τ avoids (2, 1) ⇐⇒ τ is increasing

τ avoids (k + 1, k, . . . , 1) ⇐⇒ τ is k-increasing

τ avoids (2, 3, 1) ⇐⇒ τ is sortable with a stack

τ avoids (1, 3, 2) and (3, 1, 2) ⇐⇒ every entry is a left-to-right min or max

Examples

τ avoids (2, 1) ⇐⇒ τ is increasing

τ avoids (k + 1, k, . . . , 1) ⇐⇒ τ is k-increasing

τ avoids (2, 3, 1) ⇐⇒ τ is sortable with a stack

τ avoids (1, 3, 2) and (3, 1, 2) ⇐⇒ every entry is a left-to-right min or max

How many permutations of length n avoid a pattern π?

Conjecture [Stanley, Wilf, 1980s]

At most 2Oπ(n). → single-exponential in n (� n!)

→ equivalent with the Füredi-Hajnal conjecture on matrix density

[Klazar, 2000]

Both conjectures are true! [Marcus, Tardos, 2004]

How many permutations of length n avoid a pattern π?

Conjecture [Stanley, Wilf, 1980s]

At most 2Oπ(n). → single-exponential in n (� n!)

→ equivalent with the Füredi-Hajnal conjecture on matrix density

[Klazar, 2000]

Both conjectures are true! [Marcus, Tardos, 2004]

How many permutations of length n avoid a pattern π?

Conjecture [Stanley, Wilf, 1980s]

At most 2Oπ(n).

→ single-exponential in n (� n!)

→ equivalent with the Füredi-Hajnal conjecture on matrix density

[Klazar, 2000]

Both conjectures are true! [Marcus, Tardos, 2004]

How many permutations of length n avoid a pattern π?

Conjecture [Stanley, Wilf, 1980s]

At most 2Oπ(n). → single-exponential in n (� n!)

→ equivalent with the Füredi-Hajnal conjecture on matrix density

[Klazar, 2000]

Both conjectures are true! [Marcus, Tardos, 2004]

How many permutations of length n avoid a pattern π?

Conjecture [Stanley, Wilf, 1980s]

At most 2Oπ(n). → single-exponential in n (� n!)

→ equivalent with the Füredi-Hajnal conjecture on matrix density

[Klazar, 2000]

Both conjectures are true! [Marcus, Tardos, 2004]

How many permutations of length n avoid a pattern π?

Conjecture [Stanley, Wilf, 1980s]

At most 2Oπ(n). → single-exponential in n (� n!)

→ equivalent with the Füredi-Hajnal conjecture on matrix density

[Klazar, 2000]

Both conjectures are true! [Marcus, Tardos, 2004]

The two results:

At most (sπ)n permutations of length n that avoid π.
[Stanley-Wilf]

The density of an n× n matrix that avoids Pπ is at most cπ · n.
[Füredi-Hajnal]

→ cπ and sπ are polynomially related

The two results:

At most (sπ)n permutations of length n that avoid π.
[Stanley-Wilf]

The density of an n× n matrix that avoids Pπ is at most cπ · n.
[Füredi-Hajnal]

→ cπ and sπ are polynomially related

The two results:

At most (sπ)n permutations of length n that avoid π.
[Stanley-Wilf]

The density of an n× n matrix that avoids Pπ is at most cπ · n.
[Füredi-Hajnal]

→ cπ and sπ are polynomially related

A new algorithmic question:

Consider some algorithmic problem with sequential input

Does its complexity change if input avoids pattern π?

Example: Sorting n items via comparisons

Complexity: Θ(n log n)

Can we sort faster if input avoids some (arbitrary) fixed π?
Sort with O(n) comparisons?
Sort in O(n) time?

Want a general-purpose algorithm that is not tailored to each
pattern π

A new algorithmic question:

Consider some algorithmic problem with sequential input

Does its complexity change if input avoids pattern π?

Example: Sorting n items via comparisons

Complexity: Θ(n log n)

Can we sort faster if input avoids some (arbitrary) fixed π?
Sort with O(n) comparisons?
Sort in O(n) time?

Want a general-purpose algorithm that is not tailored to each
pattern π

A new algorithmic question:

Consider some algorithmic problem with sequential input

Does its complexity change if input avoids pattern π?

Example: Sorting n items via comparisons

Complexity: Θ(n log n)

Can we sort faster if input avoids some (arbitrary) fixed π?
Sort with O(n) comparisons?
Sort in O(n) time?

Want a general-purpose algorithm that is not tailored to each
pattern π

A new algorithmic question:

Consider some algorithmic problem with sequential input

Does its complexity change if input avoids pattern π?

Example: Sorting n items via comparisons

Complexity: Θ(n log n)

Can we sort faster if input avoids some (arbitrary) fixed π?
Sort with O(n) comparisons?
Sort in O(n) time?

Want a general-purpose algorithm that is not tailored to each
pattern π

A new algorithmic question:

Consider some algorithmic problem with sequential input

Does its complexity change if input avoids pattern π?

Example: Sorting n items via comparisons

Complexity: Θ(n log n)

Can we sort faster if input avoids some (arbitrary) fixed π?
Sort with O(n) comparisons?
Sort in O(n) time?

Want a general-purpose algorithm that is not tailored to each
pattern π

A new algorithmic question:

Consider some algorithmic problem with sequential input

Does its complexity change if input avoids pattern π?

Example: Sorting n items via comparisons

Complexity: Θ(n log n)

Can we sort faster if input avoids some (arbitrary) fixed π?

Sort with O(n) comparisons?
Sort in O(n) time?

Want a general-purpose algorithm that is not tailored to each
pattern π

A new algorithmic question:

Consider some algorithmic problem with sequential input

Does its complexity change if input avoids pattern π?

Example: Sorting n items via comparisons

Complexity: Θ(n log n)

Can we sort faster if input avoids some (arbitrary) fixed π?
Sort with O(n) comparisons?

Sort in O(n) time?

Want a general-purpose algorithm that is not tailored to each
pattern π

A new algorithmic question:

Consider some algorithmic problem with sequential input

Does its complexity change if input avoids pattern π?

Example: Sorting n items via comparisons

Complexity: Θ(n log n)

Can we sort faster if input avoids some (arbitrary) fixed π?
Sort with O(n) comparisons?
Sort in O(n) time?

Want a general-purpose algorithm that is not tailored to each
pattern π

A new algorithmic question:

Consider some algorithmic problem with sequential input

Does its complexity change if input avoids pattern π?

Example: Sorting n items via comparisons

Complexity: Θ(n log n)

Can we sort faster if input avoids some (arbitrary) fixed π?
Sort with O(n) comparisons?
Sort in O(n) time?

Want a general-purpose algorithm that is not tailored to each
pattern π

Why study this?

Generalizes known easy inputs: 21-avoiding, 231-avoiding, etc.

There are 2O(n) such inputs =⇒ sorting lower bound just O(n)

Make [Marcus-Tardos] results “algorithmic”

Analogy to avoided minors in graphs
→ sparsity, decompositions, efficient algorithms

Why study this?

Generalizes known easy inputs: 21-avoiding, 231-avoiding, etc.

There are 2O(n) such inputs =⇒ sorting lower bound just O(n)

Make [Marcus-Tardos] results “algorithmic”

Analogy to avoided minors in graphs
→ sparsity, decompositions, efficient algorithms

Why study this?

