June 20, 2024

The Recurrence/Transience of Random Walks on a Bounded Grid in an Increasing Dimension

Shuma Kumamoto (Kyushu Univ.), *Shuji Kijima (Shiga Univ.), Tomoyuki Shirai (Kyushu Univ.)

<u>Plan of talk</u>

- 1. Introduction
 - $\succ \mathbb{Z}^3$
 - ➢ RWoGG
 - > Tree
- 2. Related work
 - Exploration
- 3. Previous work
 - LHaGG
 - \succ {0,1}ⁿ proof
 - > Extension to $\{0, 1, ..., N\}^n$
- 4. Main result
 - Weakly LHaGG
 - Recurrence
 - Transience
 - pausing coupling
- 5. Concluding remarks

<u>Plan of talk \geq 49 min.</u>

- 1. Introduction (\geq 9 min.)
 - $\succ \mathbb{Z}^3$
 - ➢ RWoGG
 - > Tree
- 2. Related work (\geq 6 min.)
 - Exploration
- 3. Previous work (\geq 8 min.)
 - LHaGG
 - \succ {0,1}ⁿ proof
 - > Extension to $\{0, 1, ..., N\}^n$
- 4. Main result (\geq 25 min.)
 - Weakly LHaGG
 - Recurrence
 - Transience
 - pausing coupling
- 5. Concluding remarks (1 min.)

<u>Plan of talk \geq 49 min. 25 min.</u>

- 1. Introduction (\geq 9 min. 6 min.)
 - $\succ \mathbb{Z}^3$
 - ➢ RWoGG
 - → Tree
- 2. Related work ($\geq 6 \text{ min.}$ 3 min.)
 - → Exploration
- 3. Previous work (\geq -8 min.)
 - LHaGG
 - \succ {0,1}ⁿ proof
 - > Extension to $\{0, 1, ..., N\}^n$
- 4. Main result ($\geq 25 \text{ min.}$ 7 min.)
 - Weakly LHaGG
 - → Recurrence
 - → Transience
 - pausing coupling
- 5. Concluding remarks (1 min.)

Find this slide in my HP

https://shuji-kijima.com/

Shuji Kijima

1. Introduction w/ examples

<u>Recurrence/Transience of Random walks on *infinite* graphs</u>

For instance,

RW on \mathbb{Z} is recurrent at o,

Recurrence/Transience of Random walks on *infinite* graphs

For instance,

RW on \mathbb{Z} is recurrent at o,

RW on \mathbb{Z}^2 is recurrent at o,

<u>Recurrence/Transience of Random walks on *infinite* graphs</u>

For instance,

RW on \mathbb{Z}^2 is recurrent at o,

RW on \mathbb{Z}^3 is transient at o,

- ✓ Random walk on \mathbb{Z}^3 is transient at *o*.
- ✓ Random walk on $\{-n, ..., n\}^3$ is recurrent at o.

Q. Is a random walk on $\{-n, ..., n\}^3$ recurrent or transient if *n* increases as time go on?

A. It depends on the increasing speed.

Find the phase transition point regarding the growing speed.

RW on \mathbb{Z}^3 is transient at o,

Model: Random Walk on a Growing Graph (RWoGG)

Growing graph is a sequence of static graphs $G = G_0, G_1, G_2, ...$ where each $G_t = (\mathcal{V}_t, \mathcal{E}_t)$ is a static simple graph. We assume $\mathcal{V}_t \subseteq \mathcal{V}_{t+1}$, for convenience.

Furthermore, $\mathcal{E}_t \subseteq \mathcal{E}_{t+1}$ holds in this talk.

[K, Shimizu, Shiraga '21]

Model: Random Walk on a Growing Graph (RWoGG)

Growing graph is a sequence of static graphs

 $\boldsymbol{\mathcal{G}}=\mathcal{G}_0,\mathcal{G}_1,\mathcal{G}_2,\dots$

where each $\mathcal{G}_t = (\mathcal{V}_t, \mathcal{E}_t)$ is a static simple graph.

We assume $\mathcal{V}_t \subseteq \mathcal{V}_{t+1}$, for convenience.

Furthermore, $\mathcal{E}_t \subseteq \mathcal{E}_{t+1}$ holds in this talk.

RWoGG (\mathfrak{d}, G, P) is a specific model:

▷ $b(1), b(2), b(3), ... \in \mathbb{Z}$ denote the duration time.

Growing graph is given by

$$\mathcal{G}_t = \mathbf{G}(n)$$
 for $t \in [T_{n-1}, T_{n-1} + \mathfrak{d}(n)]$

[K, Shimizu, Shiraga '21]

where
$$T_n = \sum_{i=1}^n \mathfrak{d}(n)$$
, i.e.,

$$\mathcal{G}_t = \begin{cases} G(1) & \text{for the first } \mathfrak{d}(1) \text{steps} \\ G(2) & \text{for the next } \mathfrak{d}(2) \text{steps} \\ G(3) & \text{for the next } \mathfrak{d}(3) \text{steps} \\ \vdots & \vdots \end{cases}$$

 \succ P(n) denotes the transition matrix on G(n).

Let $\mathcal{D} = (\mathfrak{d}, G, P)$ be a RWoGG where

- $\mathfrak{d}(n) = n^2$,
- G(n) is a grid graph $\{-n, ..., n\}^3$,
- P(n) denotes the simple random walk w/ reflection bound,
 i.e., move to a neighbor w.p. ¹/₃ · ¹/₂ = ¹/₆ unless boundary,
 for n = 1,2, ...

