Analysis of Algorithms via Extremal Combinatorics

László Kozma Freie Universität Berlin

Analysis of Algorithms, Bath, UK June 2024

Extremal Combinatorics

Typical question (informally):

How large/dense/frequent can X be if it avoids Y?

Extremal Combinatorics

How many edges can a graph of n vertices have if it avoids k-cliques?

How many edges can a graph of n vertices have if it avoids <u>k-cliques</u>? **Answer:** At most $\left(1 - \frac{1}{k-1}\right)\frac{n^2}{2}$. [Turán, 1941] How many edges can a graph of n vertices have if it avoids <u>k-cliques</u>? **Answer:** At most $\left(1 - \frac{1}{k-1}\right)\frac{n^2}{2}$. [Turán, 1941] How many edges can a graph of n vertices have if it avoids <u>k-cliques</u>? **Answer:** At most $\left(1 - \frac{1}{k-1}\right)\frac{n^2}{2}$. [Turán, 1941]

This bound is sharp.

How many edges can a graph of n vertices have if it avoids <u>k</u>-cliques? **Answer:** At most $\left(1 - \frac{1}{k-1}\right)\frac{n^2}{2}$. [Turán, 1941]

This bound is sharp.

How many edges can a graph of n vertices have if it avoids <u>k-cliques</u>?

Answer: At most $\left(1 - \frac{1}{k-1}\right) \frac{n^2}{2}$. [Turán, 1941]

How many •'s can an n-by-n matrix have if it avoids the pattern P?

How many •'s can an n-by-n matrix have if it avoids the pattern P?

How many \bullet 's can an *n*-by-*n* matrix have if it avoids the pattern *P*?

How many •'s can an n-by-n matrix have if it avoids the pattern P?

How many \bullet 's can an *n*-by-*n* matrix have if it avoids the pattern *P*?

How many \bullet 's can an *n*-by-*n* matrix have if it avoids the pattern *P*?

How many \bullet 's can an *n*-by-*n* matrix have if it avoids the pattern *P*?

.

How many \bullet 's can an *n*-by-*n* matrix have if it avoids the pattern *P*?

How many \bullet 's can an *n*-by-*n* matrix have if it avoids the pattern *P*?

How many \bullet 's can an *n*-by-*n* matrix have if it avoids the pattern *P*?

ex(P,n): max number of •'s, while avoiding P $(0 \le ex(P,n) \le n^2)$

How many \bullet 's can an *n*-by-*n* matrix have if it avoids the pattern *P*?

Matrix pattern containment:

ex(P,n): max number of •'s, while avoiding P $(0 \le ex(P,n) \le n^2)$ $ex\left(\begin{pmatrix}\bullet & \bullet\\ \bullet & \bullet\end{pmatrix}, n\right) =$

How many \bullet 's can an *n*-by-*n* matrix have if it avoids the pattern *P*?

Matrix pattern containment:

ex(P, n): max number of •'s, while avoiding P ($0 \le ex(P, n) \le n^2$)

 $\exp\left(\begin{pmatrix} \bullet & \bullet \\ \bullet & \bullet \end{pmatrix}, n\right) = \Theta(n^{3/2}) \rightarrow \text{Zarankiewicz problem: bipartite graph avoiding } C_4$

How many \bullet 's can an *n*-by-*n* matrix have if it avoids the pattern *P*?

Matrix pattern containment:

ex(P, n): max number of •'s, while avoiding P ($0 \le ex(P, n) \le n^2$)

 $\exp\left(\begin{pmatrix} \bullet & \bullet \\ \bullet & \bullet \end{pmatrix}, n\right) = \Theta(n^{3/2}) \quad \to \text{Zarankiewicz problem: bipartite graph avoiding } C_4 \\ \exp\left(\begin{pmatrix} \bullet & \bullet \\ \bullet \end{pmatrix}, n\right) =$

How many \bullet 's can an *n*-by-*n* matrix have if it avoids the pattern *P*?

Matrix pattern containment:

ex(P, n): max number of •'s, while avoiding P ($0 \le ex(P, n) \le n^2$)

 $\exp\left(\begin{pmatrix} \bullet & \bullet \\ \bullet & \bullet \end{pmatrix}, n\right) = \Theta(n^{3/2}) \quad \to \text{Zarankiewicz problem: bipartite graph avoiding } C_4$ $\exp\left(\begin{pmatrix} \bullet & \bullet \\ \bullet \end{pmatrix}, n\right) = \Theta(n)$

How many \bullet 's can an *n*-by-*n* matrix have if it avoids the pattern *P*?

Matrix pattern containment:

ex(P, n): max number of •'s, while avoiding P ($0 \le ex(P, n) \le n^2$)

$$\begin{split} & \exp\left(\begin{pmatrix} \bullet & \bullet \\ \bullet & \bullet \end{pmatrix}, n\right) = \Theta(n^{3/2}) \quad \to \text{Zarankiewicz problem: bipartite graph avoiding } C_4 \\ & \exp\left(\begin{pmatrix} \bullet & \bullet \\ \bullet \end{pmatrix}, n\right) = \Theta(n) \\ & \exp\left(\begin{pmatrix} \bullet & \bullet \\ \bullet & \bullet \end{pmatrix}, n\right) = \end{split}$$

How many \bullet 's can an *n*-by-*n* matrix have if it avoids the pattern *P*?

Matrix pattern containment:

ex(P, n): max number of •'s, while avoiding P ($0 \le ex(P, n) \le n^2$)

$$\begin{split} & \exp\left(\begin{pmatrix} \bullet & \bullet \\ \bullet & \bullet \end{pmatrix}, n\right) = \Theta(n^{3/2}) \quad \to \text{Zarankiewicz problem: bipartite graph avoiding } C_4 \\ & \exp\left(\begin{pmatrix} \bullet & \bullet \\ \bullet & \bullet \end{pmatrix}, n\right) = \Theta(n) \\ & \exp\left(\begin{pmatrix} \bullet & \bullet \\ \bullet & \bullet \end{pmatrix}, n\right) = \Theta(n \cdot \alpha(n)) \quad \to \text{ related to Davenport-Schinzel sequences} \end{split}$$

A broad class: permutation patterns, e.g., $P_{\pi}=$

$$= \left(\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right).$$

Conjecture [Füredi-Hajnal 1992]

A broad class: permutation patterns, e.g., $P_{\pi} = \begin{pmatrix} \bullet \\ \bullet \\ \bullet \end{pmatrix}$.

