
The Recurrence/Transience of Random Walks 
on a Bounded Grid in an Increasing Dimension

AofA 2024

Shuma Kumamoto (Kyushu Univ.), 

*Shuji Kijima (Shiga Univ.),

 Tomoyuki Shirai (Kyushu Univ.)

June 20, 2024



Plan of talk
2

1. Introduction
➢ ℤ3

➢ RWoGG
➢ Tree

2. Related work
➢ Exploration

3. Previous work
➢ LHaGG
➢ 0,1 𝑛 proof
➢ Extension to 0,1, … , 𝑁 𝑛

4. Main result
➢ Weakly LHaGG
➢ Recurrence
➢ Transience
➢ pausing coupling

5. Concluding remarks



Plan of talk ≥ 49 min.
3

1. Introduction (≥ 9 min.)
➢ ℤ3

➢ RWoGG
➢ Tree

2. Related work (≥ 6 min.)
➢ Exploration

3. Previous work (≥ 8 min.)
➢ LHaGG
➢ 0,1 𝑛 proof
➢ Extension to 0,1, … , 𝑁 𝑛

4. Main result (≥ 25 min.)
➢ Weakly LHaGG
➢ Recurrence
➢ Transience
➢ pausing coupling

5. Concluding remarks (1 min.)



Plan of talk ≥ 49 min. 25 min.
4

1. Introduction (≥ 9 min. 6 min.)
➢ ℤ3

➢ RWoGG
➢ Tree

2. Related work (≥ 6 min.  3 min.)
➢ Exploration

3. Previous work (≥ 8 min.)
➢ LHaGG
➢ 0,1 𝑛 proof
➢ Extension to 0,1, … , 𝑁 𝑛

4. Main result (≥ 25 min. 7 min.)
➢ Weakly LHaGG
➢ Recurrence
➢ Transience
➢ pausing coupling

5. Concluding remarks (1 min.)
Shuji Kijima      search

Find this slide in my HP

https://shuji-kijima.com/



1. Introduction w/ examples



Recurrence/Transience of Random walks on infinite graphs
6

A random walk on an infinite graph is recurrent at vertex 𝑣 

if it visits 𝑣 infinitely many times, i.e., 

෍

𝑡=0

∞

Pr 𝑋𝑡 = 𝑣 = ∞

holds, otherwise it is said to be transient. 

For instance, 

RW on ℤ is recurrent at o, 

……
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if it visits 𝑣 infinitely many times, i.e., 

෍

𝑡=0

∞

Pr 𝑋𝑡 = 𝑣 = ∞

holds, otherwise it is said to be transient. 

For instance, 

RW on ℤ is recurrent at o, 

……

RW on ℤ2 is recurrent at o, 



Recurrence/Transience of Random walks on infinite graphs
8

A random walk on an infinite graph is recurrent at vertex 𝑣 

if it visits 𝑣 infinitely many times, i.e., 

෍

𝑡=0

∞

Pr 𝑋𝑡 = 𝑣 = ∞

holds, otherwise it is said to be transient. 

For instance, 

RW on ℤ is recurrent at o, 

……

RW on ℤ2 is recurrent at o, RW on ℤ3 is transient at o, 



Example 1. Random walk in a growing region of ℤ3
9

✓ Random walk on ℤ3 is transient at 𝑜. 

✓ Random walk on −𝑛, … , 𝑛 3 is recurrent at 𝑜. 

RW on ℤ3 is transient at o, 

Q.  Is a random walk on −𝑛, … , 𝑛 3 recurrent or transient 

if 𝑛 increases as time go on?

A. It depends on the increasing speed. 

Find the phase transition point

regarding the growing speed.



Model: Random Walk on a Growing Graph (RWoGG)
10

 Growing graph is a sequence of static graphs 
𝓖 = 𝒢0, 𝒢1, 𝒢2, …

where each 𝒢𝑡 = (𝒱𝑡, ℰ𝑡) is a static simple graph. 

We assume 𝒱𝑡 ⊆ 𝒱𝑡+1, for convenience. 

Furthermore, ℰ𝑡 ⊆ ℰ𝑡+1 holds in this talk.  

[K, Shimizu, Shiraga ‘21]
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 Growing graph is a sequence of static graphs 
𝓖 = 𝒢0, 𝒢1, 𝒢2, …

where each 𝒢𝑡 = (𝒱𝑡, ℰ𝑡) is a static simple graph. 

We assume 𝒱𝑡 ⊆ 𝒱𝑡+1, for convenience. 

Furthermore, ℰ𝑡 ⊆ ℰ𝑡+1 holds in this talk.  

 RWoGG 𝔡, 𝐺, 𝑃  is a specific model: 

➢ 𝔡 1 , 𝔡 2 , 𝔡 3 , … ∈ ℤ denote the duration time.  

➢ Growing graph is given by 
𝒢𝑡 = 𝐺 𝑛  for 𝑡 ∈ [𝑇𝑛−1, 𝑇𝑛−1 + 𝔡 𝑛 )

where 𝑇𝑛 = σ𝑖=1
𝑛 𝔡 𝑛 , i.e., 

𝒢𝑡 =

𝐺 1 for the first 𝔡 1 steps

𝐺 2 for the next 𝔡 2 steps

𝐺 3 for the next 𝔡 3 steps
⋮ ⋮

➢  𝑃 𝑛  denotes the transition matrix on 𝐺 𝑛 . 

𝔡 represents 
(inverse) growing speed

[K, Shimizu, Shiraga ‘21]



Example 1. Random walk in a growing region of ℤ𝑑  
12

Let 𝒟 = 𝔡, 𝐺, 𝑃  be a RWoGG where

• 𝔡 𝑛 = 𝑛2, 

• 𝐺 𝑛 is a grid graph −𝑛, … , 𝑛 3, 

• 𝑃 𝑛  denotes the simple random walk w/ reflection bound, 

i.e., move to a neighbor w.p.
1

3
⋅

1

2
=

1

6
 unless boundary, 

for 𝑛 = 1,2, …

Thm. [Dembo et al. 2014, Kumamoto et al. 2024]

If σ𝑛=1
∞ 𝔡 𝑛

𝑛𝑑 = ∞ then recurrent, otherwise transient. 

𝔡 1 steps 𝔡 2 steps 𝔡 3 steps
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Let 𝒟 = 𝔡, 𝐺, 𝑃  be a RWoGG where

• 𝔡 𝑛 = 𝑛2, 

• 𝐺 𝑛 is a grid graph −𝑛, … , 𝑛 3, 

• 𝑃 𝑛  denotes the simple random walk w/ reflection bound, 

i.e., move to a neighbor w.p.
1

3
⋅

1

2
=

1

6
 unless boundary, 

for 𝑛 = 1,2, …

Thm. [Dembo et al. 2014, Kumamoto et al. 2024]

If σ𝑛=1
∞ 𝔡 𝑛

𝑛𝑑 = ∞ then recurrent, otherwise transient. 

𝔡 1 steps 𝔡 2 steps 𝔡 3 steps

Recurrent

since σ𝑛=1
∞ 𝑛2

𝑛3 = σ𝑛=1
∞ 1

𝑛
= ∞. 



Example 1. Random walk in a growing region of ℤ𝑑  
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Let 𝒟 = 𝔡, 𝐺, 𝑃  be a RWoGG where

• 𝔡 𝑛 = 𝑛1.999, 

• 𝐺 𝑛 is a grid graph −𝑛, … , 𝑛 3, 

• 𝑃 𝑛  denotes the simple random walk w/ reflection bound, 

i.e., move to a neighbor w.p.
1

3
⋅

1

2
=

1

6
 unless boundary, 

for 𝑛 = 1,2, …

Thm. [Dembo et al. 2014, Kumamoto et al. 2024]

If σ𝑛=1
∞ 𝔡 𝑛

𝑛𝑑 = ∞ then recurrent, otherwise transient. 