Let $\mathcal{D} = (\mathfrak{d}, G, P)$ be a RWoGG where

- $\mathfrak{d}(n) = n^{1.999},$
- G(n) is a grid graph $\{-n, ..., n\}^3$,
- P(n) denotes the simple random walk w/ reflection bound,
 i.e., move to a neighbor w.p. ¹/₃ · ¹/₂ = ¹/₆ unless boundary,
 for n = 1,2, ...

Example 2. RW on an infinite k-ary tree

✓ Random walk on an infinite k-ary tree is transient at r.

...

Example 2. RW on an infinite k-ary tree

- ✓ Random walk on an infinite k-ary tree is transient at r.
- ✓ Random walk on a finite k-ary tree is recurrent at r.

...

Example 2. RW on an infinite k-ary tree

- ✓ Random walk on an infinite k-ary tree is transient at r.
- ✓ Random walk on a finite k-ary tree is recurrent at r.
- Q. Is a random walk on a *k*-ary tree recurrent or transient if its height *n* increases as time go on?
- A. It depends on the increasing speed.

Find the phase transition point

regarding the growing speed.

Let $\mathcal{D} = (\mathfrak{d}, G, P)$ be a RWoGG where

- $\mathfrak{d}(n)=3^n,$
- G(n) is a 3-ary tree of height n,
- P(n) denotes the simple random walk w/ reflection bound,
 i.e., move to a neighbor w.p. 1/4 unless the root or a leaf,
 for n = 1,2, ...

Let $\mathcal{D} = (\mathfrak{d}, G, P)$ be a RWoGG where

- $\mathfrak{d}(n) = 2.999999^n$,
- G(n) is a 3-ary tree of height n,
- P(n) denotes the simple random walk w/ reflection bound,
 i.e., move to a neighbor w.p. 1/4 unless the root or a leaf,
 for n = 1,2, ...

About analysis of algorithms in dynamic environment

Related work (1/2): Random walks on dynamic graphs

Graph search by RW --- related to cover time

- Copper and Frieze (2003): Crawling on simple models of web graphs.
- Avin, Koucky and Lotker (2008): a bad example for hitting-time (cover time as well) w/ Ω(2ⁿ) for the number of vertices n.
- Denysyuk and Rodrigues (2014): cover time under some fairness condition.
- Lamprou, Martin and Spirakis (2018): edge-uniform stochastically graphs.
- Sauerwald and Zanetti (2019): $O(n^2)$ cover time for d-regular graphs.
- K, Shimizu, Shiraga (2021): cover ratio of **RWoGG**

Mixing time

- Saloff-Coste and Zuniga (2009,2011): mixing time for time-inhomogeneous Markov chains w/ an invariant stationary distribution.
- Dembo, Huang and Zheng (2019) analyzed the conductance of growing subregion of \mathbb{Z}^d .
- Cai, Sauerwald and Zanetti (2020): mixing time for edge-Markovian graph.

□ Recurrence/transience

... Continued

Related work (1/2): Random walks on dynamic graphs

Graph search by RW --- related to cover time

- Copper and Frieze (2003): Crawling on simple models of web graphs.
- Avin, Koucky and Lotker (2008): a bad example for hitting-time (cover time as well) w/ Ω(2ⁿ) for the number of vertices n.
- Denysyuk and Rodrigues (2014): cover time under some fairness condition.
- Lamprou, Martin and Spirakis (2018): edge-uniform stochastically graphs.
- Sauerwald and Zanetti (2019): $O(n^2)$ cover time for d-regular graphs.
- K, Shimizu, Shiraga (2021): cover ratio of **RWoGG**

Mixing time

- Saloff-Coste and Zuniga (2009,2011): mixing time for time-inhomogeneous Markov chains w/ an invariant stationary distribution.
- Dembo, Huang and Zheng (2019) analyzed the conductance of growing subregion of \mathbb{Z}^d .
- Cai, Sauerwald and Zanetti (2020): mixing time for edge-Markovian graph.

Recurrence/transience

... Continued

Collecting an increasing number of coupons [K, Shimizu, Shiraga '21]

Collecting an increasing number of coupons [K, Shimizu, Shiraga '21]

Collecting an increasing number of coupons [K, Shimizu, Shiraga '21]

Collecting an increasing number of couponDraw a coupon everyday $\underline{Prop.}$ b(n): #days of the n^{th} period $\underline{Prop.}$ u_n : #items uncollectedIf b(n) = n then $E[U_n] < \frac{1}{e-1}$.[K, Shimizu, Shiraga '21]

Proof.