Conjecture [Füredi-Hajnal 1992] $ex(P_{\pi}, n) \in O_{\pi}(n)$, for any permutation π . \rightarrow linear in n, for any fixed π A broad class: permutation patterns, e.g., $P_{\pi} = \left(\bullet \right)$

$$\left(\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right).$$

/

Conjecture [Füredi-Hajnal 1992]

 $ex(P_{\pi}, n) \in O_{\pi}(n)$, for any permutation π . \rightarrow linear in n, for any fixed π

The conjecture is true! [Marcus, Tardos, 2004]

A broad class: permutation patterns, e.g., $P_{\pi} = \begin{pmatrix} \bullet \\ \bullet \\ \bullet \end{pmatrix}$.

Conjecture [Füredi-Hajnal 1992] $ex(P_{\pi}, n) \in O_{\pi}(n)$, for any permutation π . \rightarrow linear in n, for any fixed π

The conjecture is true! [Marcus, Tardos, 2004]

ex(P, n) also characterized for many other patterns:

$$\rightarrow \mathsf{can} \mathsf{ be } \begin{cases} n \\ n \cdot \mathrm{polylog}(n) \\ n \cdot 2^{\alpha(n)} \\ n^{1+\varepsilon} \\ \dots \end{cases}$$

Use extremal combinatorics to:

- I. Analyse algorithms
- II. Model input structure

Use extremal combinatorics to:

- I. Analyse algorithms
- II. Model input structure

Example: Union-Find with path compression [Pettie, 2010]

 \rightarrow Collection of disjoint sets:

find(x): return set containing xunion(A, B): merge A and B

 \rightarrow Initially all singletons

Example: Union-Find with path compression [Pettie, 2010]

 \rightarrow Collection of disjoint sets: find(x): return set containing x union(A, B): merge A and B

 \rightarrow Initially all singletons

Example: Union-Find with path compression [Pettie, 2010]

 \rightarrow Collection of disjoint sets: find(x): return set containing x union(A, B): merge A and B

 \rightarrow Initially all singletons

union(B, C): make the root of one tree the child of the other (arbitrarily)

union(B, C): make the root of one tree the child of the other (arbitrarily)

union(B, C): make the root of one tree the child of the other (arbitrarily)

find(x):

compress path from x to root

find(x):

compress path from \boldsymbol{x} to root

find(x): compress path from x to root

What is the (amortized) cost of operations?

 \rightarrow View operations in single tree T (suppose all **union**s done upfront)

 \rightarrow General path compression: $x \rightarrow y$ where y is ancestor of x

 \rightarrow Analyze cost of n general path compressions in T

 \rightarrow Encode entire execution as an $n \times n$ matrix M

Lemma:
$$M$$
 avoids $P = \begin{pmatrix} \bullet \bullet \\ \bullet & \bullet \end{pmatrix}$.

Proof: suppose not, then $x \to y \to z$ on a path (because of postorder and as nodes cannot gains ancestors.

After *i*-th compress, x and y become unrelated, cannot be on j-th compress path together.

Lemma:
$$M$$
 avoids $P = \begin{pmatrix} \bullet \bullet \\ \bullet & \bullet \end{pmatrix}$

Proof: suppose not, then $x \rightarrow y \rightarrow z$ on a path (because of postorder and as nodes cannot gain ancestors).

After *i*-th compress, x and y become unrelated, cannot be on j-th compress path together.

$$\implies \mathsf{Cost} \le \exp\left(\begin{pmatrix}\bullet\bullet\\\bullet\bullet\end{pmatrix}, n\right)$$
$$= n \log_2 n + O(n)$$
[Tardos, 2005]

Lemma:
$$M$$
 avoids $P = \begin{pmatrix} \bullet \bullet \\ \bullet & \bullet \end{pmatrix}$

Proof: suppose not, then $x \rightarrow y \rightarrow z$ on a path (because of postorder and as nodes cannot gain ancestors).

After *i*-th compress, x and y become unrelated, cannot be on j-th compress path together.

$$\implies \mathsf{Cost} \le \exp\left(\begin{pmatrix}\bullet\bullet\\\bullet\bullet\end{pmatrix}, n\right)$$
$$= n \log_2 n + O(n)$$
[Tardos, 2005]

Use extremal combinatorics to:

- I. Analyse algorithms
- II. Model input structure

Use extremal combinatorics to:

- I. Analyse algorithms
- II. Model input structure

Use extremal combinatorics to:

- I. Analyse algorithms
- II. Model input structure

Permutation τ **contains** permutation π :

 τ has a subsequence with the same ordering as $\pi.$

Permutation τ **contains** permutation π :

 τ has a subsequence with the same ordering as $\pi.$

(Otherwise τ avoids π .)

Permutation τ **contains** permutation π :

 τ has a subsequence with the same ordering as $\pi.$

(Otherwise τ avoids π .)

Example:

Permutation τ contains permutation π : τ has a subsequence with the same ordering as π . (Otherwise τ avoids π .)

Example:

3 2 4 5 1 7 8 9 6 contains 1 2 4 3

Permutation τ contains permutation π : τ has a subsequence with the same ordering as π . (Otherwise τ avoids π .)

Example:

 $3\ 2\ 4\ 5\ 1\ 7\ 8\ 6$ contains $1\ 2\ 4\ 3$ because $2\ 5\ 7\ 6\ \sim\ 1\ 2\ 4\ 3$

 $3\ 2\ 4\ 5\ 1\ 7\ 8\ 6 \quad \text{avoids} \quad 4\ 3\ 2\ 1$

contains 231

contains 231

 τ avoids (2,1) \iff

$\tau \text{ avoids } (2,1) \quad \Longleftrightarrow \quad \tau \text{ is increasing}$

 $\tau \text{ avoids } (2,1) \quad \Longleftrightarrow \quad \tau \text{ is increasing}$

 τ avoids $(k+1,k,\ldots,1)$ \iff

$\tau \text{ avoids } (2,1) \quad \Longleftrightarrow \quad \tau \text{ is increasing}$

 $\tau \text{ avoids } (k+1,k,\ldots,1) \quad \iff \quad \tau \text{ is } k \text{-increasing}$
$\tau \text{ avoids } (k+1,k,\ldots,1) \quad \iff \quad \tau \text{ is } k \text{-increasing}$

$\tau \text{ avoids } (2,1) \quad \Longleftrightarrow \quad \tau \text{ is increasing}$

 $\tau \text{ avoids } (k+1,k,\ldots,1) \quad \iff \quad \tau \text{ is } k \text{-increasing}$

 $\tau \text{ avoids } (2,1) \quad \Longleftrightarrow \quad \tau \text{ is increasing}$

 $\tau \text{ avoids } (k+1,k,\ldots,1) \quad \iff \quad \tau \text{ is } k \text{-increasing}$

 $\tau \text{ avoids } (2,3,1) \quad \iff \quad$

 $\tau \text{ avoids } (k+1,k,\ldots,1) \quad \iff \quad \tau \text{ is } k \text{-increasing}$

 $\tau \text{ avoids } (2,3,1) \quad \Longleftrightarrow \quad \tau \text{ is sortable with a stack}$

 $\tau \text{ avoids } (k+1,k,\ldots,1) \quad \iff \quad \tau \text{ is } k \text{-increasing}$

 $\tau \text{ avoids } (2,3,1) \quad \iff \quad \tau \text{ is sortable with a stack}$

▶ 5. [M28] Show that it is possible to obtain a permutation $p_1 p_2 ... p_n$ from 12...n using a stack if and only if there are no indices i < j < k such that $p_j < p_k < p_i$.