𝔡 1 steps 𝔡 2 steps 𝔡 3 steps



Example 1. Random walk in a growing region of ℤ𝑑  
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Let 𝒟 = 𝔡, 𝐺, 𝑃  be a RWoGG where

• 𝔡 𝑛 = 𝑛1.999, 

• 𝐺 𝑛 is a grid graph −𝑛, … , 𝑛 3, 

• 𝑃 𝑛  denotes the simple random walk w/ reflection bound, 

i.e., move to a neighbor w.p.
1

3
⋅

1

2
=

1

6
 unless boundary, 

for 𝑛 = 1,2, …

Thm. [Dembo et al. 2014, Kumamoto et al. 2024]

If σ𝑛=1
∞ 𝔡 𝑛

𝑛𝑑 = ∞ then recurrent, otherwise transient. 

𝔡 1 steps 𝔡 2 steps 𝔡 3 steps

Transient

since σ𝑛=1
∞ 𝑛1.999

𝑛3 = σ𝑛=1
∞ 1

𝑛0.999 < 1000. 



Example 2. RW on an infinite 𝑘-ary tree
16

✓ Random walk on an infinite 𝑘-ary tree is transient at 𝑟. 

…



Example 2. RW on an infinite 𝑘-ary tree
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✓ Random walk on an infinite 𝑘-ary tree is transient at 𝑟. 

✓ Random walk on a finite 𝑘-ary tree is recurrent at 𝑟. 

…



Example 2. RW on an infinite 𝑘-ary tree
18

✓ Random walk on an infinite 𝑘-ary tree is transient at 𝑟. 

✓ Random walk on a finite 𝑘-ary tree is recurrent at 𝑟. 

Q.  Is a random walk on a 𝑘-ary tree recurrent or transient 

if its height 𝑛 increases as time go on?

A. It depends on the increasing speed. 

…

Find the phase transition point

regarding the growing speed.



Example 2. Random walk on a growing 𝑘-ary tree
19

Let 𝒟 = 𝔡, 𝐺, 𝑃  be a RWoGG where

• 𝔡 𝑛 = 3𝑛, 

• 𝐺 𝑛 is a 3-ary tree of height 𝑛, 

• 𝑃 𝑛  denotes the simple random walk w/ reflection bound, 

i.e., move to a neighbor w.p. 1/4 unless the root or a leaf, 

for 𝑛 = 1,2, …

Thm. [Huang 2019, Kumamoto et al. 2024]

If σ𝑛=1
∞ 𝔡 𝑛

𝑘𝑛 = ∞ then recurrent, otherwise transient. 

𝔡 1 steps 𝔡 2 steps 𝔡 3 steps



Example 2. Random walk on a growing 𝑘-ary tree
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Let 𝒟 = 𝔡, 𝐺, 𝑃  be a RWoGG where

• 𝔡 𝑛 = 3𝑛, 

• 𝐺 𝑛 is a 3-ary tree of height 𝑛, 

• 𝑃 𝑛  denotes the simple random walk w/ reflection bound, 

i.e., move to a neighbor w.p. 1/4 unless the root or a leaf, 

for 𝑛 = 1,2, …

Thm. [Huang 2019, Kumamoto et al. 2024]

If σ𝑛=1
∞ 𝔡 𝑛

𝑘𝑛 = ∞ then recurrent, otherwise transient. 

𝔡 1 steps 𝔡 2 steps 𝔡 3 steps

Recurrent
since σ𝑛=1

∞ 3𝑛

3𝑛 = σ𝑛=1
∞ 1 = ∞. 



Example 2. Random walk on a growing 𝑘-ary tree
21

Let 𝒟 = 𝔡, 𝐺, 𝑃  be a RWoGG where

• 𝔡 𝑛 = 2.999999𝑛, 

• 𝐺 𝑛 is a 3-ary tree of height 𝑛, 

• 𝑃 𝑛  denotes the simple random walk w/ reflection bound, 

i.e., move to a neighbor w.p. 1/4 unless the root or a leaf, 

for 𝑛 = 1,2, …

Thm. [Huang 2019, Kumamoto et al. 2024]

If σ𝑛=1
∞ 𝔡 𝑛

𝑘𝑛 = ∞ then recurrent, otherwise transient. 

𝔡 1 steps 𝔡 2 steps 𝔡 3 steps



Example 2. Random walk on a growing 𝑘-ary tree
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Let 𝒟 = 𝔡, 𝐺, 𝑃  be a RWoGG where

• 𝔡 𝑛 = 2.999999𝑛, 

• 𝐺 𝑛 is a 3-ary tree of height 𝑛, 

• 𝑃 𝑛  denotes the simple random walk w/ reflection bound, 

i.e., move to a neighbor w.p. 1/4 unless the root or a leaf, 

for 𝑛 = 1,2, …

Thm. [Huang 2019, Kumamoto et al. 2024]

If σ𝑛=1
∞ 𝔡 𝑛

𝑘𝑛 = ∞ then recurrent, otherwise transient. 

𝔡 1 steps 𝔡 2 steps 𝔡 3 steps

Transient
since σ𝑛=1

∞ 2.999999𝑛

3𝑛 < 1,000,000. 



2. Related work

About analysis of algorithms in dynamic environment



Related work (1/2): Random walks on dynamic graphs
24

 Graph search by RW --- related to cover time

• Copper and Frieze (2003): Crawling on simple models of web graphs.

• Avin, Koucky and Lotker (2008):  a bad example for hitting-time (cover time 
as well) w/ Ω 2𝑛  for the number of vertices 𝑛.  

• Denysyuk and Rodrigues (2014): cover time under some fairness condition. 

• Lamprou, Martin and Spirakis (2018): edge-uniform stochastically graphs. 

• Sauerwald and Zanetti (2019): 𝑂 𝑛2 cover time for 𝑑-regular graphs.

• K, Shimizu, Shiraga (2021): cover ratio of RWoGG

 Mixing time

• Saloff-Coste and Zuniga (2009,2011): mixing time for time-inhomogeneous 
Markov chains w/ an invariant stationary distribution. 

• Dembo, Huang and Zheng (2019) analyzed the conductance of growing 
subregion of  ℤ𝑑. 

• Cai, Sauerwald and Zanetti (2020): mixing time for edge-Markovian graph. 

 Recurrence/transience

… Continued 
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 Recurrence/transience

… Continued 



Collecting an increasing number of coupons
26

Day Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10

# types 1 2 2 3 3 3 4 4 4

𝐏𝐫 𝑿𝒕 = 𝒌
𝟏

𝟏

𝟏

𝟐

𝟏

𝟐

𝟏

𝟑

𝟏

𝟑

𝟏

𝟑

𝟏

𝟒

𝟏

𝟒

𝟏

𝟒

1st period 2nd period 3rd period 4th period

1 1 2 1 2

3

1 2

3 4Q. How many types are collected in 
the end of 𝑛th period?

[K, Shimizu, Shiraga ‘21]
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Day Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10

# types 1 2 2 3 3 3 4 4 4

𝐏𝐫 𝑿𝒕 = 𝒌
𝟏

𝟏

𝟏

𝟐

𝟏

𝟐

𝟏

𝟑

𝟏

𝟑

𝟏

𝟑

𝟏

𝟒

𝟏

𝟒

𝟏

𝟒

1st period 2nd period 3rd period 4th period

1 1 2 1 2

3

1 2

3 4Q. How many types are collected in 
the end of 𝑛th period?

