Process Convergence of the QuickSelect Residual

Jasper Ischebeck
Universität Frankfurt

Bath 2024
QuickSelect

- **Problem**: Given n distinct elements U_1, \ldots, U_n and $1 \leq k \leq n$, find the element at rank k, i.e. $U_{(k)}$ such that

$$\#\{i \mid U_i \leq U_{(k)}\} = k$$

- Sorting all values would take $O(n \log n)$ time
- QuickSelect, derived from QuickSort, needs expected $O(n)$ time
QuickSelect – Example

Find the fourth-biggest element

\[
6 \ 3 \ 1 \ 9 \ 4 \ 2 \ 7 \ 5
\]
QuickSelect – Example

Find the fourth-biggest element

6 3 1 9 4 2 7 5

3 1 4 2 5 9 7

- Compare with 6 (the pivot) and sort into elements bigger and smaller
QuickSelect – Example

Find the fourth-biggest element

6 3 1 9 4 2 7 5

Compare with 6 (the pivot) and sort into elements bigger and smaller

New pivot 3
QuickSelect – Example

Find the fourth-biggest element

6 3 1 9 4 2 7 5

3

1 4 2 5

9 7

1 2

4 5

- Compare with 6 (the pivot) and sort into elements bigger and smaller
- New pivot 3
QuickSelect – Example

Find the fourth-biggest element

6 3 1 9 4 2 7 5

3 1 4 2 5 9 7

1 2 4 5

- Compare with 6 (the pivot) and sort into elements bigger and smaller

- New pivot 3

- Because 1, 2, 3 are smaller we look for the smaller of 4, 5
QuickSelect – Example

Find the fourth-biggest element

6 3 1 9 4 2 7 5

Compare with 6 (the pivot) and sort into elements bigger and smaller

New pivot 3

Because 1, 2, 3 are smaller we look for the smaller of 4, 5

We find 4
Analysis

- **Random model:** We assume U_1, \ldots, U_n are independent and uniformly distributed on $[0, 1]$.
- Consider first the amount of comparisons.
- But how to chose the rank for $n \to \infty$?
 - Uniformly at random on $\{1, \ldots, n\}$ (grand average)
 - Rank $\lfloor tn \rfloor$ for some $t \in [0, 1]$ (**QuickQuant** process)
 - Let $S_{t,n}$ be the amount of comparisons for rank $\lfloor tn \rfloor$
 - $S_{t,n}/n$ converges for $n \to \infty$ a.s. to a limit S_t (**Grübel** and **Rösler** 1996)
Analysis

- **Random model**: We assume U_1, \ldots, U_n are independent and uniformly distributed on $[0, 1]$.
- Consider first the amount of **comparisons**
- But how to chose the rank for $n \to \infty$?
- Uniformly at random on $\{1, \ldots, n\}$ (**grand average**)
 - Rank $\lfloor tn \rfloor$ for some $t \in [0, 1]$ (**QuickQuant process**)
 - Let $S_{t,n}$ be the amount of comparisons for rank $\lfloor tn \rfloor$
 - $S_{t,n}/n$ converges for $n \to \infty$ a.s. to a limit S_t (**Grübel and Rösler 1996**)
Random model: We assume U_1, \ldots, U_n are independent and uniformly distributed on $[0, 1]$.

Consider first the amount of comparisons

But how to chose the rank for $n \to \infty$?

Uniformly at random on $\{1, \ldots, n\}$ (grand average)

Rank $\lfloor tn \rfloor$ for some $t \in [0, 1]$ (QuickQuant process)

Let $S_{t,n}$ be the amount of comparisons for rank $\lfloor tn \rfloor$

$S_{t,n}/n$ converges for $n \to \infty$ a.s. to a limit S_t (Grübel and Rösler 1996)
Random model: We assume U_1, \ldots, U_n are independent and uniformly distributed on $[0, 1]$.

Consider first the amount of comparisons.

But how to chose the rank for $n \to \infty$?

Uniformly at random on $\{1, \ldots, n\}$ (grand average).

Rank $\lfloor tn \rfloor$ for some $t \in [0, 1]$ (QuickQuant process).

Let $S_{t,n}$ be the amount of comparisons for rank $\lfloor tn \rfloor$.

$S_{t,n}/n$ converges for $n \to \infty$ a.s. to a limit S_t (Grübel and Rösler 1996).
The Limit Process
What happens if we subtract the limit and rescale? We call this residual.
The residual

What happens if we subtract the limit and rescale? We call this residual.