 $\tau \text{ avoids } (k+1,k,\ldots,1) \quad \iff \quad \tau \text{ is } k \text{-increasing}$

 $\tau \text{ avoids } (2,3,1) \quad \Longleftrightarrow \quad \tau \text{ is sortable with a stack}$

▶ 5. [M28] Show that it is possible to obtain a permutation $p_1 p_2 ... p_n$ from 12...n using a stack if and only if there are no indices i < j < k such that $p_j < p_k < p_i$.

 $\tau \text{ avoids } (k+1,k,\ldots,1) \quad \iff \quad \tau \text{ is } k \text{-increasing}$

 $\tau \text{ avoids } (2,3,1) \quad \Longleftrightarrow \quad \tau \text{ is sortable with a stack}$

 $\tau \text{ avoids } (k+1,k,\ldots,1) \quad \iff \quad \tau \text{ is } k\text{-increasing}$

 $\tau \text{ avoids } (2,3,1) \quad \iff \ \tau \text{ is sortable with a stack}$

au avoids (1,3,2) and (3,1,2) \iff

 $\tau \text{ avoids } (k+1,k,\ldots,1) \quad \iff \quad \tau \text{ is } k\text{-increasing}$

 $\tau \text{ avoids } (2,3,1) \quad \iff \ \tau \text{ is sortable with a stack}$

 τ avoids (1,3,2) and $(3,1,2) \iff$ every entry is a left-to-right min or max

 $\tau \text{ avoids } (k+1,k,\ldots,1) \quad \iff \quad \tau \text{ is } k\text{-increasing}$

 $\tau \text{ avoids } (2,3,1) \quad \iff \quad \tau \text{ is sortable with a stack}$

 $\tau \text{ avoids } (1,3,2) \text{ and } (3,1,2) \quad \Longleftrightarrow \quad \text{every entry is a left-to-right min or max}$

Conjecture [Stanley, Wilf, 1980s]

Conjecture [Stanley, Wilf, 1980s] At most $2^{O_{\pi}(n)}$.

 $\begin{array}{ll} \textbf{Conjecture} & [\texttt{Stanley, Wilf, 1980s}] \\ \textbf{At most } 2^{O_{\pi}(n)}. & \rightarrow \texttt{single-exponential in } n \; (\ll n!) \end{array}$

Conjecture[Stanley, Wilf, 1980s]At most $2^{O_{\pi}(n)}$. \rightarrow single-exponential in $n \ (\ll n!)$

 \rightarrow equivalent with the Füredi-Hajnal conjecture on matrix density $$[{\rm Klazar,\ 2000}]$$

Conjecture[Stanley, Wilf, 1980s]At most $2^{O_{\pi}(n)}$. \rightarrow single-exponential in $n \ (\ll n!)$

 \rightarrow equivalent with the Füredi-Hajnal conjecture on matrix density $$[{\rm Klazar,\ 2000}]$$

Both conjectures are true! [Marcus, Tardos, 2004]

The two results:

- \bullet At most $(s_\pi)^n$ permutations of length n that avoid $\pi.$ [Stanley-Wilf]
- The density of an $n \times n$ matrix that avoids P_{π} is at most $c_{\pi} \cdot n.$ [Füredi-Hajnal]

The two results:

- \bullet At most $(s_\pi)^n$ permutations of length n that avoid $\pi.$ [Stanley-Wilf]
- The density of an $n \times n$ matrix that avoids P_{π} is at most $c_{\pi} \cdot n$. [Füredi-Hajnal]
- \rightarrow c_{π} and s_{π} are polynomially related

The two results:

- \bullet At most $(s_\pi)^n$ permutations of length n that avoid $\pi.$ [Stanley-Wilf]
- The density of an $n \times n$ matrix that avoids P_{π} is at most $c_{\pi} \cdot n$. [Füredi-Hajnal]
- \rightarrow c_{π} and s_{π} are polynomially related

• Consider some algorithmic problem with sequential input

- Consider some algorithmic problem with sequential input
- Does its complexity change if input avoids pattern π ?

- Consider some algorithmic problem with sequential input
- Does its complexity change if input avoids pattern π ?

- Consider some algorithmic problem with sequential input
- Does its complexity change if input avoids pattern π ?

Example: Sorting \boldsymbol{n} items via comparisons

• Complexity: $\Theta(n \log n)$

- Consider some algorithmic problem with sequential input
- Does its complexity change if input avoids pattern π ?

- Complexity: $\Theta(n \log n)$
- Can we sort faster if input avoids some (arbitrary) fixed π ?

- Consider some algorithmic problem with sequential input
- Does its complexity change if input avoids pattern π ?

- Complexity: $\Theta(n \log n)$
- Can we sort faster if input avoids some (arbitrary) fixed π ?
 - Sort with O(n) comparisons?

- Consider some algorithmic problem with sequential input
- Does its complexity change if input avoids pattern π ?

- Complexity: $\Theta(n \log n)$
- Can we sort faster if input avoids some (arbitrary) fixed π ?
 - Sort with O(n) comparisons?
 - Sort in O(n) time?

- Consider some algorithmic problem with sequential input
- Does its complexity change if input avoids pattern π ?

- Complexity: $\Theta(n \log n)$
- Can we sort faster if input avoids some (arbitrary) fixed π ?
 - Sort with O(n) comparisons?
 - Sort in O(n) time?
- \bullet Want a general-purpose algorithm that is not tailored to each pattern π

• Generalizes known easy inputs: 21-avoiding, 231-avoiding, etc.