 $\checkmark \ \mathcal{E}_{i,n} \coloneqq \begin{cases} 1 & (\text{item } i \text{ is uncollected in the end of the } n^{\text{th}} \text{ period}) \\ 0 & (\text{item } i \text{ is collected by the end of the } n^{\text{th}} \text{ period}) \end{cases}$

for
$$i = 1, 2, ..., n$$
.

$$\checkmark \quad U_n = \sum_{i=1}^n \mathcal{E}_{i,n}$$

✓ Prob. that item n is uncollected in the end of the nth period:

$$\Pr[\mathcal{E}_{n,n} = 1] = \left(1 - \frac{1}{n}\right)^n < e^{-1}$$

✓ Prob. that item *i* (*i* ≤ *n*) is uncollected in the end of the n^{th} period:

$$\Pr\left[\mathcal{E}_{i,n}=1\right] = \left(1-\frac{1}{i}\right)^{i} \left(1-\frac{1}{i+1}\right)^{i+1} \dots \left(1-\frac{1}{n}\right)^{n} < \left(\frac{1}{e}\right)^{n+1-i}$$
$$E[U_{n}] = \sum_{i=1}^{n} \Pr\left[\mathcal{E}_{i,n}\right] < \sum_{i=1}^{n} \left(\frac{1}{e}\right)^{n+1-i} = \frac{1}{e} + \frac{1}{e^{2}} + \dots + \frac{1}{e^{n}} < \frac{\frac{1}{e}}{1-\frac{1}{e}} = \frac{1}{e-1} < 0.582.$$

<u>RWoGG (ð, *G P*)</u>

Coupon collector is often regarded as a RW on the complete graph, and we can extend the arguments to RWoGG for general graphs.

Thm. (general upper bound)
If
$$\mathfrak{d}(i) \ge ct_{hit}(i)$$
 ($c \ge 1$) then $\mathbb{E}[U] = O(1)$.
Particularly, if $\frac{\mathfrak{d}(i)}{t_{hit}(i)} \xrightarrow{i \to \infty} \infty$ then $\mathbb{E}[U_n] \xrightarrow{n \to \infty} 0$.

Thm. (upper bound for lazy and reversible walk)
Suppose
$$P^{(i)}$$
 is lazy and reversible.
If $\frac{t_{\text{hit}}(i)}{t_{\text{mix}}(i)} \ge \frac{i^{\gamma}}{c}$ and $\mathfrak{d}(i) \ge \frac{3ct_{\text{hit}}(i)}{i^{\gamma}}$ ($c > 0$) then $\mathbb{E}[U_n] \le \frac{8n^{\gamma}}{c} + 32$.

S. Kijima, N. Shimizu, T. Shiraga, How many vertices does a random walk miss in a network with moderately increasing the number of vertices?, in Proc. SODA 2021, 106—122.

Related work (2/2): recurrence/transience of RW

- Much work about the recurrence/transience on growing graphs exist in the context of self-interacting random walks including reinforced random walks, excited random walks, etc. since 1990s, or before.
- Dembo, Huang and Sidoravicius (2014×2): recurrent $\Leftrightarrow \sum_{t=0}^{\infty} \pi_t(0) = \infty$ for growing subregion of \mathbb{Z}^d (fixed d), by conductance argument.
 - See also Huang and Kumagai (2016), Dembo, Huang, Morris and Peres (2017), Dembo, Huang and Zheng (2019), etc. about heat kernel, evolving set arguments.
- Amir, Benjamini, Gurel-Gurevich and Kozma (2015): random walk on growing tree. (random walk in changing environment).
- Huang (2017): growing graph w/ uniformly bounded degrees.
- Kumamoto, K. and Shirai (2024): k-ary tree, {0,1}ⁿ w/ an increasing n under RWoGG model by coupling.
- This work (2024): $\{0, 1, ..., N\}^n$ (fixed N, increasing n) by pausing coupling.

3. Our previous work [SAND '24]

About the recurrence/transience of RWoGG, for an introduction of the basic technique and its issue.

S. Kumamoto, S. Kijima and T. Shirai, An analysis of the recurrence/transience of random walks on growing trees and hypercubes, Proc. SAND 2024, 17:1-17:17

Example 3. Random walk on $\{0,1\}^n$ w/ an increasing n

Let $\mathcal{D} = (\mathfrak{d}, G, P)$ be a RWoGG where

- $\mathfrak{d}(n) = 2^n$,
- G(n) is a $\{0,1\}^n$ skeletone,
- P(n) denotes the simple random walk,

i.e., move to a neighbor w.p. 1/n,

for n = 1, 2, ...

[SAND '24]

Example 3. Random walk on $\{0,1\}^n$ w/ an increasing n

Let $\mathcal{D} = (\mathfrak{d}, G, P)$ be a RWoGG where

- $\mathfrak{d}(n)=2^n,$
- G(n) is a $\{0,1\}^n$ skeletone,
- *P*(*n*) denotes the simple random walk,

i.e., move to a neighbor w.p. 1/n,

for n = 1, 2, ...

Example 3. Random walk on $\{0,1\}^n$ w/ an increasing n

Let $\mathcal{D} = (\mathfrak{d}, G, P)$ be a RWoGG where

- $\mathfrak{d}(n)=2^n,$
- G(n) is a $\{0,1\}^n$ skeletone,
- P(n) denotes the simple random walk,

i.e., move to a neighbor w.p. 1/n,

for n = 1, 2, ...

[SAND '24]

Defs.

- $\mathcal{D}_1 = (f_1, G_1, P_1)$ is less homesick than $\mathcal{D}_2 = (f_2, G_2, P_2)$ if $R_1(t) \leq R_2(t)$ for any t where $R_1(t)$ and $R_2(t)$ respectively denote the return probabilities of \mathcal{D}_1 and \mathcal{D}_2 at time t.
- D = (f, G, P) is less homesick as graph growing (LHaGG) if D is less homesick than D' = (g, G, P) for any g satisfying that ∑ⁿ_{k=1} f(k) ≤ ∑ⁿ_{k=1} g(k) for any n, i.e., D and D' grows similarly, but D grows *faster*.

The faster a graph grows, the smaller the return probability. The faster a graph grows, the smaller the return probability.