Generalizes known easy inputs: 21-avoiding, 231-avoiding, etc.

There are 2O(n) such inputs =⇒ sorting lower bound just O(n)

Make [Marcus-Tardos] results “algorithmic”

Analogy to avoided minors in graphs
→ sparsity, decompositions, efficient algorithms

Why study this?

Generalizes known easy inputs: 21-avoiding, 231-avoiding, etc.

There are 2O(n) such inputs =⇒ sorting lower bound just O(n)

Make [Marcus-Tardos] results “algorithmic”

Analogy to avoided minors in graphs
→ sparsity, decompositions, efficient algorithms

Why study this?

Generalizes known easy inputs: 21-avoiding, 231-avoiding, etc.

There are 2O(n) such inputs =⇒ sorting lower bound just O(n)

Make [Marcus-Tardos] results “algorithmic”

Analogy to avoided minors in graphs
→ sparsity, decompositions, efficient algorithms

Why study this?

Generalizes known easy inputs: 21-avoiding, 231-avoiding, etc.

There are 2O(n) such inputs =⇒ sorting lower bound just O(n)

Make [Marcus-Tardos] results “algorithmic”

Analogy to avoided minors in graphs
→ sparsity, decompositions, efficient algorithms

Example: Sorting

Idea: Sort by inserting into a binary search tree (BST)

→ Use some dynamically balanced tree?

O(log n) per operation =⇒ O(n log n) cost for sorting (too much!)

→ To achieve O(n), we need some adaptive BST, like Splay tree

Example: Sorting

Idea: Sort by inserting into a binary search tree (BST)

→ Use some dynamically balanced tree?

O(log n) per operation =⇒ O(n log n) cost for sorting (too much!)

→ To achieve O(n), we need some adaptive BST, like Splay tree

Example: Sorting

Idea: Sort by inserting into a binary search tree (BST)

→ Use some dynamically balanced tree?

O(log n) per operation =⇒ O(n log n) cost for sorting (too much!)

→ To achieve O(n), we need some adaptive BST, like Splay tree

Example: Sorting

Idea: Sort by inserting into a binary search tree (BST)

→ Use some dynamically balanced tree?

O(log n) per operation =⇒ O(n log n) cost for sorting (too much!)

→ To achieve O(n), we need some adaptive BST, like Splay tree

Example: Sorting

Idea: Sort by inserting into a binary search tree (BST)

→ Use some dynamically balanced tree?

O(log n) per operation =⇒ O(n log n) cost for sorting (too much!)

→ To achieve O(n), we need some adaptive BST, like Splay tree

Self-adjusting tree: Splay tree [Sleator, Tarjan, 1983]

When searching or inserting, rotate∗ the accessed element up,
until it becomes the root.

∗in a funny way.

Self-adjusting tree: Splay tree [Sleator, Tarjan, 1983]

When searching or inserting, rotate∗ the accessed element up,
until it becomes the root.

∗in a funny way.

Self-adjusting tree: Splay tree [Sleator, Tarjan, 1983]

When searching or inserting, rotate∗ the accessed element up,
until it becomes the root.

∗in a funny way.

Self-adjusting tree: Splay tree [Sleator, Tarjan, 1983]

When searching or inserting, rotate∗ the accessed element up,
until it becomes the root.

∗in a funny way.

Self-adjusting tree: Splay tree [Sleator, Tarjan, 1983]

When searching or inserting, rotate∗ the accessed element up,
until it becomes the root.

∗in a funny way.

A B

C

D A

B

C D

A

B C

D

A B DC

root

Self-adjusting tree: Splay tree [Sleator, Tarjan, 1983]

[K. Mehlhorn: Data structures and algorithms (German ed. 1986)]

A matrix view of BSTs [Demaine, Harmon, Iacono, Kane, Pǎtraşcu, SODA’09]

access sequence X
e.g., 4, 5, 6, 1, 2, 3

→ point set X

dynamic BST serving X

→ point set Y ⊇ X
↑

nodes touched by pointer
moves and rotations

Y is a BST execution of X ⇐⇒ Y is a satisfied superset of X
↓

no a, b ∈ Y form an empty rectangle

A matrix view of BSTs [Demaine, Harmon, Iacono, Kane, Pǎtraşcu, SODA’09]

access sequence X
e.g., 4, 5, 6, 1, 2, 3

→ point set X

dynamic BST serving X

→ point set Y ⊇ X
↑

nodes touched by pointer
moves and rotations

Y is a BST execution of X ⇐⇒ Y is a satisfied superset of X
↓

no a, b ∈ Y form an empty rectangle

A matrix view of BSTs [Demaine, Harmon, Iacono, Kane, Pǎtraşcu, SODA’09]

access sequence X
e.g., 4, 5, 6, 1, 2, 3

→ point set X

dynamic BST serving X

→ point set Y ⊇ X
↑

nodes touched by pointer
moves and rotations

Y is a BST execution of X ⇐⇒ Y is a satisfied superset of X
↓

no a, b ∈ Y form an empty rectangle

A matrix view of BSTs [Demaine, Harmon, Iacono, Kane, Pǎtraşcu, SODA’09]

access sequence X
e.g., 4, 5, 6, 1, 2, 3

→ point set X

dynamic BST serving X

→ point set Y ⊇ X
↑

nodes touched by pointer
moves and rotations

keys

time

Y is a BST execution of X ⇐⇒ Y is a satisfied superset of X
↓

no a, b ∈ Y form an empty rectangle

A matrix view of BSTs [Demaine, Harmon, Iacono, Kane, Pǎtraşcu, SODA’09]

access sequence X
e.g., 4, 5, 6, 1, 2, 3

→ point set X

dynamic BST serving X

→ point set Y ⊇ X
↑

nodes touched by pointer
moves and rotations

keys

time

Y is a BST execution of X ⇐⇒ Y is a satisfied superset of X
↓

no a, b ∈ Y form an empty rectangle

A matrix view of BSTs [Demaine, Harmon, Iacono, Kane, Pǎtraşcu, SODA’09]

access sequence X
e.g., 4, 5, 6, 1, 2, 3

→ point set X

dynamic BST serving X

→ point set Y ⊇ X

↑
nodes touched by pointer
moves and rotations

keys

time

Y is a BST execution of X ⇐⇒ Y is a satisfied superset of X
↓

no a, b ∈ Y form an empty rectangle

A matrix view of BSTs [Demaine, Harmon, Iacono, Kane, Pǎtraşcu, SODA’09]

access sequence X
e.g., 4, 5, 6, 1, 2, 3

→ point set X

dynamic BST serving X

→ point set Y ⊇ X
↑

nodes touched by pointer
moves and rotations

keys

time

Y is a BST execution of X ⇐⇒ Y is a satisfied superset of X
↓

no a, b ∈ Y form an empty rectangle

A matrix view of BSTs [Demaine, Harmon, Iacono, Kane, Pǎtraşcu, SODA’09]

access sequence X
e.g., 4, 5, 6, 1, 2, 3

→ point set X

dynamic BST serving X

→ point set Y ⊇ X
↑

nodes touched by pointer
moves and rotations

keys

time

Y is a BST execution of X ⇐⇒ Y is a satisfied superset of X

Y is a BST execution of X ⇐⇒ Y is a satisfied superset of X
↓

no a, b ∈ Y form an empty rectangle

A matrix view of BSTs [Demaine, Harmon, Iacono, Kane, Pǎtraşcu, SODA’09]