- \bullet Generalizes known easy inputs: $21\mbox{-}avoiding,\ 231\mbox{-}avoiding,\ etc.$
- ${\, \bullet \, }$ There are $2^{O(n)}$ such inputs \implies sorting lower bound just O(n)

- Generalizes known easy inputs: 21-avoiding, 231-avoiding, etc.
- ${\, \bullet \, }$ There are $2^{O(n)}$ such inputs \implies sorting lower bound just O(n)
- Make [Marcus-Tardos] results "algorithmic"

- Generalizes known easy inputs: 21-avoiding, 231-avoiding, etc.
- There are $2^{O(n)}$ such inputs \implies sorting lower bound just O(n)
- Make [Marcus-Tardos] results "algorithmic"
- Analogy to avoided minors in graphs \rightarrow sparsity, decompositions, efficient algorithms

- Generalizes known easy inputs: 21-avoiding, 231-avoiding, etc.
- There are $2^{O(n)}$ such inputs \implies sorting lower bound just O(n)
- Make [Marcus-Tardos] results "algorithmic"
- Analogy to avoided minors in graphs \rightarrow sparsity, decompositions, efficient algorithms

Example: Sorting

Idea: Sort by inserting into a binary search tree (BST)
Idea: Sort by inserting into a binary search tree (BST)

 \rightarrow Use some dynamically balanced tree?

Idea: Sort by inserting into a binary search tree (BST)

 \rightarrow Use some dynamically balanced tree?

 $O(\log n)$ per operation $\implies O(n \log n)$ cost for sorting (too much!)

Idea: Sort by inserting into a binary search tree (BST)

 \rightarrow Use some dynamically balanced tree?

 $O(\log n)$ per operation $\implies O(n \log n)$ cost for sorting (too much!)

 \rightarrow To achieve O(n), we need some **adaptive** BST, like Splay tree

Self-adjusting tree: Splay tree [Sleator, Tarjan, 1983]

* in a funny way.

* in a funny way.

* in a funny way.

Abb. 95. 4 Schüttle-Operationen.

access sequence X e.g., 4, 5, 6, 1, 2, 3 access sequence X e.g., 4, 5, 6, 1, 2, 3

 \rightarrow point set X

keys

Y is a BST execution of $X \iff Y$ is a satisfied superset of X

Y is a BST execution of $X \iff Y$ is a satisfied superset of X

 $\begin{array}{c} Y \text{ is a BST execution of } X \iff Y \text{ is a satisfied superset of } X \\ & \downarrow \\ & \text{no } a, b \in Y \text{ form an empty rectangle} \end{array}$

A matrix view of BSTs

Geometric sweepline bottom-up.

Geometric sweepline bottom-up.

Can be implemented as a BST, similar to splay trees.

This describes an insertion-sort execution.
Suggests a natural algorithm:

Geometric sweepline bottom-up.

Can be implemented as a BST, similar to splay trees.

This describes an insertion-sort execution.

Task: Bound the cost

Suggests a natural algorithm:

Geometric sweepline bottom-up.

Can be implemented as a BST, similar to splay trees.

This describes an insertion-sort execution.

```
Task: Bound the cost
↓
number of dots in matrix
```

Suggests a natural algorithm:

Geometric sweepline bottom-up.

Can be implemented as a BST, similar to splay trees.

This describes an insertion-sort execution.

```
Task: Bound the cost
↓
number of dots in matrix
```


 e input sequence (avoids π)
 e data structure operations number of points (• + •) = total cost

If execution contains the pattern:

• = input sequence (avoids π) • = data structure operations number of points (• + •) = total cost there must be an input point inside

• = input sequence (avoids π) • = data structure operations number of points (• + •) = total cost there must be an input point inside

• = input sequence (avoids π) • = data structure operations number of points (• + •) = total cost

 e input sequence (avoids π)
 e data structure operations number of points (• + •) = total cost

Key Lemma

Follows from sweepline.

 = input sequence (avoids π)
 = data structure operations number of points (• + •) = total cost

Key Lemma

Follows from sweepline.

 = input sequence (avoids π)
 = data structure operations number of points (• + •) = total cost

Key Lemma

Follows from sweepline.

 = input sequence (avoids π)
 = data structure operations number of points (• + •) = total cost

Key Lemma

Follows from sweepline.

= input sequence (avoids π)
= data structure operations number of points (• + •) = total cost

Key Lemma

Follows from sweepline.

 = input sequence (avoids π)
 = data structure operations number of points (• + •) = total cost

Key Lemma

Follows from sweepline.

= input sequence (avoids π)
= data structure operations number of points (• + •) = total cost

Key Lemma

Follows from sweepline.

 $\rightarrow \text{ input-revealing gadget} \\ \text{ input } X \text{ avoids } \begin{pmatrix} \bullet \\ \bullet \end{pmatrix}$

 = input sequence (avoids π)
 = data structure operations number of points (• + •) = total cost

Key Lemma

Follows from sweepline.

 = input sequence (avoids π)
 = data structure operations number of points (• + •) = total cost

Key Lemma

Follows from sweepline.

 \implies cost of sorting X is $\leq n \cdot 2^{\mathsf{poly}(\alpha(n))}$ [CGKMS'15]

using [Klazar '00] [Keszegh '09]

 = input sequence (avoids π)
 = data structure operations number of points (• + •) = total cost

Key Lemma

Follows from sweepline.

input X avoids π

- \implies execution avoids $\pi \otimes (\bullet \bullet)$
- \implies cost of sorting X is $n \cdot 2^{\alpha(n)^{O(|\pi|)}}$ [CGKMS'15]

using [Klazar '00] [Keszegh '09]

 = input sequence (avoids π)
 = data structure operations number of points (• + •) = total cost

Key Lemma

Follows from sweepline.

input X avoids π

 \implies execution avoids $\pi \otimes (\bullet \bullet)$

 \implies cost of sorting X is $n \cdot 2^{\alpha(n)^{O(|\pi|)}}$ [CGKMS'15]

using [Klazar '00] [Keszegh '09]

 \rightarrow for various special cases O(n) can be shown, e.g., for $\pi = k, \ldots, 1$.