[K, Shimizu, Shiraga ‘21]

1.  O(log 𝑛)

2.  O 𝑛

3.  
𝑛

2

4.  .99𝑛



Collecting an increasing number of coupons
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Day Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10

# types 1 2 2 3 3 3 4 4 4

𝐏𝐫 𝑿𝒕 = 𝒌
𝟏

𝟏

𝟏

𝟐

𝟏

𝟐

𝟏

𝟑

𝟏

𝟑

𝟏

𝟑

𝟏

𝟒

𝟏

𝟒

𝟏

𝟒

1st period 2nd period 3rd period 4th period

1 1 2 1 2

3

1 2

3 4Q. How many types are collected in 
the end of 𝑛th period?

[K, Shimizu, Shiraga ‘21]

1.  O(log 𝑛)

2.  O 𝑛

3.  
𝑛

2

4.  .99𝑛

5.  at least 𝒏 − 𝟏

in expectation



Collecting an increasing number of coupons
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Prop.

If 𝔡 𝑛 = 𝑛 then E 𝑈𝑛 <
1

e−1
.

Proof.

✓ ℰ𝑖,𝑛 ≔ ቊ
1 (item 𝑖 is uncollected in the end of the 𝑛th period)
0 (item 𝑖 is collected by the end of the 𝑛th period)

        

for 𝑖 = 1,2, … , 𝑛. 

✓ 𝑈𝑛 = σ𝑖=1
𝑛 ℰ𝑖,𝑛

✓ Prob. that item 𝑛 is uncollected in the end of the 𝑛th period: 

Pr[ℰ𝑛,𝑛 = 1] = 1 −
1

𝑛

𝑛

< e−1

✓ Prob. that item 𝑖 (𝑖 ≤ 𝑛) is uncollected in the end of the 𝑛th period: 

Pr ℰ𝑖,𝑛 = 1 = 1 −
1

𝑖

𝑖

1 −
1

𝑖 + 1

𝑖+1

… 1 −
1

𝑛

𝑛

<
1

e

𝑛+1−𝑖

✓ E 𝑈𝑛 = σ𝑖=1
𝑛 Pr ℰ𝑖,𝑛 < σ𝑖=1

𝑛 1

e

𝑛+1−𝑖
=

1

e
+

1

e2 + ⋯ +
1

e𝑛 <
1

e

1−
1

e

=
1

e−1
< 0.582.

Draw a coupon everyday

𝔡 𝑛 : #days of the 𝑛th period

𝑈𝑛: #items uncollected 

in the end of 𝑛th period

[K, Shimizu, Shiraga ‘21]



RWoGG 𝔡, 𝐺 𝑃
30

Thm. (general upper bound)

If 𝔡 𝑖 ≥ 𝑐𝑡hit(𝑖) (𝑐 ≥ 1) then E 𝑈 = 𝑂 1 . 

Particularly, if 
𝔡 𝑖

𝑡ℎ𝑖𝑡(𝑖)

𝑖→∞
∞ then E 𝑈𝑛

𝑛→∞
0．

Thm. (upper bound for lazy and reversible walk)

Suppose 𝑃 𝑖 is lazy and reversible. 

If 
𝑡hit 𝑖

𝑡mix(𝑖)
≥

𝑖𝛾

𝑐
and 𝔡 𝑖 ≥

3𝑐𝑡hit 𝑖

𝑖𝛾  (𝑐 > 0) then E 𝑈𝑛 ≤
8𝑛𝛾

𝑐
+ 32．

S. Kijima, N. Shimizu, T. Shiraga, How many vertices does a random walk miss in a 
network with moderately increasing the number of vertices?, in Proc. SODA 2021, 
106—122. 

Coupon collector is often regarded as a RW on the complete graph, and 

we can extend the arguments to RWoGG for general graphs.



Related work (2/2): recurrence/transience of RW
31

• Much work about the recurrence/transience on growing graphs exist in the 
context of self-interacting random walks including reinforced random walks, 
excited random walks, etc. since 1990s, or before. 

• Dembo, Huang and Sidoravicius (2014× 2): recurrent ⇔ σ𝑡=0
∞ 𝜋𝑡 0 = ∞ 

for growing subregion of ℤ𝑑 (fixed 𝑑), by conductance argument. 

➢ See also Huang and Kumagai (2016), Dembo, Huang, Morris and Peres 
(2017),  Dembo, Huang and Zheng (2019), etc. about heat kernel, 
evolving set arguments. 

• Amir, Benjamini, Gurel-Gurevich and Kozma (2015): random walk on 
growing tree. (random walk in changing environment). 

• Huang (2017): growing graph w/ uniformly bounded degrees. 

• Kumamoto, K. and Shirai (2024): 𝑘-ary tree, 0,1 𝑛 w/ an increasing 𝑛 under 
RWoGG model by coupling. 

• This work (2024): 0,1, … , 𝑁 𝑛 (fixed 𝑁, increasing 𝑛) by pausing coupling. 



3. Our previous work

S. Kumamoto, S. Kijima and T. Shirai,  An analysis of the recurrence/transience of 
random walks on growing trees and hypercubes, Proc. SAND 2024, 17:1-17:17

About the recurrence/transience of RWoGG,  

for an introduction of the basic technique and its issue. 

[SAND ‘24]



Example 3. Random walk on 0,1 𝑛 w/ an increasing 𝑛
33

Let 𝒟 = 𝔡, 𝐺, 𝑃  be a RWoGG where

• 𝔡 𝑛 = 2𝑛, 

• 𝐺 𝑛 is a 0,1 𝑛 skeletone, 

• 𝑃 𝑛  denotes the simple random walk, 

i.e., move to a neighbor w.p. 1/𝑛, 

for 𝑛 = 1,2, …

𝔡 1 steps 𝔡 2 steps 𝔡 3 steps

[SAND ‘24]



Example 3. Random walk on 0,1 𝑛 w/ an increasing 𝑛
34

Let 𝒟 = 𝔡, 𝐺, 𝑃  be a RWoGG where

• 𝔡 𝑛 = 2𝑛, 

• 𝐺 𝑛 is a 0,1 𝑛 skeletone, 

• 𝑃 𝑛  denotes the simple random walk, 

i.e., move to a neighbor w.p. 1/𝑛, 

for 𝑛 = 1,2, …

Thm. [Kumamoto et al. 2024]

If σ𝑛=1
∞ 𝔡 𝑛

2𝑛 = ∞ then recurrent, otherwise transient. 

𝔡 1 steps 𝔡 2 steps 𝔡 3 steps

[SAND ‘24]

Recurrent
since σ𝑛=1

∞ 2𝑛

2𝑛 = ∞. 



Example 3. Random walk on 0,1 𝑛 w/ an increasing 𝑛
35

Let 𝒟 = 𝔡, 𝐺, 𝑃  be a RWoGG where

• 𝔡 𝑛 = 2𝑛, 

• 𝐺 𝑛 is a 0,1 𝑛 skeletone, 

• 𝑃 𝑛  denotes the simple random walk, 

i.e., move to a neighbor w.p. 1/𝑛, 

for 𝑛 = 1,2, …

Thm. [Kumamoto et al. 2024]

If σ𝑛=1
∞ 𝔡 𝑛

2𝑛 = ∞ then recurrent, otherwise transient. 