access sequence X
e.g., 4, 5, 6, 1, 2, 3

→ point set X

dynamic BST serving X

→ point set Y ⊇ X
↑

nodes touched by pointer
moves and rotations

keys

time

Y is a BST execution of X ⇐⇒ Y is a satisfied superset of X

↓
no a, b ∈ Y form an empty rectangle

A matrix view of BSTs [Demaine, Harmon, Iacono, Kane, Pǎtraşcu, SODA’09]

access sequence X
e.g., 4, 5, 6, 1, 2, 3

→ point set X

dynamic BST serving X

→ point set Y ⊇ X
↑

nodes touched by pointer
moves and rotations

keys

time

Y is a BST execution of X ⇐⇒ Y is a satisfied superset of X
↓

no a, b ∈ Y form an empty rectangle

A matrix view of BSTs [Demaine, Harmon, Iacono, Kane, Pǎtraşcu, SODA’09]

access sequence X
e.g., 4, 5, 6, 1, 2, 3

→ point set X

dynamic BST serving X

→ point set Y ⊇ X
↑

nodes touched by pointer
moves and rotations

keys

time

Y is a BST execution of X ⇐⇒ Y is a satisfied superset of X
↓

no a, b ∈ Y form an empty rectangle

a

b a

b

a

b

a

b

a

b

A matrix view of BSTs [Demaine, Harmon, Iacono, Kane, Pǎtraşcu, SODA’09]

access sequence X
e.g., 4, 5, 6, 1, 2, 3

→ point set X

dynamic BST serving X

→ point set Y ⊇ X
↑

nodes touched by pointer
moves and rotations

keys

time

Y is a BST execution of X ⇐⇒ Y is a satisfied superset of X
↓

no a, b ∈ Y form an empty rectangle

a

b a

b

a

b

a

b

a

b

A matrix view of BSTs [Demaine, Harmon, Iacono, Kane, Pǎtraşcu, SODA’09]

access sequence X
e.g., 4, 5, 6, 1, 2, 3

→ point set X

dynamic BST serving X

→ point set Y ⊇ X
↑

nodes touched by pointer
moves and rotations

keys

time

Y is a BST execution of X ⇐⇒ Y is a satisfied superset of X
↓

no a, b ∈ Y form an empty rectangle

a

b a

b

a

b

a

b

a

b

A matrix view of BSTs

Suggests a natural algorithm:

Geometric sweepline
bottom-up.

Can be implemented as a
BST, similar to splay trees.

This describes an insertion-sort execution.

Task: Bound the cost
↓

number of dots in matrix

A matrix view of BSTs

Suggests a natural algorithm:

Geometric sweepline
bottom-up.

Can be implemented as a
BST, similar to splay trees.

This describes an insertion-sort execution.

Task: Bound the cost
↓

number of dots in matrix

A matrix view of BSTs

Suggests a natural algorithm:

Geometric sweepline
bottom-up.

Can be implemented as a
BST, similar to splay trees.

keys

time

This describes an insertion-sort execution.

Task: Bound the cost
↓

number of dots in matrix

A matrix view of BSTs

Suggests a natural algorithm:

Geometric sweepline
bottom-up.

Can be implemented as a
BST, similar to splay trees.

keys

time

This describes an insertion-sort execution.

Task: Bound the cost
↓

number of dots in matrix

A matrix view of BSTs

Suggests a natural algorithm:

Geometric sweepline
bottom-up.

Can be implemented as a
BST, similar to splay trees.

keys

time

This describes an insertion-sort execution.

Task: Bound the cost
↓

number of dots in matrix

A matrix view of BSTs

Suggests a natural algorithm:

Geometric sweepline
bottom-up.

Can be implemented as a
BST, similar to splay trees.

keys

time

This describes an insertion-sort execution.

Task: Bound the cost
↓

number of dots in matrix

A matrix view of BSTs

Suggests a natural algorithm:

Geometric sweepline
bottom-up.

Can be implemented as a
BST, similar to splay trees.

keys

time

This describes an insertion-sort execution.

Task: Bound the cost
↓

number of dots in matrix

A matrix view of BSTs

Suggests a natural algorithm:

Geometric sweepline
bottom-up.

Can be implemented as a
BST, similar to splay trees.

keys

time

This describes an insertion-sort execution.

Task: Bound the cost
↓

number of dots in matrix

A matrix view of BSTs

Suggests a natural algorithm:

Geometric sweepline
bottom-up.

Can be implemented as a
BST, similar to splay trees.

keys

time

This describes an insertion-sort execution.

Task: Bound the cost
↓

number of dots in matrix

A matrix view of BSTs

Suggests a natural algorithm:

Geometric sweepline
bottom-up.

Can be implemented as a
BST, similar to splay trees.

keys

time

This describes an insertion-sort execution.

Task: Bound the cost
↓

number of dots in matrix

A matrix view of BSTs

Suggests a natural algorithm:

Geometric sweepline
bottom-up.

Can be implemented as a
BST, similar to splay trees.

keys

time

This describes an insertion-sort execution.

Task: Bound the cost
↓

number of dots in matrix

A matrix view of BSTs

Suggests a natural algorithm:

Geometric sweepline
bottom-up.

Can be implemented as a
BST, similar to splay trees.

keys

time

This describes an insertion-sort execution.

Task: Bound the cost
↓

number of dots in matrix

A matrix view of BSTs

Suggests a natural algorithm:

Geometric sweepline
bottom-up.

Can be implemented as a
BST, similar to splay trees.

keys

time

input

touched node

This describes an insertion-sort execution.

Task: Bound the cost
↓

number of dots in matrix

A matrix view of BSTs

Suggests a natural algorithm:

Geometric sweepline
bottom-up.

Can be implemented as a
BST, similar to splay trees.

keys

time

input

touched node

This describes an insertion-sort execution.

Task: Bound the cost

↓
number of dots in matrix

A matrix view of BSTs

Suggests a natural algorithm:

Geometric sweepline
bottom-up.

Can be implemented as a
BST, similar to splay trees.

keys

time

input

touched node

This describes an insertion-sort execution.

Task: Bound the cost
↓

number of dots in matrix

A matrix view of BSTs

Suggests a natural algorithm:

Geometric sweepline
bottom-up.

Can be implemented as a
BST, similar to splay trees.

keys

time

input

touched node

This describes an insertion-sort execution.

Task: Bound the cost
↓

number of dots in matrix

Encode execution as a matrix
• = input sequence (avoids π)
• = data structure operations
number of points (•+ •) = total cost

Key Lemma
Follows from sweepline.

→ input-revealing gadget

=⇒ execution avoids

 •
• •

•
• •

•
• •


→ for various special cases O(n) can be shown, e.g., for π = k, . . . , 1.

Encode execution as a matrix
• = input sequence (avoids π)
• = data structure operations
number of points (•+ •) = total cost

Key Lemma
Follows from sweepline.

→ input-revealing gadget

keys

time

input

touched node

=⇒ execution avoids

 •
• •

•
• •

•
• •


→ for various special cases O(n) can be shown, e.g., for π = k, . . . , 1.

Encode execution as a matrix
• = input sequence (avoids π)
• = data structure operations
number of points (•+ •) = total cost

Key Lemma
Follows from sweepline.