Remarks:

 Result obtained via general-purpose BST; pattern-avoidance only used in the analysis • Result obtained via general-purpose BST; pattern-avoidance only used in the analysis

• Can also do it via selection-sort with an adaptive heap [KS'18]

- Result obtained via general-purpose BST; pattern-avoidance only used in the analysis
- Can also do it via selection-sort with an adaptive heap [KS'18]
- Result relies on extremal function $\mathrm{ex}\left(\pi\otimes\left(\begin{smallmatrix}\bullet&\bullet\\\bullet&\bullet\end{smallmatrix}\right),n\right)$

- Result obtained via general-purpose BST; pattern-avoidance only used in the analysis
- Can also do it via selection-sort with an adaptive heap [KS'18]
- Result relies on extremal function $\exp\left(\pi\otimes\left(\begin{array}{c}{}\bullet\end{array}\right),n\right)$

Recent improvement: $n \cdot 2^{\alpha(n)^{O(|\pi|)}} \rightarrow n \cdot 2^{\alpha(n)+O(|\pi|^2)}$ (tight) [Chalermsook, Pettie, Ying.'23]

- Result obtained via general-purpose BST; pattern-avoidance only used in the analysis
- Can also do it via selection-sort with an adaptive heap [KS'18]
- Result relies on extremal function $\exp\left(\pi\otimes\left(\begin{array}{c}{}\bullet\end{array}\right),n\right)$

Recent improvement: $n \cdot 2^{\alpha(n)^{O(|\pi|)}} \rightarrow n \cdot 2^{\alpha(n)+O(|\pi|^2)}$ (tight) [Chalermsook, Pettie, Ying.'23]

- Result obtained via general-purpose BST; pattern-avoidance only used in the analysis
- Can also do it via selection-sort with an adaptive heap [KS'18]
- Result relies on extremal function $\exp\left(\pi\otimes\left(\begin{array}{c}{}\bullet\end{array}\right),n\right)$

Recent improvement: $n \cdot 2^{\alpha(n)^{O(|\pi|)}} \rightarrow n \cdot 2^{\alpha(n)+O(|\pi|^2)}$ (tight) [Chalermsook, Pettie, Ying.'23]

Can we get to O(n)?

- Result obtained via general-purpose BST; pattern-avoidance only used in the analysis
- Can also do it via selection-sort with an adaptive heap [KS'18]
- Result relies on extremal function $\mathrm{ex}\left(\pi\otimes\left(\begin{smallmatrix}{\bullet}\begin{smallmatrix}\\begin{smallmatrix}$

Recent improvement: $n \cdot 2^{\alpha(n)^{O(|\pi|)}} \rightarrow n \cdot 2^{\alpha(n) + O(|\pi|^2)}$ (tight) [Chalermsook, Pettie, Ying.'23]

Can we get to O(n)? yes: [BKO'24] [Opler'24+]

Given n points in $[0,1]^2$, find TSP-tour of min length.

Given n points in $[0,1]^2$, find TSP-tour of min length.

Given n points in $[0,1]^2$, find TSP-tour of min length.

Given n points in $[0,1]^2$, find TSP-tour of min length.

Worst-case OPT length =

Given n points in $[0,1]^2$, find TSP-tour of min length.

Worst-case OPT length = $O(\sqrt{n})$.

Given n points in $[0,1]^2$, find TSP-tour of min length.

Worst-case OPT length = $O(\sqrt{n})$.

Given n points in $[0,1]^2$, find TSP-tour of min length.

Worst-case OPT length = $O(\sqrt{n})$.

(this bound is tight)

Given n points in $[0,1]^2$, find TSP-tour of min length.

Given n points in $[0,1]^2$ avoiding π , find TSP-tour of min length.

Given n points in $[0,1]^2$ avoiding π , find TSP-tour of min length.

Given n points in $[0,1]^2$ avoiding π , find TSP-tour of min length.

 $\text{e.g.} \ \pi = (3,2,1) \qquad \text{cost} \in O(1)$

Given n points in $[0,1]^2$ avoiding π , find TSP-tour of min length.

 $\text{e.g.} \ \pi = (3,2,1) \qquad \text{cost} \in O(1)$

Given n points in $[0,1]^2$ avoiding $\pi,$ find TSP-tour of min length.

For arbitrary π ?

Given n points in $[0,1]^2$ avoiding π , find TSP-tour of min length.

Given n points in $[0,1]^2$ avoiding π , find TSP-tour of min length.

Given n points in $[0,1]^2$ avoiding π , find TSP-tour of min length.

Consider $\sqrt{n} \times \sqrt{n}$ grid. Only $c_{\pi} \cdot \sqrt{n}$ cells touched. (by [Marcus-Tardos])

Given n points in $[0,1]^2$ avoiding π , find TSP-tour of min length.

Consider $\sqrt{n} \times \sqrt{n}$ grid. Only $c_{\pi} \cdot \sqrt{n}$ cells touched. (by [Marcus-Tardos])

Cost $f(n) \leq (\text{tour between cells}) + (\text{tours within cells}).$

Given n points in $[0,1]^2$ avoiding π , find TSP-tour of min length.

Consider $\sqrt{n} \times \sqrt{n}$ grid. Only $c_{\pi} \cdot \sqrt{n}$ cells touched. (by [Marcus-Tardos])

Cost $f(n) \leq (\text{tour between cells}) + (\text{tours within cells})$. $f(n) \leq f(c_{\pi} \cdot \sqrt{n}) + c_{\pi} \cdot f(\sqrt{n}/c_{\pi})$

Given n points in $[0,1]^2$ avoiding π , find TSP-tour of min length.

Consider $\sqrt{n} \times \sqrt{n}$ grid. Only $c_{\pi} \cdot \sqrt{n}$ cells touched. (by [Marcus-Tardos])

 $\begin{aligned} \mathsf{Cost} \ f(n) &\leq (\mathsf{tour \ between \ cells}) + (\mathsf{tours \ within \ cells}).\\ f(n) &\leq f(c_{\pi} \cdot \sqrt{n}) + c_{\pi} \cdot f(\sqrt{n}/c_{\pi})\\ &\leq (\log n)^{O(\log c_{\pi})} \ll \sqrt{n}. \quad [\mathsf{BKO'24}] \end{aligned}$

Given n points in $[0,1]^2$ avoiding π , find TSP-tour of min length.