Theorem (I., Neininger 2024+)

Let $F_n := \frac{1}{n} \sum_{i=1}^{n} 1[u_i, \infty)$ be the empirical distribution function of U_1, \ldots, U_n. The residual process converges

$$G_{t,n} := \frac{S_{t,n} - nS_n^{-1}(t)}{\sqrt{n}} \xrightarrow{d} G_{t,\infty} \quad \text{in } (D[0,1], d_{SK})$$

towards a mixed centred Gaussian process $G_{t,\infty}$.

What is $D[0,1]$? Why the empirical distribution function? And what are the covariances?
Functional Results

- We study $t \mapsto S_{t,n}$ resp. $G_{t,n}$ as process to be able to consider all choices of ranks simultaneously.
- Many properties, e.g. the amount of comparisons at fixed and random places or the maximum can be written as functions of the process $S_{t,n}$

Theorem (Continuous mapping theorem)

For a measurable function φ

$$X_n \xrightarrow{d} X \quad \Rightarrow \varphi(X_n) \xrightarrow{d} \varphi(X)$$

if X is a.s. not at a discontinuity of φ.

- Process convergence of $S_{t,n}$ then implies convergence of these properties
- $S_{t,n}$ converges to S_t as process (Grübel and Rösler 1996)
Functional Results

- We study $t \mapsto S_{t,n}$ resp. $G_{t,n}$ as process to be able to consider all choices of ranks simultaneously.
- Many properties, e.g. the amount of comparisons at fixed and random places or the maximum can be written as functions of the process $S_{t,n}$.

Theorem (Continuous mapping theorem)

For a measurable function φ

$$X_n \xrightarrow{d} X \Rightarrow \varphi(X_n) \xrightarrow{d} \varphi(X)$$

if X is a.s. not at a discontinuity of φ.

- Process convergence of $S_{t,n}$ then implies convergence of these properties.
- $S_{t,n}$ converges to S_t as process (Grübel and Rösler 1996).
Functional Results

- We study $t \mapsto S_{t,n}$ resp. $G_{t,n}$ as process to be able to consider all choices of ranks simultaneously.
- Many properties, e.g. the amount of comparisons at fixed and random places or the maximum can be written as functions of the process $S_{t,n}$

Theorem (Continuous mapping theorem)

For a measurable function φ

$$X_n \xrightarrow{d} X \Rightarrow \varphi(X_n) \xrightarrow{d} \varphi(X)$$

if X is a.s. not at a discontinuity of φ.

- Process convergence of $S_{t,n}$ then implies convergence of these properties
- $S_{t,n}$ converges to S_t as process (Grübel and Rösler 1996)
The space of càdlàg functions

- But first, we have to describe the space the process $S_{t,n}$ lives on
- $S_{t,n}$ is a right-continuous step function
 - Functions that are right-continuous and have left limits are called càdlàg
 - Write $\mathcal{D}[0,1]$ for the space of càdlàg functions on $[0,1]$
 - For measurability we need a metric accommodating for jumps not aligning, the Skorokhod metric
But first, we have to describe the space the process $S_{t,n}$ lives on

- $S_{t,n}$ is a right-continuous step function
- Functions that are right-continuous and have left limits are called càdlàg
- Write $\mathcal{D}[0,1]$ for the space of càdlàg functions on $[0,1]$
- For measurability we need a metric accommodating for jumps not aligning, the Skorokhod metric
The space of càdlàg functions

- The Skorokhod metric uses a monotonously growing bijection $\lambda : [0, 1] \to [0, 1]$ to align jumps.
- For $f, g \in \mathcal{D}[0, 1]$ define

$$d_{SK}(f, g) := \inf_{\lambda} \| f - g \circ \lambda \|_\infty \lor \| \lambda - id \|_\infty$$

(id is the identity, \lor the maximum, $\| \cdot \|_\infty$ the uniform norm)

- Example: For $a, b \in (0, 1)$: $d_{SK}(1_{[a, \infty)}, 1_{[b, \infty)}) = |b - a|$
The space of càdlàg functions

- The Skorokhod metric uses a monotonously growing bijection $\lambda : [0, 1] \to [0, 1]$ to align jumps.
- For $f, g \in D[0, 1]$ define

$$d_{SK}(f, g) := \inf_{\lambda} \| f - g \circ \lambda \|_{\infty} \lor \| \lambda - \text{id} \|_{\infty}$$