→ input-revealing gadget

keys

time

input

touched node

=⇒ execution avoids

 •
• •

•
• •

•
• •


→ for various special cases O(n) can be shown, e.g., for π = k, . . . , 1.

Encode execution as a matrix
• = input sequence (avoids π)
• = data structure operations
number of points (•+ •) = total cost

Key Lemma
Follows from sweepline.

→ input-revealing gadget

keys

time

input

touched node

=⇒ execution avoids

 •
• •

•
• •

•
• •


→ for various special cases O(n) can be shown, e.g., for π = k, . . . , 1.

Encode execution as a matrix
• = input sequence (avoids π)
• = data structure operations
number of points (•+ •) = total cost

Key Lemma
Follows from sweepline.

→ input-revealing gadget

keys

time

input

touched node

=⇒ execution avoids

 •
• •

•
• •

•
• •


→ for various special cases O(n) can be shown, e.g., for π = k, . . . , 1.

Encode execution as a matrix
• = input sequence (avoids π)
• = data structure operations
number of points (•+ •) = total cost

Key Lemma
Follows from sweepline.

→ input-revealing gadget

keys

time

input

touched node

=⇒ execution avoids

 •
• •

•
• •

•
• •


→ for various special cases O(n) can be shown, e.g., for π = k, . . . , 1.

Encode execution as a matrix
• = input sequence (avoids π)
• = data structure operations
number of points (•+ •) = total cost

Key Lemma

Follows from sweepline.

→ input-revealing gadget

If execution contains the pattern:

=⇒ execution avoids

 •
• •

•
• •

•
• •


→ for various special cases O(n) can be shown, e.g., for π = k, . . . , 1.

Encode execution as a matrix
• = input sequence (avoids π)
• = data structure operations
number of points (•+ •) = total cost

Key Lemma

Follows from sweepline.

→ input-revealing gadget

there must be an input point inside

=⇒ execution avoids

 •
• •

•
• •

•
• •


→ for various special cases O(n) can be shown, e.g., for π = k, . . . , 1.

Encode execution as a matrix
• = input sequence (avoids π)
• = data structure operations
number of points (•+ •) = total cost

Key Lemma

Follows from sweepline.

→ input-revealing gadget

there must be an input point inside

maybe here

=⇒ execution avoids

 •
• •

•
• •

•
• •


→ for various special cases O(n) can be shown, e.g., for π = k, . . . , 1.

Encode execution as a matrix
• = input sequence (avoids π)
• = data structure operations
number of points (•+ •) = total cost

Key Lemma

Follows from sweepline.

→ input-revealing gadget

maybe here

=⇒ execution avoids

 •
• •

•
• •

•
• •


→ for various special cases O(n) can be shown, e.g., for π = k, . . . , 1.

Encode execution as a matrix
• = input sequence (avoids π)
• = data structure operations
number of points (•+ •) = total cost

Key Lemma
Follows from sweepline.

→ input-revealing gadget

=⇒ execution avoids

 •
• •

•
• •

•
• •


→ for various special cases O(n) can be shown, e.g., for π = k, . . . , 1.

Encode execution as a matrix
• = input sequence (avoids π)
• = data structure operations
number of points (•+ •) = total cost

Key Lemma
Follows from sweepline.

→ input-revealing gadget

=⇒ execution avoids

 •
• •

•
• •

•
• •


→ for various special cases O(n) can be shown, e.g., for π = k, . . . , 1.

Encode execution as a matrix
• = input sequence (avoids π)
• = data structure operations
number of points (•+ •) = total cost

Key Lemma
Follows from sweepline.

→ input-revealing gadget

=⇒ execution avoids

 •
• •

•
• •

•
• •


→ for various special cases O(n) can be shown, e.g., for π = k, . . . , 1.

Encode execution as a matrix
• = input sequence (avoids π)
• = data structure operations
number of points (•+ •) = total cost

Key Lemma
Follows from sweepline.

→ input-revealing gadget

=⇒ execution avoids

 •
• •

•
• •

•
• •


→ for various special cases O(n) can be shown, e.g., for π = k, . . . , 1.

Encode execution as a matrix
• = input sequence (avoids π)
• = data structure operations
number of points (•+ •) = total cost

Key Lemma
Follows from sweepline.

→ input-revealing gadget

=⇒ execution avoids

 •
• •

•
• •

•
• •


→ for various special cases O(n) can be shown, e.g., for π = k, . . . , 1.

Encode execution as a matrix
• = input sequence (avoids π)
• = data structure operations
number of points (•+ •) = total cost

Key Lemma
Follows from sweepline.

→ input-revealing gadget

=⇒ execution avoids

 •
• •

•
• •

•
• •


→ for various special cases O(n) can be shown, e.g., for π = k, . . . , 1.

Encode execution as a matrix
• = input sequence (avoids π)
• = data structure operations
number of points (•+ •) = total cost

Key Lemma
Follows from sweepline.

→ input-revealing gadget

input X avoids
(•

•
•

)

=⇒ execution avoids

 •
• •

•
• •

•
• •


→ for various special cases O(n) can be shown, e.g., for π = k, . . . , 1.

Encode execution as a matrix
• = input sequence (avoids π)
• = data structure operations
number of points (•+ •) = total cost

Key Lemma
Follows from sweepline.

→ input-revealing gadget

input X avoids
(•

•
•

)
=⇒ execution avoids

 •
• •

•
• •

•
• •



→ for various special cases O(n) can be shown, e.g., for π = k, . . . , 1.

Encode execution as a matrix
• = input sequence (avoids π)
• = data structure operations
number of points (•+ •) = total cost

Key Lemma
Follows from sweepline.

→ input-revealing gadget

input X avoids
(•

•
•

)
=⇒ execution avoids

 •
• •

•
• •

•
• •


=⇒ cost of sorting X is ≤ n · 2poly(α(n)) [CGKMS’15]

using [Klazar ’00] [Keszegh ’09]

→ for various special cases O(n) can be shown, e.g., for π = k, . . . , 1.

Encode execution as a matrix
• = input sequence (avoids π)
• = data structure operations
number of points (•+ •) = total cost

Key Lemma
Follows from sweepline.

→ input-revealing gadget

=⇒ execution avoids

 •
• •

•
• •

•
• •



input X avoids π

=⇒ execution avoids π ⊗ (•
• •)

=⇒ cost of sorting X is n · 2α(n)O(|π|)
[CGKMS’15]

using [Klazar ’00] [Keszegh ’09]

→ for various special cases O(n) can be shown, e.g., for π = k, . . . , 1.

Encode execution as a matrix
• = input sequence (avoids π)
• = data structure operations
number of points (•+ •) = total cost

Key Lemma
Follows from sweepline.

→ input-revealing gadget

=⇒ execution avoids

 •
• •

•
• •

•
• •



input X avoids π

=⇒ execution avoids π ⊗ (•
• •)

=⇒ cost of sorting X is n · 2α(n)O(|π|)
[CGKMS’15]

using [Klazar ’00] [Keszegh ’09]

→ for various special cases O(n) can be shown, e.g., for π = k, . . . , 1.