Under the condition of LHaGG, we can prove the following sufficient conditions of recurrence/transience, respectively.

Example 3. Random walk on $\{0,1\}^n$ w/ an increasing n

Let $\mathcal{D} = (\mathfrak{d}, G, P)$ be a RWoGG where

- $\mathfrak{d}(n)=2^n,$
- G(n) is a $\{0,1\}^n$ skeletone,
- P(n) denotes the simple random walk,

i.e., move to a neighbor w.p. 1/n,

FAQ: Any example for *not* LHaGG?

The faster a graph grows, the smaller the return probability.

Isn't it trivial?

is not LHaGG.

Lazy RW on $\{0,1\}^n$ w/ increasing n is LHaGG

Proof.

The proof is a monotone coupling.

- Let $X_t \sim \mathcal{D}_f = (f, G, P)$ and $Y_t \sim \mathcal{D}_g = (g, G, P)$ where $\sum_{i=1}^n f(i) \ge \sum_{i=1}^n g(i)$, \succ i.e., the graph of \mathcal{D}_g grows faster than that of \mathcal{D}_f .
- Let $|X_t|$, $|Y_t|$ denote the number of 1s in $X_t \in \{0,1\}^{n_t}$, $Y_t \in \{0,1\}^{m_t}$ where notice that $n_t \le m_t$. Then,

$$\Pr[|X_{t+1}| - 1 = |X_t|] = \frac{1}{2} \frac{|X_t|}{n_t}, \quad \Pr[|X_{t+1}| = |X_t|] = \frac{1}{2}, \quad \Pr[|X_{t+1}| + 1 = |X_t|] = \frac{1}{2} \left(1 - \frac{|X_t|}{n_t}\right)$$
$$\Pr[|Y_{t+1}| - 1 = |Y_t|] = \frac{1}{2} \frac{|Y_t|}{m_t}, \quad \Pr[|Y_{t+1}| = |Y_t|] = \frac{1}{2}, \quad \Pr[|Y_{t+1}| + 1 = |Y_t|] = \frac{1}{2} \left(1 - \frac{|Y_t|}{m_t}\right)$$

- if $|X_t| < |Y_t|$ then we can couple so that $|X_{t+1}| \le |Y_{t+1}|$
 - \blacktriangleright thanks to the self-loop w.p. $\frac{1}{2}$.
- If $|X_t| = |Y_t|$ then we can couple so that $|X_{t+1}| \le |Y_{t+1}|$ since $n_t \le m_t$. Thus, $X_t = o$ if $Y_t = o$, meaning that $\Pr[X_t = o] \ge \Pr[Y_t = o]$.

It looks a very simple exercise if you are familiar with **coupling**, but $n_t \neq m_t$ makes some trouble, in general.

[SAND '24]

Example 3. Random walk on $\{0,1\}^n$ w/ an increasing n

Let $\mathcal{D} = (\mathfrak{d}, G, P)$ be a RWoGG where

- $\mathfrak{d}(n)=2^n,$
- G(n) is a $\{0,1\}^n$ skeletone,
- P(n) denotes the simple random walk,

i.e., move to a neighbor w.p. 1/n,

for n = 1, 2, ...

Example 3. Random walk on $\{0,1\}^n$ w/ an increasing n

Let $\mathcal{D} = (\mathfrak{d}, G, P)$ be a RWoGG where

- $\mathfrak{d}(n) = 2^n$,
- G(n) is a $\{0,1\}^n$ skeletone,
- P(n) denotes the simple random walk,

i.e., move to a neighbor w.p. 1/n,

for n = 1, 2, ...

<u>Three representations (or "applications"?) of $\{0,1\}^n$ </u>

□ Random pick/drop items w/ an increasing number of items

□ Random bit flip of binary w/an increasing bit length

<u>Three representations (or "applications"?) of $\{0,1\}^n$ </u>

□ Random pick/drop items w/ an increasing number of items

□ Random bit flip of binary w/an increasing bit length

Extension from $\{0,1\}^n$ to $\{0,1,...,9\}^n$

D Random walk on $\{0, 1, \dots, 9\}^n$ w/ an increasing n

Random up/down digits w/ an increasing digit length

Let $\mathcal{D} = (\mathfrak{d}, G, P)$ be a RWoGG where

- $\mathfrak{d}(n) = N^n$,
- G(n) is a $\{0, 1, ..., N\}^n$ skeletone,
- P(n) denotes the lazy simple random walk w/ reflection bound,
 i.e., move to a neighbor w.p. 1/4n, unless boundary
 for n = 1,2, ...

 $\{0,1,\ldots,N\}^1 \quad \{0,1,\ldots,N\}^2 \qquad \{0,1,\ldots,N\}^3$ $\downarrow 0,1,\ldots,N\}^3 \qquad \downarrow 0,1,\ldots,N\}^3$ Q.
Is random walk on $\{0,1,\ldots,N\}^n$ LHaGG?
A. We can't prove it.

Let $\mathcal{D} = (\mathfrak{d}, G, P)$ be a RWoGG where

- $\mathfrak{d}(n) = N^n$,
- G(n) is a $\{0, 1, ..., N\}^n$ skeletone,
- P(n) denotes the lazy simple random walk w/ reflection bound,
 i.e., move to a neighbor w.p. 1/4n, unless boundary
 for n = 1,2, ...