(id is the identity, \lor the maximum, $\| \cdot \|_{\infty}$ the uniform norm)
- Example: For $a, b \in (0, 1)$: $d_{SK}(1_{[a, \infty)}, 1_{[b, \infty)}) = |b - a|$
QuickVal

- Starting at the full interval $[0, 1]$, at step 0 the first pivot divides the interval in left and right.
- The first value in each interval becomes the new pivot and splits the interval again.
- Write $l_{\alpha,k}$ for the length of the interval in step k containing a value α.

\[0 \quad \quad \quad \quad \quad \quad \quad \quad \quad 1 \]
QuickVal

- Starting at the full interval $[0, 1]$, at step 0 the first pivot divides the interval in left and right.
- The first value in each interval becomes the new pivot and splits the interval again.
- Write $l_{\alpha,k}$ for the length of the interval in step k containing a value α.
QuickVal

- Starting at the full interval $[0, 1]$, at step 0 the first pivot divides the interval in left and right.
- The first value in each interval becomes the new pivot and splits the interval again.
- Write $l_{\alpha,k}$ for the length of the interval in step k containing a value α.

![Diagram of interval splitting](image)
QuickVal

- Starting at the full interval $[0, 1]$, at step 0 the first pivot divides the interval in left and right
- The first value in each interval becomes the new pivot and splits the interval again
- Write $l_{\alpha,k}$ for the length of the interval in step k containing a value α
QuickVal

- Starting at the full interval $[0, 1]$, at step 0 the first pivot divides the interval in left and right
- The first value in each interval becomes the new pivot and splits the interval again
- Write $I_{\alpha,k}$ for the length of the interval in step k containing a value α
We always go into the interval where the result of our algorithm is

The result is $F_n^{-1}(t)$, that is why the inverse empirical distribution function pops up

We should have indexed using the result α instead of using t!

The process $S_{\alpha,n}$ of comparisons for result α is called **QuickVal**
QuickVal

- We always go into the interval where the result of our algorithm is
- The result is $F_n^{-1}(t)$, that is why the inverse empirical distribution function pops up
- We should have indexed using the result α instead of using t!
- The process $S_{\alpha,n}$ of comparisons for result α is called QuickVal
QuickVal

- Let $S_{\alpha,k,n}$ the amount of comparisons in step $k \in \mathbb{N}_0$
- That is the amount of elements in the interval with length $l_{\alpha,k}$
- Conditional on the pivots, $S_{\alpha,k,n}$ is thus almost $B(n, l_{\alpha,k})$-distributed
- The error are the k pivots, so we write $S_{\alpha,k,n} \sim B(n, l_{\alpha,k}) + O(k)$.
Let $S_{\alpha,k,n}$ the amount of comparisons in step $k \in \mathbb{N}_0$

That is the amount of elements in the interval with length $l_{\alpha,k}$

Conditional on the pivots, $S_{\alpha,k,n}$ is thus almost $B(n, l_{\alpha,k})$-distributed

The error are the k pivots, so we write $S_{\alpha,k,n} \sim B(n, l_{\alpha,k}) + O(k)$.

QuickVal
The limit process

- Since \(S_{\alpha,k,n} \sim B(n, l_{\alpha,k}) + O(k) \),

\[
\frac{S_{\alpha,k,n}}{n} \to l_{\alpha,k} \quad \text{a.s.}
\]

- Indeed, our limit process \(S_{\alpha} \) is given by

\[
S_{\alpha} := \sum_{k\in\mathbb{N}} l_{\alpha,k}
\]

and \(n^{-1}S_{n,\alpha} \to S_{\alpha} \) both a.s. (Fill and Nakama 2013) and in \(L^2 \) (Fill and Matterer 2014).
The limit process

- Since \(S_{\alpha,k,n} \sim B(n, l_{\alpha,k}) + O(k) \),

\[
\frac{S_{\alpha,k,n}}{n} \to l_{\alpha,k} \quad \text{a.s.}
\]

- Indeed, our limit process \(S_{\alpha} \) is given by

\[
S_{\alpha} := \sum_{k \in \mathbb{N}} l_{\alpha,k}
\]

and \(n^{-1} S_{n,\alpha} \to S_{\alpha} \) both a.s. (Fill and Nakama 2013) and in \(L^2 \) (Fill and Matterer 2014).
Variations

