
Process Convergence of the QuickSelect Residual

Jasper Ischebeck
Universität Frankfurt

Bath 2024

J. Ischebeck Process Convergence of the QuickSelect Residual Bath 2024 1 / 24



QuickSelect

QuickSelect

Problem: Given n distinct elements U1, . . . ,Un and 1 ≤ k ≤ n, find the element at
rank k , i.e. U(k) such that

#{i | Ui ≤ U(k)} = k

Sorting all values would take O(n log n) time

QuickSelect, derived from QuickSort, needs expected O(n) time
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QuickSelect

QuickSelect – Example

Find the fourth-biggest element

6 3 1 9 4 2 7 5

3 1 4 2 5

1 2 4 5

5

9 7

Compare with 6 (the pivot)
and sort into elements bigger
and smaller

New pivot 3

Because 1, 2, 3 are smaller we
look for the smaller of 4, 5

We find 4
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QuickSelect

Analysis

Random model: We assume U1, . . . ,Un are independent and uniformly distributed
on [0, 1].

Consider first the amount of comparisons

But how to chose the rank for n → ∞?

Uniformly at random on {1, . . . , n} (grand average)

Rank ⌊tn⌋ for some t ∈ [0, 1] (QuickQuant process)

Let St,n be the amount of comparisons for rank ⌊tn⌋
St,n/n converges for n → ∞ a.s. to a limit St (Grübel and Rösler 1996)
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QuickSelect

The Limit Process

1

1
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QuickSelect

The residual

What happens if we subtract the limit and rescale? We call this residual.

Theorem (I.,Neininger 2024+)

Let Fn :=
1
n

∑n
i=1 1[Ui ,∞) be the empirical distribution function of U1, . . . ,Un. The

residual process converges

Gt,n :=
St,n − nSF−1

n (t)√
n

d−→ Gt,∞ in (D[0, 1], dSK)

towards a mixed centred Gaussian process Gt,∞.

What is D[0, 1]? Why the empirical distribution function? And what are the
covariances?
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Functional Convergence

Functional Results

We study t 7→ St,n resp. Gt,n as process to be able to consider all choices of ranks
simultaneously, .
Many properties, e.g. the amount of comparisons at fixed and random places or
the maximum can be written as functions of the process St,n

Theorem (Continuous mapping theorem)

For a measurable function φ

Xn
d−→ X ⇒ φ(Xn)

d−→ φ(X )

if X is a.s. not at a discontinuity of φ.

Process convergence of St,n then implies convergence of these properties
St,n converges to St as process (Grübel and Rösler 1996)
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Functional Convergence

The space of càdlàg functions

But first, we have to describe the space the process St,n lives on

St,n is a right-continuous step function

Functions that are right-continuous and have left limits are called càdlàg

Write D[0, 1] for the space of càdlàg functions on [0, 1]

For measurability we need a metric accommodating for jumps not aligning, the
Skorokhod metric

J. Ischebeck Process Convergence of the QuickSelect Residual Bath 2024 8 / 24



Functional Convergence

The space of càdlàg functions
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Functional Convergence

The space of càdlàg functions

The Skorokhod metric uses a monotonously growing bijection λ : [0, 1] → [0, 1] to
align jumps.

For f , g ∈ D[0, 1] define

dSK(f , g) := inf
λ
∥f − g ◦ λ∥∞ ∨ ∥λ− id∥∞

(id is the identity, ∨ the maximum, ∥·∥∞ the uniform norm)

Example: For a, b ∈ (0, 1): dSK
(
1[a,∞), 1[b,∞)

)
= |b − a|
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Step-wise comparisons

QuickVal

Starting at the full interval [0, 1], at step 0 the first pivot divides the interval in left
and right

The first value in each interval becomes the new pivot and splits the interval again

Write Iα,k for the length of the interval in step k containing a value α

0 1
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Step-wise comparisons

QuickVal

We always go into the interval where the result of our algorithm is

The result is F−1
n (t), that is why the inverse empirical distribution function pops up

We should have indexed using the result α instead of using t!

The process Sα,n of comparisons for result α is called QuickVal

0 1α

Iα,2

Iα,1
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Step-wise comparisons

QuickVal

Let Sα,k,n the amount of comparisons in step k ∈ N0

That is the amount of elements in the interval with length Iα,k

Conditional on the pivots, Sα,k,n is thus almost B(n, Iα,k) -distributed

The error are the k pivots, so we write Sα,k,n ∼ B(n, Iα,k) +O(k).
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Step-wise comparisons

The limit process

Since Sα,k,n ∼ B(n, Iα,k) + O(k),

Sα,k,n

n
→ Iα,k a.s.