 $\{0,1,\ldots,N\}^1 \quad \{0,1,\ldots,N\}^2 \qquad \{0,1,\ldots,N\}^3$ $\downarrow 0,1,\ldots,N\}^3 \qquad \downarrow 0,1,\ldots,N\}^3$ Q.
Is random walk on $\{0,1,\ldots,N\}^n$ LHaGG?
A. We can't prove it.

Let $\mathcal{D} = (\mathfrak{d}, G, P)$ be a RWoGG where

- $\mathfrak{d}(n) = N^n$,
- G(n) is a $\{0, 1, ..., N\}^n$ skeletone,
- P(n) denotes the lazy simple random walk w/ reflection bound,

i.e., move to a neighbor w.p. 1/4n, unless boundary

for n = 1, 2, ...

Let $\mathcal{D} = (\mathfrak{d}, G, P)$ be a RWoGG where

- $\mathfrak{d}(n) = N^n$,
- G(n) is a $\{0, 1, ..., N\}^n$ skeletone,
- P(n) denotes the lazy simple random walk w/ reflection bound,

i.e., move to a neighbor w.p. 1/4n, unless boundary

for n = 1, 2, ...

Lem. 7. Random walk on $\{0, 1, ..., N\}^n$ is *weakly* LHaGG. Thm. 6. If $\mathcal{D} = (\mathfrak{b}, G, P)$ satisfies $\sum_{n=1}^{\infty} \frac{\mathfrak{b}(n)}{(2N)^n} = \infty$ then *o* is recurrent, otherwise *o* is transient.

Defs.

- $\mathcal{D}_1 = (f_1, G_1, P_1)$ is less homesick than $\mathcal{D}_2 = (f_2, G_2, P_2)$ if $R_1(t) \leq R_2(t)$ for any t where $R_1(t)$ and $R_2(t)$ respectively denote the return probabilities of \mathcal{D}_1 and \mathcal{D}_2 at time t.
- D = (f, G, P) is less homesick as graph growing (LHaGG) if D is less homesick than D' = (g, G, P) for any g satisfying that ∑ⁿ_{k=1} f(k) ≤ ∑ⁿ_{k=1} g(k) for any n, i.e., D and D' grows similarly, but D grows *faster*.

The faster a graph grows, the smaller the return **probability**.

Recall: LHaGG

53

Defs.

- $\mathcal{D}_1 = (f_1, G_1, P_1)$ is less homesick than $\mathcal{D}_2 = (f_2, G_2, P_2)$ i $(R_1(t) \le R_2(t))$ for any t where $R_1(t)$ and $R_2(t)$ respectively denote the return probabilities of \mathcal{D}_1 and \mathcal{D}_2 at time t.
- D = (f, G, P) is less homesick as graph growing (LHaGG) if D is less homesick than D' = (g, G, P) for any g satisfying that ∑ⁿ_{k=1} f(k) ≤ ∑ⁿ_{k=1} g(k) for any n, i.e., D and D' grows similarly, but D grows *faster*.

The faster a graph grows, the smaller the return **probability**.

wLHaGG

We replace the condition about the return prob. with a condition of the **sum of** return prob.

Defs.

- $\mathcal{D}_1 = (f_1, G_1, P_1)$ is weakly less homesick than $\mathcal{D}_2 = (f_2, G_2, P_2)$ i $\sum_{t=1}^T R_1(t) \le \sum_{t=1}^T R_2(t)$ for any T where $R_1(t)$ and $R_2(t)$ respectively denote the return probabilities of \mathcal{D}_1 and \mathcal{D}_2 at time t.
- D = (f, G, P) is weakly less homesick as graph growing (wLHaGG) if D is weakly less homesick than D' = (g, G, P) for any g satisfying that ∑ⁿ_{k=1} f(k) ≤ ∑ⁿ_{k=1} g(k) for any n, i.e., D and D' grows similarly, but D grows *faster*.

General theorems

Condition 0. (ergodic). In $\mathcal{D} = (\mathfrak{d}, G, P)$, every transition matrix P(n) is ergodic. Condition 1. (mixing time). $\mathcal{D} = (\mathfrak{d}, G, P)$ satisfies

 $\sum_{k=1}^{k} \tau^*(k) p(k) < \infty$ Where $p(k) = \pi_k(o)$ and $\tau^*(k) = t_{\min}^k \left(\frac{p(k)}{4}\right)$. Mixing time is not very big. E.g., $0\left(\frac{1}{\pi_k(o)}\frac{1}{k\log k}\right)$

Thm. 2. (Recurrence).

Suppose (\mathfrak{d}, G, P) satisfies Conditions 0 and 1.

If $\sum_{k=1}^{\infty} \mathfrak{d}(k) p(k) = \infty$ then the initial vertex v is recurrent.

Thm. 4. (Transience). Suppose (\mathfrak{d}, G, P) satisfies Conditions 0 and 1, and it is wLHaGG. If $\sum_{k=2}^{\infty} \mathfrak{d}(k)p(k-1) < \infty$ then the initial vertex v is transient.

Recurrence

Thm. 2. (Recurrence).

Suppose (\mathfrak{d}, G, P) satisfies Conditions 0 and 1.

If $\sum_{k=1}^{\infty} \mathfrak{d}(k) p(k) = \infty$ then the initial vertex v is recurrent.

Proof. Let X_t follow (\mathfrak{d}, G, P) , and

let $R(t) = \Pr[X_t = o]$. We claim

Lem. 3.
$$\sum_{t=1}^{T_n} R(t) \ge \frac{1}{2} \sum_{k=1}^n (\mathfrak{d}(k) - \tau^*(k)) p(k)$$

Proof of Lem. 3.