Consider $\sqrt{n} \times \sqrt{n}$ grid. Only $c_{\pi} \cdot \sqrt{n}$ cells touched. (by [Marcus-Tardos])

Cost $f(n) \leq (\text{tour between cells}) + (\text{tours within cells}).$ $f(n) \leq f(c_{\pi} \cdot \sqrt{n}) + c_{\pi} \cdot f(\sqrt{n}/c_{\pi})$ $\leq (\log n)^{O(\log c_{\pi})} \ll \sqrt{n}.$ [BKO'24] $\rightarrow \text{ with more work, we can reduce to } O(c_{\pi} \cdot \log n).$ X is $\pi\text{-}\mathrm{avoiding}$

X is $\pi\text{-}\mathrm{avoiding}$

 \implies twin-width $(X) \le c_{\pi}$

X is $\pi\text{-}\mathrm{avoiding}$

 \implies twin-width $(X) \leq c_{\pi} \iff X$ has a c_{π} -wide merge-sequence

[Guillemot, Marx '14]

X is π -avoiding

 $\implies \mathsf{twin-width}(X) \le c_{\pi} \iff X \text{ has a } c_{\pi}\text{-wide merge-sequence}$ [Guillemot, Marx '14]

 \rightarrow Can use merge-sequence to construct $O_{\pi}(\log n)$ cost TSP tour. [BKO '24]

X is π -avoiding

 $\implies \mathsf{twin-width}(X) \le c_{\pi} \iff X \text{ has a } c_{\pi}\text{-wide merge-sequence}$ [Guillemot, Marx '14]

- \rightarrow Can use merge-sequence to construct $O_{\pi}(\log n)$ cost TSP tour. [BKO '24]
- \rightarrow Can use merge-sequence to construct $O_{\pi}(n)$ cost BST execution. [BKO '24]

X is π -avoiding

 $\implies \mathsf{twin-width}(X) \le c_{\pi} \iff X \text{ has a } c_{\pi}\text{-wide merge-sequence}$ [Guillemot, Marx '14]

- \rightarrow Can use merge-sequence to construct $O_{\pi}(\log n)$ cost TSP tour. [BKO '24]
- \rightarrow Can use merge-sequence to construct $O_{\pi}(n)$ cost BST execution. [BKO '24]

Merge: Replace two points/rectangles by their bounding box

Merge: Replace two points/rectangles by their bounding box

Merge sequence: Sequence of rectangle/point families obtained by successive merges

Two rectangles/points **see each other** if their projections on the x- or y-axis overlap.

Merge: Replace two points/rectangles by their bounding box

Merge sequence: Sequence of rectangle/point families obtained by successive merges

Two rectangles/points **see each other** if their projections on the x- or y-axis overlap.

A rectangle family is d-wide if no rectangle/point sees more than d other rectangles/points.

Merge sequences

Merge: Replace two points/rectangles by their bounding box

Merge sequence: Sequence of rectangle/point families obtained by successive merges

Two rectangles/points **see each other** if their projections on the x- or y-axis overlap.

A rectangle family is d-wide if no rectangle/point sees more than d other rectangles/points.

A merge sequence is *d*-wide if each of its rectangle families is *d*-wide.

\implies twin-width $(X) \leq c_{\pi} \iff X$ has a c_{π} -wide merge-sequence

[Guillemot, Marx '14]

- \rightarrow Can use merge-sequence to construct $O_{\pi}(\log n)$ cost TSP tour. [BKO '24]
- \rightarrow Can use merge-sequence to construct $O_{\pi}(n)$ cost BST execution. [BKO '24]

 \implies twin-width $(X) \leq c_{\pi} \iff X$ has a c_{π} -wide merge-sequence

[Guillemot, Marx '14]

- \rightarrow Can use merge-sequence to construct $O_{\pi}(\log n)$ cost TSP tour. [BKO '24]
- \rightarrow Can use merge-sequence to construct $O_{\pi}(n)$ cost BST execution. [BKO '24]
- \implies Sorting can be implemented by O(n)-cost insertion-sort in BST...

 \implies twin-width $(X) \leq c_{\pi} \iff X$ has a c_{π} -wide merge-sequence

[Guillemot, Marx '14]

- \rightarrow Can use merge-sequence to construct $O_{\pi}(\log n)$ cost TSP tour. [BKO '24]
- \rightarrow Can use merge-sequence to construct $O_{\pi}(n)$ cost BST execution. [BKO '24]
- \implies Sorting can be implemented by O(n)-cost insertion-sort in BST...
 - ...but this is computed offline in $O(n \log n)$ time, so no O(n)-time sort yet.

 \implies twin-width $(X) \le c_{\pi} \iff X$ has a c_{π} -wide merge-sequence

[Guillemot, Marx '14]

- \rightarrow Can use merge-sequence to construct $O_{\pi}(\log n)$ cost TSP tour. [BKO '24]
- \rightarrow Can use merge-sequence to construct $O_{\pi}(n)$ cost BST execution. [BKO '24]
- \implies Sorting can be implemented by O(n)-cost insertion-sort in BST...
 - ...but this is computed offline in $O(n \log n)$ time, so no O(n)-time sort yet.

 \implies Splay tree achieves O(n)-time sorting assuming dynamic optimality conjecture

 \implies twin-width $(X) \le c_{\pi} \iff X$ has a c_{π} -wide merge-sequence

[Guillemot, Marx '14]

- \rightarrow Can use merge-sequence to construct $O_{\pi}(\log n)$ cost TSP tour. [BKO '24]
- \rightarrow Can use merge-sequence to construct $O_{\pi}(n)$ cost BST execution. [BKO '24]
- \implies Sorting can be implemented by O(n)-cost insertion-sort in BST...
 - ...but this is computed offline in $O(n \log n)$ time, so no O(n)-time sort yet.

 \implies Splay tree achieves O(n)-time sorting assuming dynamic optimality conjecture

Very recent: O(n)-time sort of pattern-avoiding input via careful mergesort + forbidden submatrix analysis. [Opler '24+].

#1. Extremal combinatorics used to analyse algorithms

#1. Extremal combinatorics used to analyse algorithms

• Examples mostly from data structures

#1. Extremal combinatorics used to analyse algorithms

- Examples mostly from data structures
- TODO: find more examples, when does it work?

#1. Extremal combinatorics used to analyse algorithms

- Examples mostly from data structures
- TODO: find more examples, when does it work?

#1. Extremal combinatorics used to analyse algorithms

- Examples mostly from data structures
- TODO: find more examples, when does it work?

#2. Pattern-avoidance reduces complexity

• data structures, sorting [CGKMS'15] [KS'18] [BKO'24] [Opler'24]

#1. Extremal combinatorics used to analyse algorithms

- Examples mostly from data structures
- TODO: find more examples, when does it work?

- data structures, sorting [CGKMS'15] [KS'18] [BKO'24] [Opler'24]
- geometric problems: TSP, MST, Steiner-tree, Manhattan-netw. [BKO'24]

#1. Extremal combinatorics used to analyse algorithms

- Examples mostly from data structures
- TODO: find more examples, when does it work?

- data structures, sorting [CGKMS'15] [KS'18] [BKO'24] [Opler'24]
- geometric problems: TSP, MST, Steiner-tree, Manhattan-netw. [BKO'24]
- online problems: k-server [BKO'24]

#1. Extremal combinatorics used to analyse algorithms

- Examples mostly from data structures
- TODO: find more examples, when does it work?