What about the variation around this limit, the residual?
- Conditional on \(l_{\alpha,k} \),
 \[
 \frac{S_{\alpha,k,n} - n l_{\alpha,k}}{\sqrt{n}} \xrightarrow{d} N(0, l_{\alpha,k}(1 - l_{\alpha,k}))
 \]
- As for the sum over all steps (Matterer 2015)
 \[
 \frac{S_{\alpha,n} - n S_{\alpha}}{\sqrt{n}} \xrightarrow{d} N(0, \Sigma_{\alpha,\alpha})
 \]
- If an element is in \(l_{\alpha,k} \), then it is also in \(l_{\alpha,l} \) for all \(l \leq k \), so
 \[
 \Sigma_{\alpha,\alpha} = \sum_{k,l \in \mathbb{N}_0} l_{\alpha,k \vee l} - l_{\alpha,k} l_{\alpha,l}
 \]
Step-wise comparisons

Variances

What about the variation around this limit, the residual?

- Conditional on $I_{\alpha,k}$,

$$\frac{S_{\alpha,k,n} - nl_{\alpha,k}}{\sqrt{n}} \xrightarrow{d} N(0, l_{\alpha,k}(1 - l_{\alpha,k}))$$

- As for the sum over all steps (Matterer 2015)

$$\frac{S_{\alpha,n} - nS_{\alpha}}{\sqrt{n}} \xrightarrow{d} N(0, \Sigma_{\alpha,\alpha})$$

- If an element is in $I_{\alpha,k}$, then it is also in $I_{\alpha,l}$ for all $l \leq k$, so

$$\Sigma_{\alpha,\alpha} = \sum_{k,l \in \mathbb{N}_0} l_{\alpha,k \vee l} - l_{\alpha,k} l_{\alpha,l}$$

J. Ischebeck

Process Convergence of the QuickSelect Residual

Bath 2024
Variances

What about the variation around this limit, the residual?

- Conditional on $I_{\alpha,k}$,
 $$\frac{S_{\alpha,k,n} - nI_{\alpha,k}}{\sqrt{n}} \xrightarrow{d} N(0, I_{\alpha,k}(1 - I_{\alpha,k}))$$

- As for the sum over all steps (Matterer 2015)
 $$\frac{S_{\alpha,n} - nS_{\alpha}}{\sqrt{n}} \xrightarrow{d} N(0, \Sigma_{\alpha,\alpha})$$

- If an element is in $I_{\alpha,k}$, then it is also in $I_{\alpha,l}$ for all $l \leq k$, so
 $$\Sigma_{\alpha,\alpha} = \sum_{k,l \in \mathbb{N}_0} I_{\alpha,k \lor l} - I_{\alpha,k}I_{\alpha,l}$$
Covariances

For $\alpha, \beta \in [0, 1]$, let $J(\alpha, \beta)$ be the (random) last index where α and β are in the same interval.

An element is in $I_{\alpha,k}$ and $I_{\beta,l}$ for $k \leq l \in \mathbb{N}_0$ at the same time if and only if $k \leq J(\alpha, \beta)$ and the element is in $I_{\beta,l}$.

Conflating interval and interval length, let us write

$$|I_{\alpha,k} \cap I_{\beta,l}|$$

for the length of the intersection of $I_{\alpha,k}$ and $I_{\beta,l}$.

Then, the covariances can be written as

$$\Sigma_{\alpha,\beta} = \sum_{k,l \in \mathbb{N}_0} |I_{\alpha,k} \cap I_{\beta,l}| - I_{\alpha,k} I_{\beta,l}$$
We can now restate our main theorem with *QuickVal*

Theorem (I., Neininger 2024+)

The residual process converges

\[\frac{S_{\alpha,n} - nS_\alpha}{\sqrt{n}} \overset{d}{\rightarrow} G_{\alpha,\infty} \quad \text{in} \ (D[0, 1], d_{SK}) \]

towards a mixed centred Gaussian process \(G_{\infty} \) with covariances

\[\Sigma_{\alpha,\beta} = \sum_{k,l \in \mathbb{N}_0} |l_{\alpha,k} \cap l_{\beta,l}| - l_{\alpha,k} l_{\beta,l}. \]
Main Results