- Notice that X_t follows P_n for $t \in [T_{n-1}, T_{n-1} + \mathfrak{d}(n)]$.
- If $\mathfrak{d}(n) > t_{\min}(\epsilon)$ then $R(t) \ge \pi_n(\mathfrak{o}) \epsilon$ for $t \ge T_{n-1} + t_{\min}(\epsilon)$ where π_n is the stationary distribution of P_n .

• Thus,
$$R(t) \ge \pi_n(o) - \frac{1}{2}p(n) = \frac{1}{2}p(n)$$

since $\tau^*(k) = t_{\min}\left(\frac{1}{2}p(n)\right)$ and $p(n) = \pi_n(o)$.
• $\sum_{t=1}^{T_n} R(t) = \sum_{k=1}^n \sum_{s=1}^{b(k)} R(T_{n-1} + s) \ge \sum_{k=1}^n \sum_{s=\tau^*(n)}^{b(k)} R(T_{n-1} + s)$

$$\sum_{k=1}^{n} \sum_{s=\tau^{*}(n)}^{\mathfrak{d}(k)} \frac{1}{2} p(n) = \frac{1}{2} \sum_{k=1}^{n} \big(\mathfrak{d}(k) - \tau^{*}(k)\big) p(k)$$

Once we obtain Lem. 3, Thm. 2 is easy: $\sum_{t=1}^{\infty} R(t) = \infty$ holds if $\sum_{k=1}^{\infty} \mathfrak{d}(k)p(k) = \infty$ and $\sum_{k=1}^{\infty} \tau^*(k)p(k) < \infty$. Mixing ti

Mixing time condition

 \geq

<u>Transience</u>

Thm. 4. (Transience). 57 Suppose (\mathfrak{d}, G, P) satisfies Conditions 0 and 1, and it is wLHaGG. If $\sum_{k=2}^{\infty} \mathfrak{d}(k)p(k-1) < \infty$ then the initial vertex v is transient.

Proof. Let $f(k) = \max\{\mathfrak{d}, \tau^*(k)\}.$ By wLHaGG, $\sum_{t=1}^{T_n} R_\mathfrak{d}(t) \le \sum_{t=1}^{T_n} R_g(t).$

Lem. 5.
$$\sum_{t=1}^{T_n} R_g(t) \le g(1) + \frac{3}{2} \sum_{k=2}^n g(k) p(k-1)$$

Proof of Lem. 5.

$$\begin{array}{l} \text{Let } f(k) = \begin{cases} g(k) & k \leq n-1 \\ \infty & k = n. \end{cases} \text{Then, } \sum_{k=1}^{m} g(k) \leq \sum_{k=1}^{m} g(k) \text{ for any } m. \end{cases} \\ \begin{array}{l} \text{Let } X_t \sim \mathcal{D}_g = (g, G, P) \text{ and } Y_t \sim \mathcal{D}_f = (f, G, P). \\ \text{ Notice that } Y_t \text{ follows } P_{n-1} \text{ for } t \geq T_{n-2}. \end{cases} \\ \begin{array}{l} \text{Particularly, remark} \\ X_t \sim P_n \text{ but } Y_t \sim P_{n-1} \\ \text{for } t \in [T_{n-1}, T_n) \end{cases} \\ \begin{array}{l} \text{Particularly, remark} \\ X_t \sim P_n \text{ but } Y_t \sim P_{n-1} \\ \text{for } t \in [T_{n-1}, T_n) \end{cases} \\ \begin{array}{l} \text{Particularly, remark} \\ X_t \sim P_n \text{ but } Y_t \sim P_{n-1} \\ \text{for } t \in [T_{n-1}, T_n) \end{cases} \\ \begin{array}{l} \text{Particularly, remark} \\ X_t \sim P_n \text{ but } Y_t \sim P_{n-1} \\ \text{for } t \in [T_{n-1}, T_n) \end{cases} \\ \begin{array}{l} \text{Particularly, remark} \\ X_t \sim P_n \text{ but } Y_t \sim P_{n-1} \\ \text{for } t \in [T_{n-1}, T_n) \end{cases} \\ \begin{array}{l} \text{Particularly, remark} \\ X_t \sim P_n \text{ but } Y_t \sim P_{n-1} \\ \text{for } t \in [T_{n-1}, T_n) \end{cases} \\ \begin{array}{l} \text{Particularly, remark} \\ X_t \sim P_n \text{ but } Y_t \sim P_{n-1} \\ \text{for } t \in [T_{n-1}, T_n) \end{cases} \\ \begin{array}{l} \text{Particularly, remark} \\ X_t \sim P_n \text{ but } Y_t \sim P_{n-1} \\ \text{for } t \in [T_{n-1}, T_n) \end{array} \\ \begin{array}{l} \text{Particularly, remark} \\ Y_t \sim P_n \text{ but } Y_t \sim P_{n-1} \\ \text{for } t \in [T_{n-1}, T_n) \end{array} \\ \begin{array}{l} \text{Particularly, remark} \\ Y_t \sim P_n \text{ but } Y_t \sim P_{n-1} \\ \text{for } t \in [T_{n-1}, T_n) \end{array} \\ \begin{array}{l} \text{Particularly, remark} \\ Y_t \sim P_n \text{ but } Y_t \sim P_{n-1} \\ \text{for } t \in [T_{n-1}, T_n) \end{array} \\ \begin{array}{l} \text{Particularly, remark} \\ Y_t \sim P_n \text{ but } Y_t \sim P_{n-1} \\ \text{for } t \in [T_{n-1}, T_n) \end{array} \\ \begin{array}{l} \text{Particularly, remark} \\ Y_t \sim P_n \text{ but } Y_t \sim P_{n-1} \\ \text{for } t \in [T_{n-1}, T_n) \end{array} \\ \begin{array}{l} \text{Particularly, remark} \\ Y_t \sim P_n \text{ but } Y_t \sim P_{n-1} \\ \text{for } t \in [T_{n-1}, T_n] \end{array} \\ \begin{array}{l} \text{Particularly, remark} \\ Y_t \sim P_n \text{ but } Y_t \sim P_{n-1} \\ \text{for } t \in [T_{n-1}, T_n] \end{array} \\ \begin{array}{l} \text{Particularly, remark} \\ Y_t \sim P_n \text{ but } Y_t \sim P_{n-1} \\ \text{for } t \in [T_{n-1}, T_n] \end{array} \\ \begin{array}{l} \text{Particularly, remark} \\ Y_t \sim P_n \text{ but } Y_t \sim P_n \\ \text{for } t \in [T_{n-1}, T_n] \end{array} \\ \begin{array}{l} \text{Particularly, remark} \\ Y_t \sim P_n \text{ but } Y_t \sim P_n \\ Y_t \sim Y_t \sim P_n \\ Y_t \sim Y_t \sim Y_t \sim Y_t \rightarrow Y_t \rightarrow Y_t \rightarrow Y_t \rightarrow Y_t \rightarrow Y_t \rightarrow Y_t$$