- data structures, sorting [CGKMS'15] [KS'18] [BKO'24] [Opler'24]
- geometric problems: TSP, MST, Steiner-tree, Manhattan-netw. [BKO'24]
- online problems: k-server [BKO'24]
- $\bullet\,$ Matching lower bounds + stronger bounds for families of patterns $\pi\,$

#1. Extremal combinatorics used to analyse algorithms

- Examples mostly from data structures
- TODO: find more examples, when does it work?

- data structures, sorting [CGKMS'15] [KS'18] [BKO'24] [Opler'24]
- geometric problems: TSP, MST, Steiner-tree, Manhattan-netw. [BKO'24]
- online problems: k-server [BKO'24]
- $\bullet\,$ Matching lower bounds + stronger bounds for families of patterns $\pi\,$
- TODO: find more examples, when does it work?

#1. Extremal combinatorics used to analyse algorithms

- Examples mostly from data structures
- TODO: find more examples, when does it work?

- data structures, sorting [CGKMS'15] [KS'18] [BKO'24] [Opler'24]
- geometric problems: TSP, MST, Steiner-tree, Manhattan-netw. [BKO'24]
- online problems: k-server [BKO'24]
- $\bullet\,$ Matching lower bounds + stronger bounds for families of patterns $\pi\,$
- TODO: find more examples, when does it work?

References

Optimization with pattern-avoiding input

B. A. Berendsohn, L. Kozma, M. Opler. [STOC 2024]

Smooth heaps and a dual view of self-adjusting data structures

L. Kozma, T. Saranurak. [STOC 2018]

Pattern-avoiding access in binary search trees

P. Chalermsook, M. Goswami, L. Kozma, K. Mehlhorn, T. Saranurak. [FOCS 2015]

References

Optimization with pattern-avoiding input B. A. Berendsohn, L. Kozma, M. Opler. [STOC 2024] Smooth heaps and a dual view of self-adjusting data structures L. Kozma, T. Saranurak. [STOC 2018] Pattern-avoiding access in binary search trees

P. Chalermsook, M. Goswami, L. Kozma, K. Mehlhorn, T. Saranurak. [FOCS 2015]

On an extremal problem in graph theory P. Turán. [Matematikai és Fizikai Lapok 1941]

Davenport-Schinzel theory of matrices Z. Füredi, P. Hajnal. [Discrete Mathematics 1992]

Excluded permutation matrices and the Stanley-Wilf conjecture A. Marcus, G. Tardos. [J. Combin. Theory Ser. A 2004]

On 0-1 matrices and small excluded submatrices G. Tardos. [J. Combin. Theory Ser. A 2005]

Applications of Forbidden 0-1 Matrices to Search Tree and Path Compression-Based Data Structures

S. Pettie. [SODA 2010]

Finding small patterns in permutations in linear time S. Guillemot, D. Marx. [SODA 2014]

Optimization with pattern-avoiding input Benjamin Aram Berendsohn, L. Kozma, **Michal Opler**. [STOC 2024]

Optimization with pattern-avoiding input Benjamin Aram Berendsohn, L. Kozma, **Michal Opler**. [STOC 2024]

...thanks...

- 1. Form grid from all points (and rectangle sides)
- 2. Execute next merge
- 3. Add all grid points in new rectangle (repeat)

Given: d-wide merge sequence of P

- → 1. Form grid from all points (and rectangle sides)
 - 2. Execute next merge
 - 3. Add all grid points in new rectangle

(repeat)

- 1. Form grid from all points (and rectangle sides)
- → 2. Execute next merge
 - 3. Add all grid points in new rectangle (repeat)

- 1. Form grid from all points (and rectangle sides)
- 2. Execute next merge
- Add all grid points in new rectangle (repeat)

Given: d-wide merge sequence of P

- → 1. Form grid from all points (and rectangle sides)
 - 2. Execute next merge
 - 3. Add all grid points in new rectangle

(repeat)

- 1. Form grid from all points (and rectangle sides)
- → 2. Execute next merge
 - 3. Add all grid points in new rectangle (repeat)

- 1. Form grid from all points (and rectangle sides)
- 2. Execute next merge
- Add all grid points in new rectangle (repeat)

Given: d-wide merge sequence of P

- → 1. Form grid from all points (and rectangle sides)
 - 2. Execute next merge
 - 3. Add all grid points in new rectangle

(repeat)

- 1. Form grid from all points (and rectangle sides)
- → 2. Execute next merge
 - 3. Add all grid points in new rectangle (repeat)

- 1. Form grid from all points (and rectangle sides)
- 2. Execute next merge
- Add all grid points in new rectangle (repeat)

Given: d-wide merge sequence of P

- → 1. Form grid from all points (and rectangle sides)
 - 2. Execute next merge
 - 3. Add all grid points in new rectangle

(repeat)

- 1. Form grid from all points (and rectangle sides)
- → 2. Execute next merge
 - 3. Add all grid points in new rectangle (repeat)

- 1. Form grid from all points (and rectangle sides)
- 2. Execute next merge
- Add all grid points in new rectangle (repeat)

Given: d-wide merge sequence of P

- → 1. Form grid from all points (and rectangle sides)
 - 2. Execute next merge
 - 3. Add all grid points in new rectangle

(repeat)

- 1. Form grid from all points (and rectangle sides)
- → 2. Execute next merge
 - 3. Add all grid points in new rectangle (repeat)

- 1. Form grid from all points (and rectangle sides)
- 2. Execute next merge
- Add all grid points in new rectangle (repeat)

Given: d-wide merge sequence of P

- → 1. Form grid from all points (and rectangle sides)
 - 2. Execute next merge
 - 3. Add all grid points in new rectangle

(repeat)

- 1. Form grid from all points (and rectangle sides)
- → 2. Execute next merge
 - 3. Add all grid points in new rectangle (repeat)

- 1. Form grid from all points (and rectangle sides)
- 2. Execute next merge
- Add all grid points in new rectangle (repeat)

Given: d-wide merge sequence of P

- → 1. Form grid from all points (and rectangle sides)
 - 2. Execute next merge
 - 3. Add all grid points in new rectangle

(repeat)

- 1. Form grid from all points (and rectangle sides)
- → 2. Execute next merge
 - 3. Add all grid points in new rectangle (repeat)

- 1. Form grid from all points (and rectangle sides)
- 2. Execute next merge
- Add all grid points in new rectangle (repeat)

Given: d-wide merge sequence of P

- → 1. Form grid from all points (and rectangle sides)
 - 2. Execute next merge
 - 3. Add all grid points in new rectangle