Remarks:

Result obtained via general-purpose BST;
pattern-avoidance only used in the analysis

Can also do it via selection-sort with an adaptive heap [KS’18]

Result relies on extremal function ex (π ⊗ (•
• •) , n)

Recent improvement: n · 2α(n)O(|π|) → n · 2α(n)+O(|π|2) (tight)

[Chalermsook, Pettie, Ying.’23]

Can we get to O(n)? yes: [BKO’24] [Opler’24+]

Remarks:

Result obtained via general-purpose BST;
pattern-avoidance only used in the analysis

Can also do it via selection-sort with an adaptive heap [KS’18]

Result relies on extremal function ex (π ⊗ (•
• •) , n)

Recent improvement: n · 2α(n)O(|π|) → n · 2α(n)+O(|π|2) (tight)

[Chalermsook, Pettie, Ying.’23]

Can we get to O(n)? yes: [BKO’24] [Opler’24+]

Remarks:

Result obtained via general-purpose BST;
pattern-avoidance only used in the analysis

Can also do it via selection-sort with an adaptive heap [KS’18]

Result relies on extremal function ex (π ⊗ (•
• •) , n)

Recent improvement: n · 2α(n)O(|π|) → n · 2α(n)+O(|π|2) (tight)

[Chalermsook, Pettie, Ying.’23]

Can we get to O(n)? yes: [BKO’24] [Opler’24+]

Remarks:

Result obtained via general-purpose BST;
pattern-avoidance only used in the analysis

Can also do it via selection-sort with an adaptive heap [KS’18]

Result relies on extremal function ex (π ⊗ (•
• •) , n)

Recent improvement: n · 2α(n)O(|π|) → n · 2α(n)+O(|π|2) (tight)

[Chalermsook, Pettie, Ying.’23]

Can we get to O(n)? yes: [BKO’24] [Opler’24+]

Remarks:

Result obtained via general-purpose BST;
pattern-avoidance only used in the analysis

Can also do it via selection-sort with an adaptive heap [KS’18]

Result relies on extremal function ex (π ⊗ (•
• •) , n)

Recent improvement: n · 2α(n)O(|π|) → n · 2α(n)+O(|π|2) (tight)

[Chalermsook, Pettie, Ying.’23]

Can we get to O(n)? yes: [BKO’24] [Opler’24+]

Remarks:

Result obtained via general-purpose BST;
pattern-avoidance only used in the analysis

Can also do it via selection-sort with an adaptive heap [KS’18]

Result relies on extremal function ex (π ⊗ (•
• •) , n)

Recent improvement: n · 2α(n)O(|π|) → n · 2α(n)+O(|π|2) (tight)

[Chalermsook, Pettie, Ying.’23]

Can we get to O(n)? yes: [BKO’24] [Opler’24+]

Remarks:

Result obtained via general-purpose BST;
pattern-avoidance only used in the analysis

Can also do it via selection-sort with an adaptive heap [KS’18]

Result relies on extremal function ex (π ⊗ (•
• •) , n)

Recent improvement: n · 2α(n)O(|π|) → n · 2α(n)+O(|π|2) (tight)

[Chalermsook, Pettie, Ying.’23]

Can we get to O(n)?

yes: [BKO’24] [Opler’24+]

Remarks:

Result obtained via general-purpose BST;
pattern-avoidance only used in the analysis

Can also do it via selection-sort with an adaptive heap [KS’18]

Result relies on extremal function ex (π ⊗ (•
• •) , n)

Recent improvement: n · 2α(n)O(|π|) → n · 2α(n)+O(|π|2) (tight)

[Chalermsook, Pettie, Ying.’23]

Can we get to O(n)? yes: [BKO’24] [Opler’24+]

Example: TSP

Example: TSP

Given n points in [0, 1]2, find TSP-tour of min length.

(0,0)

(1,1)

Example: TSP

Given n points in [0, 1]2, find TSP-tour of min length.

(0,0)

(1,1)

Example: TSP

Given n points in [0, 1]2, find TSP-tour of min length.

Worst-case OPT length = O(
√
n).

(0,0)

(1,1)

(this bound is tight)

Example: TSP

Given n points in [0, 1]2, find TSP-tour of min length.

Worst-case OPT length =

O(
√
n).

(0,0)

(1,1)

(this bound is tight)

Example: TSP

Given n points in [0, 1]2, find TSP-tour of min length.

Worst-case OPT length = O(
√
n).

(0,0)

(1,1)

(this bound is tight)

Example: TSP

Given n points in [0, 1]2, find TSP-tour of min length.

Worst-case OPT length = O(
√
n).

(0,0)

(1,1)

(this bound is tight)

Example: TSP

Given n points in [0, 1]2, find TSP-tour of min length.

Worst-case OPT length = O(
√
n).

(0,0)

(1,1)

(this bound is tight)

Example: TSP

Given n points in [0, 1]2, find TSP-tour of min length.

(0,0)

(1,1)

Example: TSP

Given n points in [0, 1]2 avoiding π, find TSP-tour of min length.

(0,0)

(1,1)

Example: TSP

Given n points in [0, 1]2 avoiding π, find TSP-tour of min length.

(0,0)

(1,1)

Example: TSP

Given n points in [0, 1]2 avoiding π, find TSP-tour of min length.

e.g. π = (3, 2, 1) cost ∈ O(1)

(0,0)

(1,1)

Example: TSP

Given n points in [0, 1]2 avoiding π, find TSP-tour of min length.

e.g. π = (3, 2, 1) cost ∈ O(1)

(0,0)

(1,1)

Example: TSP

Given n points in [0, 1]2 avoiding π, find TSP-tour of min length.

For arbitrary π?

(0,0)

(1,1)

Example: TSP

Given n points in [0, 1]2 avoiding π, find TSP-tour of min length.

(0,0)

(1,1)

Consider
√
n×
√
n grid. Only cπ ·

√
n cells touched. (by [Marcus-Tardos])

Cost f(n) ≤ (tour between cells) + (tours within cells).
f(n) ≤ f(cπ ·

√
n) + cπ · f(

√
n/cπ)

≤ (logn)O(log cπ) �
√
n. [BKO’24]

→ with more work, we can reduce to O(cπ · logn).

Example: TSP

Given n points in [0, 1]2 avoiding π, find TSP-tour of min length.

(0,0)

(1,1)

Consider
√
n×
√
n grid. Only cπ ·

√
n cells touched. (by [Marcus-Tardos])

Cost f(n) ≤ (tour between cells) + (tours within cells).
f(n) ≤ f(cπ ·

√
n) + cπ · f(

√
n/cπ)

≤ (logn)O(log cπ) �
√
n. [BKO’24]

→ with more work, we can reduce to O(cπ · logn).

Example: TSP

Given n points in [0, 1]2 avoiding π, find TSP-tour of min length.

(0,0)

(1,1)

Consider
√
n×
√
n grid. Only cπ ·

√
n cells touched. (by [Marcus-Tardos])

Cost f(n) ≤ (tour between cells) + (tours within cells).
f(n) ≤ f(cπ ·

√
n) + cπ · f(

√
n/cπ)

≤ (logn)O(log cπ) �
√
n. [BKO’24]

→ with more work, we can reduce to O(cπ · logn).

Example: TSP

Given n points in [0, 1]2 avoiding π, find TSP-tour of min length.

(0,0)

(1,1)

Consider
√
n×
√
n grid. Only cπ ·

√
n cells touched. (by [Marcus-Tardos])

Cost f(n) ≤ (tour between cells) + (tours within cells).

f(n) ≤ f(cπ ·
√
n) + cπ · f(

√
n/cπ)

≤ (logn)O(log cπ) �
√
n. [BKO’24]

→ with more work, we can reduce to O(cπ · logn).