𝔡 1 steps 𝔡 2 steps 𝔡 3 steps

Lem. [Kumamoto et al. 2024]

Random walk on 0,1 𝑛 is LHaGG.

[SAND ‘24]



LHaGG [SAND ‘24]
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Defs. 

• 𝒟1 = 𝑓1, 𝐺1, 𝑃1  is less homesick than 𝒟2 = 𝑓2, 𝐺2, 𝑃2

if 𝑅1 𝑡 ≤ 𝑅2 𝑡  for any 𝑡 where 𝑅1 𝑡  and 𝑅2 𝑡  respectively denote 
the return probabilities of 𝒟1 and 𝒟2 at time 𝑡. 

• 𝒟 = 𝑓, 𝐺, 𝑃  is less homesick as graph growing (LHaGG) 

if 𝒟 is less homesick than 𝒟′ = 𝑔, 𝐺, 𝑃  for any 𝑔 satisfying that 

σ𝑘=1
𝑛 𝑓 𝑘 ≤ σ𝑘=1

𝑛 𝑔 𝑘  for any 𝑛, 

i.e., 𝒟 and 𝒟′ grows similarly, but 𝒟 grows faster. 

The faster a graph grows, 
the smaller the return probability. 



Theorems by LHaGG
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Thm. [Kumamoto, K., Shirai ‘24]

Suppose 𝒟 = 𝔡, 𝐺, 𝑃  is LHaGG. If 

෍

𝑛=1

∞

𝔡 𝑛 𝑝 𝑛 = ∞

then 𝒟 is recurrent at 𝑣, where 𝑝 𝑛 = 𝜋𝑛 𝑣 . 

Thm. [Kumamoto, K., Shirai ‘24]

Suppose 𝒟 = 𝔡, 𝐺, 𝑃  is LHaGG. If 

෍

𝑛=1

∞

max 𝔡 𝑛 , 𝔱 𝑛 𝑝 𝑛 < ∞

then 𝒟 is transient at 𝑣, where 𝔱 𝑛  represents the mixing time.  

The faster a graph grows, 
the smaller the return probability. 

Under the condition of LHaGG, we can prove the following 
sufficient conditions of recurrence/transience, respectively. 



Example 3. Random walk on 0,1 𝑛 w/ an increasing 𝑛
38

Let 𝒟 = 𝔡, 𝐺, 𝑃  be a RWoGG where

• 𝔡 𝑛 = 2𝑛, 

• 𝐺 𝑛 is a 0,1 𝑛 skeletone, 

• 𝑃 𝑛  denotes the simple random walk, 

i.e., move to a neighbor w.p. 1/𝑛, 

for 𝑛 = 1,2, …

Thm. [Kumamoto et al. 2024]

If σ𝑛=1
∞ 𝔡 𝑛

2𝑛 = ∞ then recurrent, otherwise transient. 

𝔡 1 steps 𝔡 2 steps 𝔡 3 steps

Lem. [Kumamoto et al. 2024]

Random walk on 0,1 𝑛 is LHaGG.

The faster a graph grows, 
the smaller the return probability? 



FAQ: Any example for not LHaGG?
39

The faster a graph grows, 
the smaller the return probability. 

Isn’t it trivial?



FAQ: Any example for not LHaGG?
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…

A (lazy) simple random walk on

is not LHaGG. 

𝐺 1  𝐺 2  𝐺 3  𝐺 4  𝐺 5  

The faster a graph grows, 
the smaller the return probability. 

Isn’t it trivial?



Lazy RW on 0,1 𝑛 w/ increasing 𝑛 is LHaGG
41

Proof. 

The proof is a monotone coupling. 

• Let 𝑋𝑡 ∼ 𝒟𝑓 = 𝑓, 𝐺, 𝑃  and 𝑌𝑡 ∼ 𝒟𝑔 = 𝑔, 𝐺, 𝑃 where σ𝑖=1
𝑛 𝑓 𝑖 ≥ σ𝑖=1

𝑛 𝑔 𝑖 , 

➢ i.e., the graph of 𝒟𝑔 grows faster than that of 𝒟𝑓. 

• Let 𝑋𝑡 , |𝑌𝑡| denote the number of 1s in 𝑋𝑡 ∈ 0,1 𝑛𝑡, 𝑌𝑡 ∈ 0,1 𝑚𝑡 

where notice that 𝑛𝑡 ≤ 𝑚𝑡. Then, 

Pr 𝑋𝑡+1 − 1 = 𝑋𝑡 =
1

2

𝑋𝑡

𝑛𝑡
, Pr 𝑋𝑡+1 = 𝑋𝑡 =

1

2
, Pr 𝑋𝑡+1 + 1 = 𝑋𝑡 =

1

2
1 −

𝑋𝑡

𝑛𝑡
 

Pr 𝑌𝑡+1 − 1 = 𝑌𝑡 =
1

2

𝑌𝑡

𝑚𝑡
,  Pr 𝑌𝑡+1 = 𝑌𝑡 =

1

2
,  Pr 𝑌𝑡+1 + 1 = 𝑌𝑡 =

1

2
1 −

𝑌𝑡

𝑚𝑡
 

• if 𝑋𝑡 < |𝑌𝑡| then we can couple so that 𝑋𝑡+1 ≤ |𝑌𝑡+1|

➢ thanks to the self-loop w.p.
1

2
.  

• If 𝑋𝑡 = 𝑌𝑡  then we can couple so that 𝑋𝑡+1 ≤ |𝑌𝑡+1| since 𝑛𝑡 ≤ 𝑚𝑡. 

Thus, 𝑋𝑡 = 𝑜 if 𝑌𝑡 = 𝑜, 

meaning that Pr 𝑋𝑡 = 𝑜 ≥ Pr 𝑌𝑡 = 𝑜 . 
It looks a very simple exercise if 
you are familiar with coupling, 
but 𝑛𝑡 ≠ 𝑚𝑡 makes some 
trouble, in general. 

[SAND ‘24]



Example 3. Random walk on 0,1 𝑛 w/ an increasing 𝑛
42

Let 𝒟 = 𝔡, 𝐺, 𝑃  be a RWoGG where

• 𝔡 𝑛 = 2𝑛, 

• 𝐺 𝑛 is a 0,1 𝑛 skeletone, 

• 𝑃 𝑛  denotes the simple random walk, 

i.e., move to a neighbor w.p. 1/𝑛, 

for 𝑛 = 1,2, …

𝔡 1 steps 𝔡 2 steps 𝔡 3 steps



Example 3. Random walk on 0,1 𝑛 w/ an increasing 𝑛
43

Let 𝒟 = 𝔡, 𝐺, 𝑃  be a RWoGG where

• 𝔡 𝑛 = 2𝑛, 

• 𝐺 𝑛 is a 0,1 𝑛 skeletone, 

• 𝑃 𝑛  denotes the simple random walk, 

i.e., move to a neighbor w.p. 1/𝑛, 

for 𝑛 = 1,2, …

Thm. [Kumamoto et al. 2024]

If σ𝑛=1
∞ 𝔡 𝑛

2𝑛 = ∞ then recurrent, otherwise transient. 

𝔡 1 steps 𝔡 2 steps 𝔡 3 steps

Lem. [Kumamoto et al. 2024]

Random walk on 0,1 𝑛 is LHaGG.

Recurrent
since σ𝑛=1

∞ 2𝑛

2𝑛 = ∞. 