Indeed, our limit process Sα is given by

Sα :=
∑
k∈N

Iα,k

and n−1Sn,α → Sα both a.s. (Fill and Nakama 2013) and in L2 (Fill and Matterer
2014).
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Step-wise comparisons

Variances

What about the variation around this limit, the residual?

Conditional on Iα,k ,

Sα,k,n − nIα,k√
n

d−→ N
(
0, Iα,k(1− Iα,k)

)
As for the sum over all steps (Matterer 2015)

Sα,n − nSα√
n

d−→ N(0,Σα,α)

If an element is in Iα,k , then it is also in Iα,l for all l ≤ k , so

Σα,α =
∑
k,l∈N0

Iα,k∨l − Iα,k Iα,l
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Step-wise comparisons

Covariances

For α, β ∈ [0, 1], let J(α, β) be the (random) last index where α and β are in the
same interval

An element is in Iα,k and Iβ,l for k ≤ l ∈ N0 at the same time if and only if
k ≤ J(α, β) and the element is in Iβ,l
Conflating interval and interval length, let us write

|Iα,k ∩ Iβ,l |

for the length of the intersection of Iα,k and Iβ,l
Then, the covariances can be written as

Σα,β =
∑
k,l∈N0

|Iα,k ∩ Iβ,l | − Iα,k Iβ,l
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Main Results

Main theorem

We can now restate our main theorem with QuickVal

Theorem (I., Neininger 2024+)

The residual process converges

Sα,n − nSα√
n

d−→ Gα,∞ in (D[0, 1], dSK)

towards a mixed centred Gaussian process G∞ with covariances

Σα,β =
∑
k,l∈N0

|Iα,k ∩ Iβ,l | − Iα,k Iβ,l .
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Main Results

Proof Sketch

Split for some K = Kn ∈ N

Sα,n − nSα√
n

=
K∑

k=0

Sα,k,n − nIα,k√
n

+

⌊4.5 log n⌋∑
k=K+1

Sα,k,n − nIα,k√
n

+
∞∑

k=⌈4.5 log n⌉

Sα,k,n − nIα,k√
n

The first steps have only finitely many values, use the (Multivariate) Central Limit
Theorem

The following steps have few elements, and should be small, use Chernov bounds.

In the last steps there are no elements, and Iα,k is falling geometrically.
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Swaps

Swaps

The step to partition into smaller and bigger elements is usually done by rearranging

Depending on machine, swapping positions can be significantly slower than
comparing

We consider 2 schemes: Hoare and Lomuto
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Swaps

Lomuto and Hoare – Visualisation

Lomuto

Cost: Amount of smaller elements

Hoare

Cost: Amount of smaller elements
on the right side
(hypergeometric)
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Swaps

Swap Residual

Given the interval sizes, the amount Wα,k,n of swaps for either Hoare or Lomuto at
a fixed step k are asymptotically normal around some mean Wα,k , a function of
interval sizes

Using this limit, we again define a residual process

∞∑
k=0

Wα,k,n − nWα,k√
n
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Swaps

Swap Residual

Theorem (I., Neininger 2024+)

For the Hoare scheme the residual process for swaps converges

∞∑
k=0

Wα,k,n − nWα,k√
n

d−→ G swap
α,∞ in (D[0, 1], dSK)

towards a mixed centred Gaussian process G swap
α,∞ . The random covariances are functions

of the interval sizes. The same holds for Lomuto, with other covariances.
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Variable comparison costs

Variable comparison costs

Other model: Comparison times depend on the items compared

E.g. the time needed to compare strings is proportional to the length of their
common prefix

The same holds for decimals (number of bit comparisons)

Typically, closer elements take longer to compare
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Variable comparison costs

Variable comparison costs

Let β(u, v) be cost to compare pivot u to item v

Let V be uniformly distributed on [0, 1]

We call β ε-tame for ε > 0 if there exists a C > 0 so that for all x ≥ 0, u ∈ [0, 1]

P(β(u,V ) > x) ≤ Cx−ε−1

Sufficient that β(u,V ) has a ε−1-th moment, uniformly bounded in u.

This covers bit comparisons, where β(u,V ) has exponential tails, so β is ε-tame
for all ε > 0
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Variable comparison costs

Residual

The residual can be defined as before, and then

Theorem (Matterer 2015)

When β is ε-tame for ε < 1
2
, the residual at a fixed point converges in distribution to a

centred mixed normal.

Theorem (I., Neininger 2024+)

When β is ε-tame for ε < 1
4
, the residual process converges in distribution on

(D[0, 1], dSK) to a centred mixed Gaussian process with covariances given as functions
of β and the interval sizes.
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Thank you for your attention
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