Example: TSP

Given n points in [0, 1]2 avoiding π, find TSP-tour of min length.

(0,0)

(1,1)

Consider
√
n×
√
n grid. Only cπ ·

√
n cells touched. (by [Marcus-Tardos])

Cost f(n) ≤ (tour between cells) + (tours within cells).
f(n) ≤ f(cπ ·

√
n) + cπ · f(

√
n/cπ)

≤ (logn)O(log cπ) �
√
n. [BKO’24]

→ with more work, we can reduce to O(cπ · logn).

Example: TSP

Given n points in [0, 1]2 avoiding π, find TSP-tour of min length.

(0,0)

(1,1)

Consider
√
n×
√
n grid. Only cπ ·

√
n cells touched. (by [Marcus-Tardos])

Cost f(n) ≤ (tour between cells) + (tours within cells).
f(n) ≤ f(cπ ·

√
n) + cπ · f(

√
n/cπ)

≤ (logn)O(log cπ) �
√
n. [BKO’24]

→ with more work, we can reduce to O(cπ · logn).

Example: TSP

Given n points in [0, 1]2 avoiding π, find TSP-tour of min length.

(0,0)

(1,1)

Consider
√
n×
√
n grid. Only cπ ·

√
n cells touched. (by [Marcus-Tardos])

Cost f(n) ≤ (tour between cells) + (tours within cells).
f(n) ≤ f(cπ ·

√
n) + cπ · f(

√
n/cπ)

≤ (logn)O(log cπ) �
√
n. [BKO’24]

→ with more work, we can reduce to O(cπ · logn).

X is π-avoiding

=⇒ twin-width(X) ≤ cπ ⇐⇒ X has a cπ-wide merge-sequence

[Guillemot, Marx ’14]

→ Can use merge-sequence to construct Oπ(logn) cost TSP tour. [BKO ’24]

→ Can use merge-sequence to construct Oπ(n) cost BST execution. [BKO ’24]

X is π-avoiding

=⇒ twin-width(X) ≤ cπ

⇐⇒ X has a cπ-wide merge-sequence

[Guillemot, Marx ’14]

→ Can use merge-sequence to construct Oπ(logn) cost TSP tour. [BKO ’24]

→ Can use merge-sequence to construct Oπ(n) cost BST execution. [BKO ’24]

X is π-avoiding

=⇒ twin-width(X) ≤ cπ ⇐⇒ X has a cπ-wide merge-sequence

[Guillemot, Marx ’14]

→ Can use merge-sequence to construct Oπ(logn) cost TSP tour. [BKO ’24]

→ Can use merge-sequence to construct Oπ(n) cost BST execution. [BKO ’24]

X is π-avoiding

=⇒ twin-width(X) ≤ cπ ⇐⇒ X has a cπ-wide merge-sequence

[Guillemot, Marx ’14]

→ Can use merge-sequence to construct Oπ(logn) cost TSP tour. [BKO ’24]

→ Can use merge-sequence to construct Oπ(n) cost BST execution. [BKO ’24]

X is π-avoiding

=⇒ twin-width(X) ≤ cπ ⇐⇒ X has a cπ-wide merge-sequence

[Guillemot, Marx ’14]

→ Can use merge-sequence to construct Oπ(logn) cost TSP tour. [BKO ’24]

→ Can use merge-sequence to construct Oπ(n) cost BST execution. [BKO ’24]

X is π-avoiding

=⇒ twin-width(X) ≤ cπ ⇐⇒ X has a cπ-wide merge-sequence

[Guillemot, Marx ’14]

→ Can use merge-sequence to construct Oπ(logn) cost TSP tour. [BKO ’24]

→ Can use merge-sequence to construct Oπ(n) cost BST execution. [BKO ’24]

Merge sequences

Merge sequence: Sequence of rectangle/point
families obtained by successive merges

Merge: Replace two points/rectangles by their
bounding box

Merge sequences

Merge sequence: Sequence of rectangle/point
families obtained by successive merges

Merge: Replace two points/rectangles by their
bounding box

Merge sequences

Merge sequence: Sequence of rectangle/point
families obtained by successive merges

Merge: Replace two points/rectangles by their
bounding box

Merge sequences

Merge sequence: Sequence of rectangle/point
families obtained by successive merges

Merge: Replace two points/rectangles by their
bounding box

Merge sequences

Merge sequence: Sequence of rectangle/point
families obtained by successive merges

Merge: Replace two points/rectangles by their
bounding box

Merge sequences

Merge sequence: Sequence of rectangle/point
families obtained by successive merges

Merge: Replace two points/rectangles by their
bounding box

Merge sequences

Merge sequence: Sequence of rectangle/point
families obtained by successive merges

Merge: Replace two points/rectangles by their
bounding box

Merge sequences

Merge sequence: Sequence of rectangle/point
families obtained by successive merges

Merge: Replace two points/rectangles by their
bounding box

Merge sequences

Merge sequence: Sequence of rectangle/point
families obtained by successive merges

Merge: Replace two points/rectangles by their
bounding box

Merge sequences

Merge sequence: Sequence of rectangle/point
families obtained by successive merges

Merge: Replace two points/rectangles by their
bounding box

Merge sequences

Merge sequence: Sequence of rectangle/point
families obtained by successive merges

Merge: Replace two points/rectangles by their
bounding box

Merge sequences

Merge sequence: Sequence of rectangle/point
families obtained by successive merges

Merge: Replace two points/rectangles by their
bounding box

Two rectangles/points see each other if their
projections on the x- or y-axis overlap.

✓

✓

✗

Merge sequences

Merge sequence: Sequence of rectangle/point
families obtained by successive merges

Merge: Replace two points/rectangles by their
bounding box

Two rectangles/points see each other if their
projections on the x- or y-axis overlap.

A rectangle family is d-wide if no rectangle/point
sees more than d other rectangles/points.

3 3

5
2

1

2

Merge sequences

Merge sequence: Sequence of rectangle/point
families obtained by successive merges

Merge: Replace two points/rectangles by their
bounding box

Two rectangles/points see each other if their
projections on the x- or y-axis overlap.

A rectangle family is d-wide if no rectangle/point
sees more than d other rectangles/points.

3 3

5
2

1

2

A merge sequence is d-wide if each of its
rectangle families is d-wide.

X is π-avoiding

=⇒ twin-width(X) ≤ cπ ⇐⇒ X has a cπ-wide merge-sequence

[Guillemot, Marx ’14]

→ Can use merge-sequence to construct Oπ(logn) cost TSP tour. [BKO ’24]

→ Can use merge-sequence to construct Oπ(n) cost BST execution. [BKO ’24]

=⇒ Sorting can be implemented by O(n)-cost insertion-sort in BST...

...but this is computed offline in O(n logn) time, so no O(n)-time sort yet.

=⇒ Splay tree achieves O(n)-time sorting assuming dynamic optimality
conjecture

Very recent: O(n)-time sort of pattern-avoiding input via
careful mergesort + forbidden submatrix analysis. [Opler ’24+].

X is π-avoiding

=⇒ twin-width(X) ≤ cπ ⇐⇒ X has a cπ-wide merge-sequence

[Guillemot, Marx ’14]

→ Can use merge-sequence to construct Oπ(logn) cost TSP tour. [BKO ’24]

→ Can use merge-sequence to construct Oπ(n) cost BST execution. [BKO ’24]

=⇒ Sorting can be implemented by O(n)-cost insertion-sort in BST...