Proof Sketch

- Split for some $K = K_n \in \mathbb{N}$

$$\frac{S_{\alpha,n} - nS_{\alpha}}{\sqrt{n}} = \sum_{k=0}^{K} \frac{S_{\alpha,k,n} - nl_{\alpha,k}}{\sqrt{n}} + \sum_{k=K+1}^{\left\lfloor 4.5 \log n \right\rfloor} \frac{S_{\alpha,k,n} - nl_{\alpha,k}}{\sqrt{n}} + \sum_{k=\left\lceil 4.5 \log n \right\rceil}^{\infty} \frac{S_{\alpha,k,n} - nl_{\alpha,k}}{\sqrt{n}}$$

- The first steps have only finitely many values, use the (Multivariate) Central Limit Theorem

- The following steps have few elements, and should be small, use Chernov bounds.

- In the last steps there are no elements, and $l_{\alpha,k}$ is falling geometrically.
Proof Sketch

- Split for some $K = K_n \in \mathbb{N}$

$$\frac{S_{\alpha,n} - nS_{\alpha}}{\sqrt{n}} = \sum_{k=0}^{K} \frac{S_{\alpha,k,n} - nl_{\alpha,k}}{\sqrt{n}} + \sum_{k=K+1}^{[4.5 \log n]} \frac{S_{\alpha,k,n} - nl_{\alpha,k}}{\sqrt{n}} + \sum_{k=[4.5 \log n]}^{\infty} \frac{S_{\alpha,k,n} - nl_{\alpha,k}}{\sqrt{n}}$$

- The first steps have only finitely many values, use the (Multivariate) Central Limit Theorem
- The following steps have few elements, and should be small, use Chernov bounds.
- In the last steps there are no elements, and $l_{\alpha,k}$ is falling geometrically.
Proof Sketch

- Split for some $K = K_n \in \mathbb{N}$

$$\frac{S_{\alpha,n} - nS_{\alpha}}{\sqrt{n}} = \sum_{k=0}^{K} \frac{S_{\alpha,k,n} - nI_{\alpha,k}}{\sqrt{n}} + \sum_{k=K+1}^{\lfloor 4.5 \log n \rfloor} \frac{S_{\alpha,k,n} - nI_{\alpha,k}}{\sqrt{n}} + \sum_{k=\lceil 4.5 \log n \rceil}^{\infty} \frac{S_{\alpha,k,n} - nI_{\alpha,k}}{\sqrt{n}}$$

- The first steps have only finitely many values, use the (Multivariate) Central Limit Theorem.

- The following steps have few elements, and should be small, use Chernov bounds.

- In the last steps there are no elements, and $I_{\alpha,k}$ is falling geometrically.
Proof Sketch

- Split for some $K = K_n \in \mathbb{N}$

\[
\frac{S_{\alpha,n} - nS_\alpha}{\sqrt{n}} = \sum_{k=0}^{K} \frac{S_{\alpha,k,n} - nI_{\alpha,k}}{\sqrt{n}} + \sum_{k=K+1}^{[4.5 \log n]} \frac{S_{\alpha,k,n} - nI_{\alpha,k}}{\sqrt{n}} + \sum_{k=[4.5 \log n]}^{\infty} \frac{S_{\alpha,k,n} - nI_{\alpha,k}}{\sqrt{n}}
\]

- The first steps have only finitely many values, use the (Multivariate) Central Limit Theorem
- The following steps have few elements, and should be small, use Chernov bounds.
- In the last steps there are no elements, and $I_{\alpha,k}$ is falling geometrically.
The step to partition into smaller and bigger elements is usually done by rearranging. Depending on machine, swapping positions can be significantly slower than comparing.

We consider 2 schemes: Hoare and Lomuto.
The step to partition into smaller and bigger elements is usually done by rearranging depending on machine, swapping positions can be significantly slower than comparing. We consider 2 schemes: Hoare and Lomuto.
Lomuto and Hoare – Visualisation

Lomuto

Cost: Amount of smaller elements on the right side (hypergeometric)
Lomuto and Hoare – Visualisation

Lomuto

Cost: Amount of smaller elements on the right side (hypergeometric)
Lomuto and Hoare – Visualisation

Lomuto

Cost: Amount of smaller elements on the right side (hypergeometric)
Lomuto and Hoare – Visualisation

Cost: Amount of smaller elements
Lomuto and Hoare – Visualisation

Cost: Amount of smaller elements
Lomuto and Hoare – Visualisation

Lomuto

Hoare

Cost: Amount of smaller elements
Lomuto and Hoare – Visualisation

Lomuto

Cost: Amount of smaller elements

Hoare

Cost: Amount of smaller elements on the right side (hypergeometric)
Given the interval sizes, the amount $W_{\alpha,k,n}$ of swaps for either Hoare or Lomuto at a fixed step k are asymptotically normal around some mean $W_{\alpha,k}$, a function of interval sizes.