Once we obtain Lem. 5, Thm. 4 is clear.

Let $\mathcal{D} = (\mathfrak{d}, G, P)$ be a RWoGG where

- $\mathfrak{d}(n) = N^n$,
- G(n) is a $\{0, 1, ..., N\}^n$ skeletone,
- P(n) denotes the lazy simple random walk w/ reflection bound,

i.e., move to a neighbor w.p. 1/4n, unless boundary

for n = 1, 2, ...

Lem. 7. Random walk on $\{0, 1, ..., N\}^n$ is *weakly* LHaGG. Thm. 6. If $\mathcal{D} = (\mathfrak{b}, G, P)$ satisfies $\sum_{n=1}^{\infty} \frac{\mathfrak{b}(n)}{(2N)^n} = \infty$ then *o* is recurrent, otherwise *o* is transient.

Let $\mathcal{D} = (\mathfrak{d}, G, P)$ be a RWoGG where

- $\mathfrak{d}(n) = N^n$,
- G(n) is a $\{0, 1, ..., N\}^n$ skeletone,
- P(n) denotes the lazy simple random walk w/ reflection bound,

i.e., move to a neighbor w.p. 1/4n, unless boundary

for n = 1, 2, ...

Let $\mathcal{D} = (\mathfrak{d}, G, P)$ be a RWoGG where

- $\mathfrak{d}(n) = N^n$,
- G(n) is a $\{0, 1, ..., N\}^n$ skeletone,
- P(n) denotes the lazy simple random walk w/ reflection bound,

i.e., move to a neighbor w.p. 1/4n, unless boundary

for n = 1, 2, ...

Figure of pausing coupling

- Let $X = X_0, X_1, X_2, ... \sim D_f$ and $Y = Y_0, Y_1, Y_2, ... \sim D_g$ where let D_g grow faster than D_f .
- We couple **X** and **Y**, instead of X_t and Y_t .

We define time correspondence $t \mapsto S(t)$ depending on **Y** so that

- 1. if Y_t does self-loop then so does $X_{S^{-1}(t)}$,
- 2. if Y_t updates Y_t^i for $i \leq \dim(X_{s^{-1}(t)})$ then **X** updates $X_{s^{-1}(t)}^i$,
- 3. if Y_t updates Y_t^i for $i > \dim(X_{s^{-1}(t)})$ then **X** pauses.

We need to check "measure conservation" of the coupling.

Figure of pausing coupling

- Let $X = X_0, X_1, X_2, ... \sim D_f$ and $Y = Y_0, Y_1, Y_2, ... \sim D_g$ where let D_g grow faster than D_f .
- We couple **X** and **Y**, instead of X_t and Y_t .

We define time correspondence $t \mapsto S(t)$ depending on **Y** so that

- 1. if Y_t does self-loop then so does $X_{S^{-1}(t)}$,
- 2. if Y_t updates Y_t^i for $i \leq \dim(X_{s^{-1}(t)})$ then X updates $X_{s^{-1}(t)}^i$,
- 3. if Y_t updates Y_t^i for $i > \dim(X_{s^{-1}(t)})$ then **X** pauses.

We need to check "measure conservation" of the coupling.

Figure of pausing coupling

- Let $X = X_0, X_1, X_2, ... \sim D_f$ and $Y = Y_0, Y_1, Y_2, ... \sim D_g$ where let D_g grow faster than D_f .
- We couple **X** and **Y**, instead of X_t and Y_t .

We define time correspondence $t \mapsto S(t)$ depending on **Y** so that

- 1. if Y_t does self-loop then so does $X_{S^{-1}(t)}$,
- 2. if Y_t updates Y_t^i for $i \leq \dim(X_{S^{-1}(t)})$ then **X** updates $X_{S^{-1}(t)}^i$,
- 3. if Y_t updates Y_t^i for $i > \dim(X_{s^{-1}(t)})$ then X pauses.