...but this is computed offline in O(n logn) time, so no O(n)-time sort yet.

=⇒ Splay tree achieves O(n)-time sorting assuming dynamic optimality
conjecture

Very recent: O(n)-time sort of pattern-avoiding input via
careful mergesort + forbidden submatrix analysis. [Opler ’24+].

X is π-avoiding

=⇒ twin-width(X) ≤ cπ ⇐⇒ X has a cπ-wide merge-sequence

[Guillemot, Marx ’14]

→ Can use merge-sequence to construct Oπ(logn) cost TSP tour. [BKO ’24]

→ Can use merge-sequence to construct Oπ(n) cost BST execution. [BKO ’24]

=⇒ Sorting can be implemented by O(n)-cost insertion-sort in BST...

...but this is computed offline in O(n logn) time, so no O(n)-time sort yet.

=⇒ Splay tree achieves O(n)-time sorting assuming dynamic optimality
conjecture

Very recent: O(n)-time sort of pattern-avoiding input via
careful mergesort + forbidden submatrix analysis. [Opler ’24+].

X is π-avoiding

=⇒ twin-width(X) ≤ cπ ⇐⇒ X has a cπ-wide merge-sequence

[Guillemot, Marx ’14]

→ Can use merge-sequence to construct Oπ(logn) cost TSP tour. [BKO ’24]

→ Can use merge-sequence to construct Oπ(n) cost BST execution. [BKO ’24]

=⇒ Sorting can be implemented by O(n)-cost insertion-sort in BST...

...but this is computed offline in O(n logn) time, so no O(n)-time sort yet.

=⇒ Splay tree achieves O(n)-time sorting assuming dynamic optimality
conjecture

Very recent: O(n)-time sort of pattern-avoiding input via
careful mergesort + forbidden submatrix analysis. [Opler ’24+].

X is π-avoiding

=⇒ twin-width(X) ≤ cπ ⇐⇒ X has a cπ-wide merge-sequence

[Guillemot, Marx ’14]

→ Can use merge-sequence to construct Oπ(logn) cost TSP tour. [BKO ’24]

→ Can use merge-sequence to construct Oπ(n) cost BST execution. [BKO ’24]

=⇒ Sorting can be implemented by O(n)-cost insertion-sort in BST...

...but this is computed offline in O(n logn) time, so no O(n)-time sort yet.

=⇒ Splay tree achieves O(n)-time sorting assuming dynamic optimality
conjecture

Very recent: O(n)-time sort of pattern-avoiding input via
careful mergesort + forbidden submatrix analysis. [Opler ’24+].

Conclusions

#1. Extremal combinatorics used to analyse algorithms

Examples mostly from data structures

TODO: find more examples, when does it work?

#2. Pattern-avoidance reduces complexity

data structures, sorting [CGKMS’15] [KS’18] [BKO’24] [Opler’24]

geometric problems: TSP, MST, Steiner-tree, Manhattan-netw. [BKO’24]

online problems: k-server [BKO’24]

Matching lower bounds + stronger bounds for families of patterns π

TODO: find more examples, when does it work?

Conclusions

#1. Extremal combinatorics used to analyse algorithms

Examples mostly from data structures

TODO: find more examples, when does it work?

#2. Pattern-avoidance reduces complexity

data structures, sorting [CGKMS’15] [KS’18] [BKO’24] [Opler’24]

geometric problems: TSP, MST, Steiner-tree, Manhattan-netw. [BKO’24]

online problems: k-server [BKO’24]

Matching lower bounds + stronger bounds for families of patterns π

TODO: find more examples, when does it work?

Conclusions

#1. Extremal combinatorics used to analyse algorithms

Examples mostly from data structures

TODO: find more examples, when does it work?

#2. Pattern-avoidance reduces complexity

data structures, sorting [CGKMS’15] [KS’18] [BKO’24] [Opler’24]

geometric problems: TSP, MST, Steiner-tree, Manhattan-netw. [BKO’24]

online problems: k-server [BKO’24]

Matching lower bounds + stronger bounds for families of patterns π

TODO: find more examples, when does it work?

Conclusions

#1. Extremal combinatorics used to analyse algorithms

Examples mostly from data structures

TODO: find more examples, when does it work?

#2. Pattern-avoidance reduces complexity

data structures, sorting [CGKMS’15] [KS’18] [BKO’24] [Opler’24]

geometric problems: TSP, MST, Steiner-tree, Manhattan-netw. [BKO’24]

online problems: k-server [BKO’24]

Matching lower bounds + stronger bounds for families of patterns π

TODO: find more examples, when does it work?

Conclusions

#1. Extremal combinatorics used to analyse algorithms

Examples mostly from data structures

TODO: find more examples, when does it work?

#2. Pattern-avoidance reduces complexity

data structures, sorting [CGKMS’15] [KS’18] [BKO’24] [Opler’24]

geometric problems: TSP, MST, Steiner-tree, Manhattan-netw. [BKO’24]

online problems: k-server [BKO’24]

Matching lower bounds + stronger bounds for families of patterns π

TODO: find more examples, when does it work?

Conclusions

#1. Extremal combinatorics used to analyse algorithms

Examples mostly from data structures

TODO: find more examples, when does it work?

#2. Pattern-avoidance reduces complexity

data structures, sorting [CGKMS’15] [KS’18] [BKO’24] [Opler’24]

geometric problems: TSP, MST, Steiner-tree, Manhattan-netw. [BKO’24]

online problems: k-server [BKO’24]

Matching lower bounds + stronger bounds for families of patterns π

TODO: find more examples, when does it work?

Conclusions

#1. Extremal combinatorics used to analyse algorithms

Examples mostly from data structures

TODO: find more examples, when does it work?

#2. Pattern-avoidance reduces complexity

data structures, sorting [CGKMS’15] [KS’18] [BKO’24] [Opler’24]

geometric problems: TSP, MST, Steiner-tree, Manhattan-netw. [BKO’24]

online problems: k-server [BKO’24]

Matching lower bounds + stronger bounds for families of patterns π

TODO: find more examples, when does it work?

Conclusions

#1. Extremal combinatorics used to analyse algorithms

Examples mostly from data structures

TODO: find more examples, when does it work?

#2. Pattern-avoidance reduces complexity

data structures, sorting [CGKMS’15] [KS’18] [BKO’24] [Opler’24]

geometric problems: TSP, MST, Steiner-tree, Manhattan-netw. [BKO’24]

online problems: k-server [BKO’24]

Matching lower bounds + stronger bounds for families of patterns π

TODO: find more examples, when does it work?

Conclusions

#1. Extremal combinatorics used to analyse algorithms

Examples mostly from data structures

TODO: find more examples, when does it work?

#2. Pattern-avoidance reduces complexity

data structures, sorting [CGKMS’15] [KS’18] [BKO’24] [Opler’24]

geometric problems: TSP, MST, Steiner-tree, Manhattan-netw. [BKO’24]

online problems: k-server [BKO’24]

Matching lower bounds + stronger bounds for families of patterns π

TODO: find more examples, when does it work?

Conclusions

#1. Extremal combinatorics used to analyse algorithms

Examples mostly from data structures

TODO: find more examples, when does it work?