Three representations (or “applications”?) of 0,1 𝑛
44

 Random walk on 0,1 𝑛 w/ an increasing dimensions

 Random pick/drop items w/ an increasing number of items

 Random bit flip of binary w/an increasing bit length

𝔡 1 steps 𝔡 2 steps 𝔡 3 steps

𝔡 1 steps 𝔡 2 steps 𝔡 3 steps

{     } {     ,     } {     ,     ,      }

𝔡 1 steps 𝔡 2 steps 𝔡 3 steps

.1 .10 .101



Three representations (or “applications”?) of 0,1 𝑛
45

 Random walk on 0,1 𝑛 w/ an increasing dimensions

 Random pick/drop items w/ an increasing number of items

 Random bit flip of binary w/an increasing bit length

𝔡 1 steps 𝔡 2 steps 𝔡 3 steps

𝔡 1 steps 𝔡 2 steps 𝔡 3 steps

{     } {     ,     } {     ,     ,      }

𝔡 1 steps 𝔡 2 steps 𝔡 3 steps

.1 .10 .101

0,1 𝟏 0,1 𝟐 0,1 𝟑



Extension from 0,1 𝑛 to 0,1, … , 9 𝑛
46

 Random walk on 0,1, … , 9 𝑛 w/ an increasing 𝑛

 Random buy/sell stocks w/ an increasing #brands

 Random up/down digits w/ an increasing digit length

𝔡 1 steps 𝔡 2 steps 𝔡 3 steps

𝔡 1 steps 𝔡 2 steps 𝔡 3 steps

𝔡 1 steps 𝔡 2 steps 𝔡 3 steps

.3 .24 .302

0,1, … , 9 1 0,1, … , 9 2 0,1, … , 9 3

× 2 +× 3 × 4 × 3 + × 0+ × 2



Target. Random walk on 0,1, … , 𝑁 𝑛 w/ an increasing 𝑛
47

Let 𝒟 = 𝔡, 𝐺, 𝑃  be a RWoGG where

• 𝔡 𝑛 = 𝑁𝑛, 

• 𝐺 𝑛 is a 0,1, … , 𝑁 𝑛 skeletone, 

• 𝑃 𝑛  denotes the lazy simple random walk w/ reflection bound, 

i.e., move to a neighbor w.p. 1/4𝑛, unless boundary

for 𝑛 = 1,2, …

𝔡 1 steps 𝔡 2 steps 𝔡 3 steps

Q. 

Is random walk on 0,1, … , 𝑁 𝑛 LHaGG?

0,1, … , 𝑁 𝟏 0,1, … , 𝑁 𝟐 0,1, … , 𝑁 𝟑

w/ a fixed 𝑁. 

A. We can’t prove it. 



4. Main Result



Target. Random walk on 0,1, … , 𝑁 𝑛 w/ an increasing 𝑛
49

Let 𝒟 = 𝔡, 𝐺, 𝑃  be a RWoGG where

• 𝔡 𝑛 = 𝑁𝑛, 

• 𝐺 𝑛 is a 0,1, … , 𝑁 𝑛 skeletone, 

• 𝑃 𝑛  denotes the lazy simple random walk w/ reflection bound, 

i.e., move to a neighbor w.p. 1/4𝑛, unless boundary

for 𝑛 = 1,2, …

𝔡 1 steps 𝔡 2 steps 𝔡 3 steps

Q. 

Is random walk on 0,1, … , 𝑁 𝑛 LHaGG?

0,1, … , 𝑁 𝟏 0,1, … , 𝑁 𝟐 0,1, … , 𝑁 𝟑

w/ a fixed 𝑁. 

A. We can’t prove it. 



Target. Random walk on 0,1, … , 𝑁 𝑛 w/ an increasing 𝑛
50

Let 𝒟 = 𝔡, 𝐺, 𝑃  be a RWoGG where

• 𝔡 𝑛 = 𝑁𝑛, 

• 𝐺 𝑛 is a 0,1, … , 𝑁 𝑛 skeletone, 

• 𝑃 𝑛  denotes the lazy simple random walk w/ reflection bound, 

i.e., move to a neighbor w.p. 1/4𝑛, unless boundary

for 𝑛 = 1,2, …

𝔡 1 steps 𝔡 2 steps 𝔡 3 steps

0,1, … , 𝑁 𝟏 0,1, … , 𝑁 𝟐 0,1, … , 𝑁 𝟑
Lem. 7.

Random walk on 0,1, … , 𝑁 𝑛 is weakly LHaGG.

Q. 

Is random walk on 0,1, … , 𝑁 𝑛 LHaGG?

w/ a fixed 𝑁. 



Target. Random walk on 0,1, … , 𝑁 𝑛 w/ an increasing 𝑛
51

Let 𝒟 = 𝔡, 𝐺, 𝑃  be a RWoGG where

• 𝔡 𝑛 = 𝑁𝑛, 

• 𝐺 𝑛 is a 0,1, … , 𝑁 𝑛 skeletone, 

• 𝑃 𝑛  denotes the lazy simple random walk w/ reflection bound, 

i.e., move to a neighbor w.p. 1/4𝑛, unless boundary

for 𝑛 = 1,2, …

𝔡 1 steps 𝔡 2 steps 𝔡 3 steps

0,1, … , 𝑁 𝟏 0,1, … , 𝑁 𝟐 0,1, … , 𝑁 𝟑
Lem. 7.

Random walk on 0,1, … , 𝑁 𝑛 is weakly LHaGG.

Thm. 6. If 𝒟 = 𝔡, 𝐺, 𝑃  satisfies

෍

𝑛=1

∞
𝔡 𝑛

2𝑁 𝑛
= ∞

then 𝑜 is recurrent, otherwise 𝑜 is transient. 

w/ a fixed 𝑁. 



Recall: LHaGG [SAND ‘24]
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Defs. 

• 𝒟1 = 𝑓1, 𝐺1, 𝑃1  is less homesick than 𝒟2 = 𝑓2, 𝐺2, 𝑃2

if 𝑅1 𝑡 ≤ 𝑅2 𝑡  for any 𝑡 where 𝑅1 𝑡  and 𝑅2 𝑡  respectively denote 
the return probabilities of 𝒟1 and 𝒟2 at time 𝑡. 

• 𝒟 = 𝑓, 𝐺, 𝑃  is less homesick as graph growing (LHaGG) 

if 𝒟 is less homesick than 𝒟′ = 𝑔, 𝐺, 𝑃  for any 𝑔 satisfying that 

σ𝑘=1
𝑛 𝑓 𝑘 ≤ σ𝑘=1

𝑛 𝑔 𝑘  for any 𝑛, 

i.e., 𝒟 and 𝒟′ grows similarly, but 𝒟 grows faster. 

The faster a graph grows, 
the smaller the return probability. 



Recall: LHaGG
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Defs. 

• 𝒟1 = 𝑓1, 𝐺1, 𝑃1  is less homesick than 𝒟2 = 𝑓2, 𝐺2, 𝑃2

if 𝑅1 𝑡 ≤ 𝑅2 𝑡  for any 𝑡 where 𝑅1 𝑡  and 𝑅2 𝑡  respectively denote 
the return probabilities of 𝒟1 and 𝒟2 at time 𝑡. 

• 𝒟 = 𝑓, 𝐺, 𝑃  is less homesick as graph growing (LHaGG) 

if 𝒟 is less homesick than 𝒟′ = 𝑔, 𝐺, 𝑃  for any 𝑔 satisfying that 

σ𝑘=1
𝑛 𝑓 𝑘 ≤ σ𝑘=1

𝑛 𝑔 𝑘  for any 𝑛, 

i.e., 𝒟 and 𝒟′ grows similarly, but 𝒟 grows faster. 