Using this limit, we again define a residual process

$$\sum_{k=0}^{\infty} \frac{W_{\alpha,k,n} - nW_{\alpha,k}}{\sqrt{n}}$$
For the Hoare scheme the residual process for swaps converges

\[\sum_{k=0}^{\infty} \frac{W_{\alpha,k,n} - nW_{\alpha,k}}{\sqrt{n}} \xrightarrow{d} G_{\alpha,\infty}^{\text{swap}} \quad \text{in} \ (D[0,1], d_{\text{SK}}) \]

towards a mixed centred Gaussian process \(G_{\alpha,\infty}^{\text{swap}} \). The random covariances are functions of the interval sizes. The same holds for Lomuto, with other covariances.
Variable comparison costs

- Other model: Comparison times depend on the items compared
- E.g. the time needed to compare strings is proportional to the length of their common prefix
- The same holds for decimals (number of bit comparisons)
- Typically, closer elements take longer to compare
Variable comparison costs

- Let $\beta(u, v)$ be cost to compare pivot u to item v
- Let V be uniformly distributed on $[0, 1]$
- We call $\beta \varepsilon$-tame for $\varepsilon > 0$ if there exists a $C > 0$ so that for all $x \geq 0, u \in [0, 1]$
 \[P(\beta(u, V) > x) \leq Cx^{-\varepsilon^{-1}} \]
- Sufficient that $\beta(u, V)$ has a ε^{-1}-th moment, uniformly bounded in u.
- This covers bit comparisons, where $\beta(u, V)$ has exponential tails, so β is ε-tame for all $\varepsilon > 0$
Let $\beta(u, v)$ be cost to compare pivot u to item v.

Let V be uniformly distributed on $[0, 1]$.

We call β ε-tame for $\varepsilon > 0$ if there exists a $C > 0$ so that for all $x \geq 0$, $u \in [0, 1]$

$$\mathbb{P}(\beta(u, V) > x) \leq Cx^{-\varepsilon^{-1}}$$

Sufficient that $\beta(u, V)$ has a ε^{-1}-th moment, uniformly bounded in u.

This covers bit comparisons, where $\beta(u, V)$ has exponential tails, so β is ε-tame for all $\varepsilon > 0$.
Variable comparison costs

- Let $\beta(u, v)$ be cost to compare pivot u to item v
- Let V be uniformly distributed on $[0, 1]$
- We call β ε-tame for $\varepsilon > 0$ if there exists a $C > 0$ so that for all $x \geq 0, u \in [0, 1]$

$$\Pr(\beta(u, V) > x) \leq Cx^{-\varepsilon^{-1}}$$

- Sufficient that $\beta(u, V)$ has a ε^{-1}-th moment, uniformly bounded in u.
- This covers bit comparisons, where $\beta(u, V)$ has exponential tails, so β is ε-tame for all $\varepsilon > 0$
The residual can be defined as before, and then

Theorem (Matterer 2015)

When β is ε-tame for $\varepsilon < \frac{1}{2}$, the residual at a fixed point converges in distribution to a centred mixed normal.

Theorem (I., Neininger 2024+)

When β is ε-tame for $\varepsilon < \frac{1}{4}$, the residual process converges in distribution on $(\mathcal{D}[0, 1], d_{SK})$ to a centred mixed Gaussian process with covariances given as functions of β and the interval sizes.
The residual can be defined as before, and then

Theorem (Matterer 2015)

When β is ε-tame for $\varepsilon < \frac{1}{2}$, the residual at a fixed point converges in distribution to a centred mixed normal.

Theorem (I., Neininger 2024+)

When β is ε-tame for $\varepsilon < \frac{1}{4}$, the residual process converges in distribution on $(\mathcal{D}[0, 1], d_{SK})$ to a centred mixed Gaussian process with covariances given as functions of β and the interval sizes.
Thank you for your attention