#2. Pattern-avoidance reduces complexity

data structures, sorting [CGKMS’15] [KS’18] [BKO’24] [Opler’24]

geometric problems: TSP, MST, Steiner-tree, Manhattan-netw. [BKO’24]

online problems: k-server [BKO’24]

Matching lower bounds + stronger bounds for families of patterns π

TODO: find more examples, when does it work?

Conclusions

#1. Extremal combinatorics used to analyse algorithms

Examples mostly from data structures

TODO: find more examples, when does it work?

#2. Pattern-avoidance reduces complexity

data structures, sorting [CGKMS’15] [KS’18] [BKO’24] [Opler’24]

geometric problems: TSP, MST, Steiner-tree, Manhattan-netw. [BKO’24]

online problems: k-server [BKO’24]

Matching lower bounds + stronger bounds for families of patterns π

TODO: find more examples, when does it work?

References

Optimization with pattern-avoiding input
B. A. Berendsohn, L. Kozma, M. Opler. [STOC 2024]

Smooth heaps and a dual view of self-adjusting data structures
L. Kozma, T. Saranurak. [STOC 2018]

Pattern-avoiding access in binary search trees
P. Chalermsook, M. Goswami, L. Kozma, K. Mehlhorn, T. Saranurak. [FOCS 2015]

. .

On an extremal problem in graph theory
P. Turán. [Matematikai és Fizikai Lapok 1941]

Davenport-Schinzel theory of matrices
Z. Füredi, P. Hajnal. [Discrete Mathematics 1992]

Excluded permutation matrices and the Stanley-Wilf conjecture
A. Marcus, G. Tardos. [J. Combin. Theory Ser. A 2004]

On 0-1 matrices and small excluded submatrices
G. Tardos. [J. Combin. Theory Ser. A 2005]

Applications of Forbidden 0-1 Matrices to Search Tree and Path Compression-Based Data
Structures
S. Pettie. [SODA 2010]

Finding small patterns in permutations in linear time
S. Guillemot, D. Marx. [SODA 2014]

References

Optimization with pattern-avoiding input
B. A. Berendsohn, L. Kozma, M. Opler. [STOC 2024]

Smooth heaps and a dual view of self-adjusting data structures
L. Kozma, T. Saranurak. [STOC 2018]

Pattern-avoiding access in binary search trees
P. Chalermsook, M. Goswami, L. Kozma, K. Mehlhorn, T. Saranurak. [FOCS 2015]

. .

On an extremal problem in graph theory
P. Turán. [Matematikai és Fizikai Lapok 1941]

Davenport-Schinzel theory of matrices
Z. Füredi, P. Hajnal. [Discrete Mathematics 1992]

Excluded permutation matrices and the Stanley-Wilf conjecture
A. Marcus, G. Tardos. [J. Combin. Theory Ser. A 2004]

On 0-1 matrices and small excluded submatrices
G. Tardos. [J. Combin. Theory Ser. A 2005]

Applications of Forbidden 0-1 Matrices to Search Tree and Path Compression-Based Data
Structures
S. Pettie. [SODA 2010]

Finding small patterns in permutations in linear time
S. Guillemot, D. Marx. [SODA 2014]

Optimization with pattern-avoiding input
Benjamin Aram Berendsohn, L. Kozma, Michal Opler. [STOC 2024]

...thanks...

Optimization with pattern-avoiding input
Benjamin Aram Berendsohn, L. Kozma, Michal Opler. [STOC 2024]

...thanks...

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Arborially satisfied superset with merge sequences

Given: d-wide merge sequence of P

1. Form grid from all points (and rectangle sides)

2. Execute next merge

3. Add all grid points in new rectangle

(repeat)

Claim:
(a) Result is arborally satisfied
(b) # of added points is O(d2 · n) (proof now)

of added points

Claim: In every step, we add O(d2) points.

of added points

Claim: In every step, we add O(d2) points.

Proof idea: Rectangle sees ≤ d other rectangles/points
=⇒ ≤ 4d grid lines

R

Not seen by R

Seen by R

of added points

Claim: In every step, we add O(d2) points.

Proof idea: Rectangle sees ≤ d other rectangles/points
=⇒ ≤ 4d grid lines

Conclusion: The optimum for every input sequence of twin-width d is O(d2 · n).

=⇒ The optimum for every π-avoiding input sequence is O(c2
π · n).

R

Not seen by R

Seen by R

Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n − i)). [NEW]

Every π-avoiding point set has a O(cπ)-wide distance-balanced merge sequence.

Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n − i)). [NEW]

Spanning tree construction: Whenever we merge
two rectangles, connect arbitrary points within them.

Every π-avoiding point set has a O(cπ)-wide distance-balanced merge sequence.

Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n − i)). [NEW]

Spanning tree construction: Whenever we merge
two rectangles, connect arbitrary points within them.

Every π-avoiding point set has a O(cπ)-wide distance-balanced merge sequence.

Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n − i)). [NEW]

Spanning tree construction: Whenever we merge
two rectangles, connect arbitrary points within them.

Every π-avoiding point set has a O(cπ)-wide distance-balanced merge sequence.

Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n − i)). [NEW]

Spanning tree construction: Whenever we merge
two rectangles, connect arbitrary points within them.

Every π-avoiding point set has a O(cπ)-wide distance-balanced merge sequence.

Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n − i)). [NEW]

Spanning tree construction: Whenever we merge
two rectangles, connect arbitrary points within them.

Every π-avoiding point set has a O(cπ)-wide distance-balanced merge sequence.

Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n − i)). [NEW]

Spanning tree construction: Whenever we merge
two rectangles, connect arbitrary points within them.

Every π-avoiding point set has a O(cπ)-wide distance-balanced merge sequence.

Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n − i)). [NEW]

Spanning tree construction: Whenever we merge
two rectangles, connect arbitrary points within them.

Every π-avoiding point set has a O(cπ)-wide distance-balanced merge sequence.

Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n − i)). [NEW]

Spanning tree construction: Whenever we merge
two rectangles, connect arbitrary points within them.

Every π-avoiding point set has a O(cπ)-wide distance-balanced merge sequence.

Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n − i)). [NEW]

Spanning tree construction: Whenever we merge
two rectangles, connect arbitrary points within them.

Every π-avoiding point set has a O(cπ)-wide distance-balanced merge sequence.

Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n − i)). [NEW]

Spanning tree construction: Whenever we merge
two rectangles, connect arbitrary points within them.

Every π-avoiding point set has a O(cπ)-wide distance-balanced merge sequence.

Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n − i)). [NEW]

Spanning tree construction: Whenever we merge
two rectangles, connect arbitrary points within them.

Every π-avoiding point set has a O(cπ)-wide distance-balanced merge sequence.

Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n − i)). [NEW]

Spanning tree construction: Whenever we merge
two rectangles, connect arbitrary points within them.

Every π-avoiding point set has a O(cπ)-wide distance-balanced merge sequence.

Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n − i)). [NEW]

Spanning tree construction: Whenever we merge
two rectangles, connect arbitrary points within them.

Every π-avoiding point set has a O(cπ)-wide distance-balanced merge sequence.

Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th
rectangle is at most O(1/(n − i)). [NEW]

Spanning tree construction: Whenever we merge
two rectangles, connect arbitrary points within them.

Every π-avoiding point set has a O(cπ)-wide distance-balanced merge sequence.

Length:
n−1X

i=1

1
n−i ≈ log n