The faster a graph grows, 
the smaller the return probability. 

We replace the condition about the return prob. with



wLHaGG
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Defs. 

• 𝒟1 = 𝑓1, 𝐺1, 𝑃1  is weakly less homesick than 𝒟2 = 𝑓2, 𝐺2, 𝑃2

if σ𝑡=1
𝑇 𝑅1 𝑡 ≤ σ𝑡=1

𝑇 𝑅2 𝑡  for any 𝑇 where 𝑅1 𝑡  and 𝑅2 𝑡  
respectively denote the return probabilities of 𝒟1 and 𝒟2 at time 𝑡. 

• 𝒟 = 𝑓, 𝐺, 𝑃  is weakly less homesick as graph growing (wLHaGG) 

if 𝒟 is weakly less homesick than 𝒟′ = 𝑔, 𝐺, 𝑃  for any 𝑔 satisfying that 

σ𝑘=1
𝑛 𝑓 𝑘 ≤ σ𝑘=1

𝑛 𝑔 𝑘  for any 𝑛, 

i.e., 𝒟 and 𝒟′ grows similarly, but 𝒟 grows faster. 

The faster a graph grows, 
the smaller the expected number of returns. 

We replace the condition about the return prob. with

a condition of the sum of return prob.   

= sum of return prob. 



General theorems
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Thm. 2. (Recurrence). 

Suppose 𝔡, 𝐺, 𝑃  satisfies Conditions 0 and 1. 

If σ𝑘=1
∞ 𝔡 𝑘 𝑝 𝑘 = ∞ then the initial vertex 𝑣 is recurrent. 

Condition 0. (ergodic). In 𝒟 = 𝔡, 𝐺, 𝑃 , every transition matrix 𝑃 𝑛  is ergodic. 

Condition 1. (mixing time). 𝒟 = 𝔡, 𝐺, 𝑃  satisfies 

෍

𝑘=1

∞

𝜏∗ 𝑘 𝑝 𝑘 < ∞

where 𝑝 𝑘 = 𝜋𝑘 𝑜 and 𝜏∗ 𝑘 = 𝑡mix
𝑘 𝑝 𝑘

4
. 

Thm. 4. (Transience). 

Suppose 𝔡, 𝐺, 𝑃  satisfies Conditions 0 and 1, and it is wLHaGG. 

If σ𝑘=2
∞ 𝔡 𝑘 𝑝 𝑘 − 1 < ∞ then the initial vertex 𝑣 is transient. 

Mixing time is not very big.

 E.g., O
1

𝜋𝑘 𝑜

1

𝑘 log 𝑘



Recurrence
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Proof. Let 𝑋𝑡 follow 𝔡, 𝐺, 𝑃 , and 

let 𝑅 𝑡 = Pr 𝑋𝑡 = 𝑜 . We claim

Once we obtain Lem. 3, Thm. 2 is easy: σ𝑡=1
∞ 𝑅 𝑡 = ∞ holds 

if σ𝑘=1
∞ 𝔡 𝑘 𝑝 𝑘 = ∞ and σ𝑘=1

∞ 𝜏∗ 𝑘 𝑝 𝑘 < ∞. 

Proof of Lem. 3. 

• Notice that 𝑋𝑡 follows 𝑃𝑛 for 𝑡 ∈ 𝑇𝑛−1, 𝑇𝑛−1 + 𝔡 𝑛 . 

• If 𝔡 𝑛 > 𝑡mix 𝜖  then 𝑅 𝑡 ≥ 𝜋𝑛 o − 𝜖 for 𝑡 ≥ 𝑇𝑛−1 + 𝑡mix 𝜖

where 𝜋𝑛 is the stationary distribution of 𝑃𝑛. 

• Thus, 𝑅 𝑡 ≥ 𝜋𝑛 o −
1

2
𝑝 𝑛 =

1

2
𝑝 𝑛  

since 𝜏∗ 𝑘 = 𝑡mix
1

2
𝑝 𝑛  and 𝑝 𝑛 = 𝜋𝑛(𝑜). 

• σ𝑡=1
𝑇𝑛 𝑅 𝑡 = σ𝑘=1

𝑛 σ𝑠=1
𝔡 𝑘

𝑅(𝑇𝑛−1 + 𝑠) ≥ σ𝑘=1
𝑛 σ

𝑠=𝜏∗ 𝑛
𝔡 𝑘

𝑅 𝑇𝑛−1 + 𝑠 ≥

σ𝑘=1
𝑛 σ

𝑠=𝜏∗ 𝑛
𝔡 𝑘 1

2
𝑝 𝑛 =

1

2
σ𝑘=1

𝑛 𝔡 𝑘 − 𝜏∗ 𝑘 𝑝 𝑘

Lem. 3. σ𝑡=1
𝑇𝑛 𝑅 𝑡 ≥

1

2
σ𝑘=1

𝑛 𝔡 𝑘 − 𝜏∗ 𝑘 𝑝 𝑘

Thm. 2. (Recurrence). 

Suppose 𝔡, 𝐺, 𝑃  satisfies Conditions 0 and 1. 

If σ𝑘=1
∞ 𝔡 𝑘 𝑝 𝑘 = ∞ then the initial vertex 𝑣 is recurrent. 

Mixing time condition



Transience
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Proof. Let 𝑓 𝑘 = max 𝔡, 𝜏∗ 𝑘 . 

By wLHaGG, σ𝑡=1
𝑇𝑛 𝑅𝔡 𝑡 ≤ σ𝑡=1

𝑇𝑛 𝑅𝑔 𝑡 . 

Once we obtain Lem. 5, Thm. 4 is clear. 

Proof of Lem. 5. 

Let 𝑓 𝑘 = ቊ
𝑔(𝑘) 𝑘 ≤ 𝑛 − 1

∞ 𝑘 = 𝑛.
  Then, σ𝑘=1

𝑚 𝑔 𝑘 ≤ σ𝑘=1
𝑚 𝑔 𝑘  for any 𝑚. 

Let 𝑋𝑡 ∼ 𝒟𝑔 = 𝑔, 𝐺, 𝑃  and 𝑌𝑡 ∼ 𝒟𝑓 = 𝑓, 𝐺, 𝑃 . 

• Notice that 𝑌𝑡 follows 𝑃𝑛−1 for 𝑡 ≥ 𝑇𝑛−2. 
• By wLHaGG, σ𝑡=1

𝑇 Pr 𝑋𝑡 = 𝑜 ≤ σ𝑡=1
𝑇 Pr 𝑌𝑡 = 𝑜  for any 𝑇. 

• 𝑅𝑓 𝑡 ≤ 𝜋𝑛 𝑜 +
1

2
𝑝 𝑛 − 1 =

3

2
𝑝 𝑛 − 1  for 𝑡 ≥ 𝑇𝑛−1 

• σ𝑡=1
𝑇𝑛 𝑅𝑔 𝑡 = σ𝑘=1

𝑛 σ𝑠=1
𝑔(𝑘)

𝑅𝑔(𝑇𝑘−1 + 𝑠) ≤ 𝑔 1 + σ𝑘=2
𝑛 σ𝑠=1

𝑔 𝑘
𝑅𝑓 𝑇𝑘−1 + 𝑠 ≤

𝑔 1 + σ𝑘=2
𝑛 σ𝑠=1

𝑔 𝑘 3

2
𝑝 𝑘 − 1 = 𝑔 1 +

3

2
σ𝑘=2

𝑛 𝑔 𝑘 𝑝 𝑘 − 1

Lem. 5. σ𝑡=1
𝑇𝑛 𝑅𝑔 𝑡 ≤ 𝑔 1 +

3

2
σ𝑘=2

𝑛 𝑔(𝑘)𝑝 𝑘 − 1

Thm. 4. (Transience). 