We need to check "measure conservation" of the coupling.

	Lem. 7. 64
Outline of the proof	Random walk on $\{0,1,, N\}^n$ w/ increasing n is wLHaGG.

Let $\eta: Y \mapsto X = \eta(Y)$ denote the coupling described in the previous slide. We prove two things:

- **D** The coupling η preserves the measure, i.e., $\Pr[\mathbf{Y} = \mathbf{y}] = \Pr[\mathbf{X} = \eta(\mathbf{y})]$
- The coupling η preserves $|X_t| \le |Y_s|$ (meaning " $|\eta(y_s)| \le |y_s|$ ") for any s satisfying $S(t) \le s < S(t+1)$.
 - ➤ This implies $#\{t \le T \mid X_t = o\} \ge #\{t \le T \mid Y_t = o\}$ for any *T*.

<u>Def. *S*(*t*)</u>

Proof.

Suppose $\mathbf{Y} = Y_0, Y_1, Y_2, Y_3, ...$ is represented by $\boldsymbol{\theta}_{\mathbf{Y}} = (\lambda_1, j_1, \rho_1), (\lambda_2, j_2, \rho_2), (\lambda_3, j_3, \rho_3), ...$

We define $S: \mathbb{Z} \to \mathbb{Z}$ according to $\boldsymbol{\theta}$.

Let $S(1) = \min\{\min\{t > 0 | \lambda_t = 0\}, \min\{t > 0 | j_t \in n_0\}\}.$

Recursively, let

 $S(k) = \min\{\min\{t > S(k-1) | \lambda_t = 0\}, \min\{t > S(k-1) | j_t \in n_{k-1}\}\}$ where let $\min\{\emptyset\} = \infty$.

If $S(k) = \infty$ then let $S(k + 1) = \infty$. For convenience, let $S^{-1}(t) = k$ for $t = S(k) < \infty$ (k = 1, 2, ...). Then, we define $X = X_0, X_1, X_2, ...$ by $\theta_X = \left(\left(\lambda_{S^{-1}(k)}, j_{S^{-1}(k)}, \rho_{S^{-1}(k)} \right) \right)_{k=1,2,...}$ $= \left(\lambda_{S^{-1}(1)}, j_{S^{-1}(1)}, \rho_{S^{-1}(1)} \right), \left(\lambda_{S^{-1}(2)}, j_{S^{-1}(2)}, \rho_{S^{-1}(2)} \right), ...$ as far as $S(k) < \infty$.

If $S(k) = \infty$ then generate $(\lambda'_k, j'_k, \rho'_k)$ and transit to X_{k+1} according to it.

Def. S(t)

Proof.

Suppose $\mathbf{Y} = Y_0, Y_1, Y_2, Y_3, ...$ is represented by $\boldsymbol{\theta}_{\mathbf{Y}} = (\lambda_1, j_1, \rho_1), (\lambda_2, j_2, \rho_2), (\lambda_3, j_3, \rho_3), ...$

We define $S: \mathbb{Z} \to \mathbb{Z}$ according to $\boldsymbol{\theta}$.

Let $S(1) = \min\{\min\{t > 0 | \lambda_t = 0\}, \min\{t > 0 | j_t \in n_0\}\}.$

Recursively, let

 $S(k) = \min\{\min\{t > S(k-1) | \lambda_t = 0\}, \min\{t > S(k-1) | j_t \in n_{k-1}\}\}$ where let $\min\{\emptyset\} = \infty$.

If $S(k) = \infty$ then let $S(k + 1) = \infty$.

For convenience, let $S^{-1}(t) = k$ for $t = S(k) < \infty$ (k = 1, 2, ...).

Final slide

Result

- Recurrence/transience of wLHaGG RWoGG.
- Random walk on $\{0, 1, ..., N\}^n$ w/ increasing n is wLHaGG.
 - Proof by pausing coupling.

Future work

Simplify the proof

- Extension to other RWoGGs
 - E.g., GW tree, PA graph, and more general graphs,
 - Edge dynamics, e.g., growing + edge Markovian.
- □ Analysis of RWoGG beyond recurrence/transience
 - Hitting time, meeting time, gathering time, etc.
 - Find a new limit, undefined for an infinite graph.

Thank you for the attention.

Lazy simple random walk on $\{0,1, ..., N\}^n$ w/ increasing n

Current state
$$X_t = (X_t^1, ..., X_t^{n_t}) \in \{0, 1, ..., N\}^{n_t}$$
.
1. W.p. $\frac{1}{2}$, set $X_{t+1} = X_t$.
2. Else, choose $i \in \{1, ..., n_t\}$ u.a.r.
3. If X_t^i is not 0 nor N then update as $X_{t+1}^i = X_t^i \pm 1$ w.p. $\frac{1}{2}$ resp.
4. Else if $X_t^i = 0$ then update as $X_{t+1}^i = X_t^i + 1$.
5. Else if $X_t^i = N$ then update as $X_{t+1}^i = X_t^i - 1$.

Lazy simple random walk on $\{0,1, ..., N\}^n$ w/ increasing n

A transition $X_t \mapsto X_{t+1}$ is represented by uniform r.v.s $(\lambda, i, \rho) \in \{0, 1\} \times \{1, ..., n_t\} \times \{0, 1\}$.