(repeat)

- 1. Form grid from all points (and rectangle sides)
- → 2. Execute next merge
 - 3. Add all grid points in new rectangle (repeat)

- 1. Form grid from all points (and rectangle sides)
- 2. Execute next merge
- Add all grid points in new rectangle (repeat)

Given: d-wide merge sequence of P

- → 1. Form grid from all points (and rectangle sides)
 - 2. Execute next merge
 - 3. Add all grid points in new rectangle

(repeat)

- 1. Form grid from all points (and rectangle sides)
- → 2. Execute next merge
 - 3. Add all grid points in new rectangle (repeat)

- 1. Form grid from all points (and rectangle sides)
- 2. Execute next merge
- Add all grid points in new rectangle (repeat)

Given: d-wide merge sequence of P

- → 1. Form grid from all points (and rectangle sides)
 - 2. Execute next merge
 - 3. Add all grid points in new rectangle

(repeat)

- 1. Form grid from all points (and rectangle sides)
- → 2. Execute next merge
 - 3. Add all grid points in new rectangle (repeat)

- 1. Form grid from all points (and rectangle sides)
- 2. Execute next merge
- Add all grid points in new rectangle (repeat)

- 1. Form grid from all points (and rectangle sides)
- 2. Execute next merge
- 3. Add all grid points in new rectangle (repeat)

Given: d-wide merge sequence of P

- 1. Form grid from all points (and rectangle sides)
- 2. Execute next merge
- 3. Add all grid points in new rectangle (repeat)

Claim:

- (a) Result is arborally satisfied
- (b) # of added points is $\mathcal{O}(d^2 \cdot n)$ (proof now)

$\# \mbox{ of added points}$

Claim: In every step, we add $\mathcal{O}(d^2)$ points.

$\# \mbox{ of added points}$

Claim: In every step, we add $\mathcal{O}(d^2)$ points.

Proof idea: Rectangle sees $\leq d$ other rectangles/points $\implies \leq 4d$ grid lines

$\# \mbox{ of added points}$

Claim: In every step, we add $\mathcal{O}(d^2)$ points.

Proof idea: Rectangle sees $\leq d$ other rectangles/points $\implies \leq 4d$ grid lines

Conclusion: The optimum for every input sequence of twin-width d is $\mathcal{O}(d^2 \cdot n)$. \implies The optimum for every π -avoiding input sequence is $\mathcal{O}(c_{\pi}^2 \cdot n)$.

In a distance-balanced merge sequence the width and height of the i-th rectangle is at most $\mathcal{O}(1/(n-i)).$ [NEW]

Every π -avoiding point set has a $\mathcal{O}(c_{\pi})$ -wide **distance-balanced** merge sequence.

In a distance-balanced merge sequence the width and height of the i-th rectangle is at most $\mathcal{O}(1/(n-i)).$ [NEW]

Every π -avoiding point set has a $\mathcal{O}(c_{\pi})$ -wide **distance-balanced** merge sequence.

In a distance-balanced merge sequence the width and height of the i-th rectangle is at most $\mathcal{O}(1/(n-i)).$ [NEW]

Every π -avoiding point set has a $\mathcal{O}(c_{\pi})$ -wide **distance-balanced** merge sequence.

In a distance-balanced merge sequence the width and height of the i-th rectangle is at most $\mathcal{O}(1/(n-i)).$ [NEW]

Every π -avoiding point set has a $\mathcal{O}(c_{\pi})$ -wide **distance-balanced** merge sequence.

In a distance-balanced merge sequence the width and height of the i-th rectangle is at most $\mathcal{O}(1/(n-i)).$ [NEW]

Every π -avoiding point set has a $\mathcal{O}(c_{\pi})$ -wide **distance-balanced** merge sequence.

In a distance-balanced merge sequence the width and height of the i-th rectangle is at most $\mathcal{O}(1/(n-i)).$ [NEW]

Every π -avoiding point set has a $\mathcal{O}(c_{\pi})$ -wide **distance-balanced** merge sequence.

In a distance-balanced merge sequence the width and height of the i-th rectangle is at most $\mathcal{O}(1/(n-i)).$ [NEW]

Every π -avoiding point set has a $\mathcal{O}(c_{\pi})$ -wide **distance-balanced** merge sequence.

In a distance-balanced merge sequence the width and height of the i-th rectangle is at most $\mathcal{O}(1/(n-i)).$ [NEW]

Every π -avoiding point set has a $\mathcal{O}(c_{\pi})$ -wide **distance-balanced** merge sequence.

In a distance-balanced merge sequence the width and height of the i-th rectangle is at most $\mathcal{O}(1/(n-i)).$ [NEW]

Every π -avoiding point set has a $\mathcal{O}(c_{\pi})$ -wide **distance-balanced** merge sequence.

In a distance-balanced merge sequence the width and height of the i-th rectangle is at most $\mathcal{O}(1/(n-i)).$ [NEW]

Every π -avoiding point set has a $\mathcal{O}(c_{\pi})$ -wide **distance-balanced** merge sequence.

In a distance-balanced merge sequence the width and height of the i-th rectangle is at most $\mathcal{O}(1/(n-i)).$ [NEW]

Every π -avoiding point set has a $\mathcal{O}(c_{\pi})$ -wide **distance-balanced** merge sequence.

In a distance-balanced merge sequence the width and height of the i-th rectangle is at most $\mathcal{O}(1/(n-i)).$ [NEW]

Every π -avoiding point set has a $\mathcal{O}(c_{\pi})$ -wide **distance-balanced** merge sequence.

In a distance-balanced merge sequence the width and height of the i-th rectangle is at most $\mathcal{O}(1/(n-i)).$ [NEW]

Every π -avoiding point set has a $\mathcal{O}(c_{\pi})$ -wide **distance-balanced** merge sequence.

In a distance-balanced merge sequence the width and height of the i-th rectangle is at most $\mathcal{O}(1/(n-i)).$ [NEW]

Every π -avoiding point set has a $\mathcal{O}(c_{\pi})$ -wide **distance-balanced** merge sequence.

Distance-balanced merge sequences for MST

In a distance-balanced merge sequence the width and height of the i-th rectangle is at most $\mathcal{O}(1/(n-i)).$ [NEW]

Every π -avoiding point set has a $\mathcal{O}(c_{\pi})$ -wide **distance-balanced** merge sequence.

Spanning tree construction: Whenever we merge two rectangles, connect arbitrary points within them.

Length:

$$\sum_{i=1}^{n-1} \frac{1}{n-i} \approx \log n$$