Suppose 𝔡, 𝐺, 𝑃  satisfies Conditions 0 and 1, and it is wLHaGG. 

If σ𝑘=2
∞ 𝔡 𝑘 𝑝 𝑘 − 1 < ∞ then the initial vertex 𝑣 is transient. 

Particularly, remark 
𝑋𝑡 ∼ 𝑃𝑛 but 𝑌𝑡 ∼ 𝑃𝑛−1 
for 𝑡 ∈ [𝑇𝑛−1, 𝑇𝑛)
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Let 𝒟 = 𝔡, 𝐺, 𝑃  be a RWoGG where

• 𝔡 𝑛 = 𝑁𝑛, 

• 𝐺 𝑛 is a 0,1, … , 𝑁 𝑛 skeletone, 

• 𝑃 𝑛  denotes the lazy simple random walk w/ reflection bound, 

i.e., move to a neighbor w.p. 1/4𝑛, unless boundary

for 𝑛 = 1,2, …

𝔡 1 steps 𝔡 2 steps 𝔡 3 steps

0,1, … , 𝑁 𝟏 0,1, … , 𝑁 𝟐 0,1, … , 𝑁 𝟑
Lem. 7.

Random walk on 0,1, … , 𝑁 𝑛 is weakly LHaGG.

Thm. 6. If 𝒟 = 𝔡, 𝐺, 𝑃  satisfies

෍

𝑛=1

∞
𝔡 𝑛

2𝑁 𝑛
= ∞

then 𝑜 is recurrent, otherwise 𝑜 is transient. 

w/ a fixed 𝑁. 
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Let 𝒟 = 𝔡, 𝐺, 𝑃  be a RWoGG where

• 𝔡 𝑛 = 𝑁𝑛, 

• 𝐺 𝑛 is a 0,1, … , 𝑁 𝑛 skeletone, 

• 𝑃 𝑛  denotes the lazy simple random walk w/ reflection bound, 

i.e., move to a neighbor w.p. 1/4𝑛, unless boundary

for 𝑛 = 1,2, …

𝔡 1 steps 𝔡 2 steps 𝔡 3 steps

0,1, … , 𝑁 𝟏 0,1, … , 𝑁 𝟐 0,1, … , 𝑁 𝟑
Lem. 7. 

Random walk on 0,1, … , 𝑁 𝑛 is weakly LHaGG.

It looks a very simple exercise if 
you are familiar with coupling, 
but 𝑛𝑡 ≠ 𝑚𝑡 makes some 
trouble, in general. 

w/ a fixed 𝑁. 
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Let 𝒟 = 𝔡, 𝐺, 𝑃  be a RWoGG where

• 𝔡 𝑛 = 𝑁𝑛, 

• 𝐺 𝑛 is a 0,1, … , 𝑁 𝑛 skeletone, 

• 𝑃 𝑛  denotes the lazy simple random walk w/ reflection bound, 

i.e., move to a neighbor w.p. 1/4𝑛, unless boundary

for 𝑛 = 1,2, …

𝔡 1 steps 𝔡 2 steps 𝔡 3 steps

0,1, … , 𝑁 𝟏 0,1, … , 𝑁 𝟐 0,1, … , 𝑁 𝟑
Lem. 7. 

Random walk on 0,1, … , 𝑁 𝑛 is weakly LHaGG.

It looks a very simple exercise if 
you are familiar with coupling, 
but 𝑛𝑡 ≠ 𝑚𝑡 makes some 
trouble, in general. 

We develop “pausing coupling”

w/ a fixed 𝑁. 



Figure of pausing coupling
61

We define time correspondence 𝑡 ↦ 𝑆 𝑡  depending on 𝒀 so that

1.  if 𝒀𝒕 does self-loop then so does 𝑿𝑺−𝟏 𝒕 , 

2.  if 𝑌𝑡 updates 𝑌𝑡
𝑖 for 𝑖 ≤ dim 𝑋𝑠−1 𝑡  then 𝑿 updates 𝑋𝑆−1 𝑡

𝑖 , 

3.  if 𝑌𝑡 updates 𝑌𝑡
𝑖 for 𝑖 > dim 𝑋𝑠−1 𝑡  then 𝑿 pauses. 

We need to check “measure conservation” of the coupling.  

• Let 𝑿 = 𝑋0, 𝑋1, 𝑋2, … ∼ 𝒟𝑓 and 𝒀 = 𝑌0, 𝑌1, 𝑌2, … ∼ 𝒟𝑔

where  let 𝒟𝑔 grow faster than 𝒟𝑓. 

• We couple 𝑿 and 𝒀, instead of 𝑋𝑡 and 𝑌𝑡.

𝑿

𝒀

𝑡

𝑆 𝑡 Sorry for imprecise description
to avoid bothering notation.
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We define time correspondence 𝑡 ↦ 𝑆 𝑡  depending on 𝒀 so that

1.  if 𝑌𝑡 does self-loop then so does 𝑋𝑆−1 𝑡 , 

2.  if 𝒀𝒕 updates 𝒀𝒕
𝒊  for 𝒊 ≤ 𝐝𝐢𝐦 𝑿𝒔−𝟏 𝒕  then 𝑿 updates 𝑿

𝑺−𝟏 𝒕
𝒊 , 

3.  if 𝑌𝑡 updates 𝑌𝑡
𝑖 for 𝑖 > dim 𝑋𝑠−1 𝑡  then 𝑿 pauses. 

We need to check “measure conservation” of the coupling.  

• Let 𝑿 = 𝑋0, 𝑋1, 𝑋2, … ∼ 𝒟𝑓 and 𝒀 = 𝑌0, 𝑌1, 𝑌2, … ∼ 𝒟𝑔

where  let 𝒟𝑔 grow faster than 𝒟𝑓. 

• We couple 𝑿 and 𝒀, instead of 𝑋𝑡 and 𝑌𝑡.

𝑿

𝒀

𝑡

𝑆 𝑡 Sorry for imprecise description
to avoid bothering notation.
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We define time correspondence 𝑡 ↦ 𝑆 𝑡  depending on 𝒀 so that

1.  if 𝑌𝑡 does self-loop then so does 𝑋𝑆−1 𝑡 , 

2.  if 𝑌𝑡 updates 𝑌𝑡
𝑖 for 𝑖 ≤ dim 𝑋𝑠−1 𝑡  then 𝑿 updates 𝑋𝑆−1 𝑡

𝑖 , 

3.  if 𝒀𝒕 updates 𝒀𝒕
𝒊  for 𝒊 > 𝐝𝐢𝐦 𝑿𝒔−𝟏 𝒕  then 𝑿 pauses. 

We need to check “measure conservation” of the coupling.  

• Let 𝑿 = 𝑋0, 𝑋1, 𝑋2, … ∼ 𝒟𝑓 and 𝒀 = 𝑌0, 𝑌1, 𝑌2, … ∼ 𝒟𝑔

where  let 𝒟𝑔 grow faster than 𝒟𝑓. 

• We couple 𝑿 and 𝒀, instead of 𝑋𝑡 and 𝑌𝑡.

𝑿

𝒀

𝑡

𝑆 𝑡 Sorry for imprecise description
to avoid bothering notation.



Outline of the proof
64Lem. 7. 

Random walk on 0,1, … , 𝑁 𝑛 w/ increasing 𝑛 is wLHaGG. 

Let 𝜂:  𝒀 ↦ 𝑿 = 𝜂 𝒀  denote the coupling described in the previous slide.

We prove two things: 

 The coupling 𝜂 preserves the measure, i.e., 
Pr 𝒀 = 𝒚 = Pr 𝑿 = 𝜂 𝒚

 The coupling 𝜂 preserves 𝑋𝑡 ≤ 𝑌𝑠  (meaning “ 𝜂 𝑦𝑠 ≤ |𝑦𝑠|”)

      for any 𝑠 satisfying 𝑆 𝑡 ≤ 𝑠 < 𝑆 𝑡 + 1 . 

➢ This implies # 𝑡 ≤ 𝑇  𝑋𝑡 = 𝑜 ≥ # 𝑡 ≤ 𝑇 𝑌𝑡 = 𝑜  for any 𝑇. 
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Proof. 

Suppose 𝒀 = 𝑌0, 𝑌1, 𝑌2, 𝑌3, … is represented by 
𝜽𝒀 = 𝜆1, 𝑗1, 𝜌1 , 𝜆2, 𝑗2, 𝜌2 , 𝜆3, 𝑗3, 𝜌3 , …

We define 𝑆: ℤ → ℤ according to 𝜽. 

Let 𝑆 1 = min min 𝑡 > 0  𝜆𝑡 = 0 , min 𝑡 > 0  𝑗𝑡 ∈ 𝑛0 . 

Recursively, let 
𝑆 𝑘 = min min 𝑡 > 𝑆 𝑘 − 1  𝜆𝑡 = 0 , min 𝑡 > 𝑆 𝑘 − 1  𝑗𝑡 ∈ 𝑛𝑘−1

where let min ∅ = ∞. 

If 𝑆 𝑘 = ∞ then let 𝑆 𝑘 + 1 = ∞. 

For convenience, let 𝑆−1 𝑡 = 𝑘 for 𝑡 = 𝑆 𝑘 < ∞   (𝑘 = 1,2, …).

Then, we define 𝑿 = 𝑋0, 𝑋1, 𝑋2, … by 

𝜽𝑿 = 𝜆𝑆−1 𝑘 , 𝑗𝑆−1 𝑘 , 𝜌𝑆−1 𝑘
𝑘=1,2,…

= 𝜆𝑆−1 1 , 𝑗𝑆−1 1 , 𝜌𝑆−1 1 , 𝜆𝑆−1 2 , 𝑗𝑆−1 2 , 𝜌𝑆−1 2 , …

as far as 𝑆 𝑘 < ∞. 

If 𝑆 𝑘 = ∞ then generate 𝜆𝑘
′ , 𝑗𝑘

′ , 𝜌𝑘
′  and transit to 𝑋𝑘+1 according to it. 
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Proof. 

Suppose 𝒀 = 𝑌0, 𝑌1, 𝑌2, 𝑌3, … is represented by 
𝜽𝒀 = 𝜆1, 𝑗1, 𝜌1 , 𝜆2, 𝑗2, 𝜌2 , 𝜆3, 𝑗3, 𝜌3 , …

We define 𝑆: ℤ → ℤ according to 𝜽. 

Let 𝑆 1 = min min 𝑡 > 0  𝜆𝑡 = 0 , min 𝑡 > 0  𝑗𝑡 ∈ 𝑛0 . 

Recursively, let 
𝑆 𝑘 = min min 𝑡 > 𝑆 𝑘 − 1  𝜆𝑡 = 0 , min 𝑡 > 𝑆 𝑘 − 1  𝑗𝑡 ∈ 𝑛𝑘−1

where let min ∅ = ∞. 

If 𝑆 𝑘 = ∞ then let 𝑆 𝑘 + 1 = ∞. 

For convenience, let 𝑆−1 𝑡 = 𝑘 for 𝑡 = 𝑆 𝑘 < ∞   (𝑘 = 1,2, …).

Then, we define 𝑿 = 𝑋0, 𝑋1, 𝑋2, … by 

𝜽𝑿 = 𝜆𝑆−1 𝑘 , 𝑗𝑆−1 𝑘 , 𝜌𝑆−1 𝑘
𝑘=1,2,…

= 𝜆𝑆−1 1 , 𝑗𝑆−1 1 , 𝜌𝑆−1 1 , 𝜆𝑆−1 2 , 𝑗𝑆−1 2 , 𝜌𝑆−1 2 , …

as far as 𝑆 𝑘 < ∞. 

If 𝑆 𝑘 = ∞ then generate 𝜆𝑘
′ , 𝑗𝑘

′ , 𝜌𝑘
′  and transit to 𝑋𝑘+1 according to it. 

Time up…
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Result 

◼ Recurrence/transience of wLHaGG RWoGG. 

◼ Random walk on 0,1, … , 𝑁 𝑛 w/ increasing 𝑛 is wLHaGG. 

➢ Proof by pausing coupling. 

Future work

 Simplify the proof 

➢ Extension to other RWoGGs

• E.g., GW tree, PA graph, and more general graphs,  

• Edge dynamics, e.g., growing + edge Markovian. 

 Analysis of RWoGG beyond recurrence/transience 

➢ Hitting time, meeting time, gathering time, etc.

➢ Find a new limit, undefined for an infinite graph. 



The end

Thank you for the attention.
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Current state 𝑋𝑡 = 𝑋𝑡
1, … , 𝑋𝑡

𝑛𝑡 ∈ 0,1, … , 𝑁 𝑛𝑡.

1. W.p.
1

2
, set 𝑋𝑡+1 = 𝑋𝑡.

2. Else, choose 𝑖 ∈ 1, … , 𝑛𝑡  u.a.r. 

3.       If 𝑋𝑡
𝑖 is not 0 nor 𝑁 then update as 𝑋𝑡+1

𝑖 = 𝑋𝑡
𝑖 ± 1 w.p.

1

2
 resp. 

4.       Else if 𝑋𝑡
𝑖 = 0 then update as 𝑋𝑡+1

𝑖 = 𝑋𝑡
𝑖 + 1.

5.       Else if 𝑋𝑡
𝑖 = 𝑁 then update as 𝑋𝑡+1

𝑖 = 𝑋𝑡
𝑖 − 1.
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Current state 𝑋𝑡 = 𝑋𝑡
1, … , 𝑋𝑡

𝑛𝑡 ∈ 0,1, … , 𝑁 𝑛𝑡.

1. W.p.
1

2
, set 𝑋𝑡+1 = 𝑋𝑡.

2. Else, choose 𝑖 ∈ 1, … , 𝑛𝑡  u.a.r. 

3.       If 𝑋𝑡
𝑖 is not 0 nor 𝑁 then update as 𝑋𝑡+1

𝑖 = 𝑋𝑡
𝑖 ± 1 w.p.

1

2
 resp. 

4.       Else if 𝑋𝑡
𝑖 = 0 then update as 𝑋𝑡+1

𝑖 = 𝑋𝑡
𝑖 + 1.

5.       Else if 𝑋𝑡
𝑖 = 𝑁 then update as 𝑋𝑡+1

𝑖 = 𝑋𝑡
𝑖 − 1.

A transition 𝑋𝑡 ↦ 𝑋𝑡+1 is represented 

by uniform r.v.s 𝜆, 𝑖, 𝜌 ∈ 0,1 × 1, … , 𝑛𝑡 × 0,1 .

If 𝜆 = 0 self-loop

Choose 𝑖 u.a.r.

If 𝜌 = 0 then −1
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