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Prelude 1: Find Min & Max via Divide & Conquer

@ Partition into two sets of (almost) equal size;
@ Find min and max in both parts individually & recursively;

e Compare minima, compare maxima.
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Prelude 1: Find Min & Max via Divide & Conquer

@ Partition into two sets of (almost) equal size;
@ Find min and max in both parts individually & recursively;

e Compare minima, compare maxima.

Number M(n) of comparisons when finding min and max of n
elements:
M(n) = M([n/2]) + M(|n/2]) + 2.
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Prelude 1: Find Min & Max via Divide & Conquer

@ Partition into two sets of (almost) equal size;
@ Find min and max in both parts individually & recursively;

e Compare minima, compare maxima.

Number M(n) of comparisons when finding min and max of n
elements:
M(n) = M([n/2]) + M(|n/2]) + 2.

In other words:

M(2n) = 2M(n) + 2,
M(2n+1) = M(n) + M(n+1) + 2.
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Prelude 2: Binary Sum of Digits

o Binary expansion n =} ¢

o Sum of digits s(n) = >>;5¢€;
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Prelude 2: Binary Sum of Digits

o Binary expansion n =}, g2

o Sum of digits s(n) = >>;5¢€;

s(n) = s(|n/2]) + [n is odd].

Clemens Heuberger University of Klagenfurt



Prelude 2: Binary Sum of Digits

o Binary expansion n =}, g2

o Sum of digits s(n) = >>;5¢€;

s(n) = s(|n/2]) + [n is odd].

In other words:

s(2n) = s(n),
s(2n+1) =s(n) + 1.
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Matrix—Vector Form: Sum of Digits

Recall:

s(2n) = s(n),
s(2n+1) =s(n)+ 1.
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Recall:
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Recall:
s(2n) = s(n),
s@2n+1) = s(n) + 1.
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V() = (5(1”)) .
Then

Clemens Heuberger University of Klagenfurt 5



Matrix—Vector Form: Sum of Digits

Recall:
s(2n) = s(n),
s@2n+1) = s(n) + 1.
Consider
V() = (5(1”)) .
Then

Clemens Heuberger University of Klagenfurt 5



Matrix—Vector Form: Sum of Digits
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Matrix—Vector Form: Sum of Digits

Recall:
s(2n) = s(n),
s@2n+1) = s(n) + 1.
Consider
V() = (5(1”)> .
Then

= (2) - (40) = o

v(2n+1) = <5(2n1+ 1))
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s(2n) = s(n),
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Matrix—Vector Form: Sum of Digits

Recall:
s(2n) = s(n),
s@2n+1) = s(n) + 1.
Consider
v(n) = (5(1”)> .
Then
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Matrix=Vector Form: Find Min and Max

Recall:

M(2n) = 2M(n) + 2,
M(2n+1) = M(n) + M(n+1) + 2.
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Matrix=Vector Form: Find Min and Max

Recall:

M(2n) = 2M(n) + 2,
M(2n+1) = M(n) + M(n+1) + 2.

Consider .
v(n) = (M(n) M(n+1) 1) .
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Matrix=Vector Form: Find Min and Max

Recall:
M(2n) = 2M(n) + 2,
M(2n+1) = M(n) + M(n+1) + 2.
Consider .
v(n) = (M(n) M(n+1) 1) .
Then

o = O

M(2n) 2 0 2
v(2n) = (M(2n+1)> = (1 2) v(n),
1 0 1
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Matrix=Vector Form: Find Min and Max

Recall:
M(2n) = 2M(n) + 2
M(2n+1) = M(n) + M(n+1) + 2.
Consider .
v(n) = (M(n) M(n+1) 1) .
Then

2n+1

2
( 2n+ 1) ) ( 2) v(n),
1
(2n+1) 2
( (2n + 2)) ( 2) v(n).
1
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g-Regular Sequences
Vector-valued sequence v: Ng — CP with

v(ign+r)=A,v(n)

forall0 <r<gqgandn>0.
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g-Regular Sequences

Vector-valued sequence v: Ng — CP with
v(ign+r)=A,v(n)

forall 0 <r < gandn>0.

Constants:
@ g>2,D > 1: integers;
@ Ao, ..., Ag—1: D x D-matrices.
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g-Regular Sequences

Vector-valued sequence v: Ng — CP with
v(ign+r)=A,v(n)

forall 0 <r < gandn>0.

Constants:
@ g>2,D > 1: integers;
@ Ao, ..., Ag—1: D x D-matrices.

First component of v: g-regular sequence (Allouche-Shallit 1992).
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Analysis of Regular Sequences

Theorem (Dumas 2013; H-Krenn 2020)

e x(n): g-regular sequence, first component of v(n)

Z ZNlog A Z (logkN) ¢,\k({|0gq NY)

0<n<N A€o (C) 0<k<mc(A)
[AI>R

+ O(N|quR(|Og N)max{mc(/\): \)\\:R})
as N — oo, where ®y are suitable 1-periodic functions.
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Analysis of Regular Sequences

Theorem (Dumas 2013; H-Krenn 2020)
e x(n): g-regular sequence, first component of v(n)
o Ci=Ag+-+Ag1
@ o(C): spectrum of C

o k
Sxm=Y w3 LB o (j1og, w))

0<n<N Aea(C) 0<k<mc(N)
[AI>R

+ O(N|quR(|Og N)max{mc(/\): \)\\:R})
as N — oo, where ®y are suitable 1-periodic functions.
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Analysis of Regular Sequences

Theorem (Dumas 2013; H-Krenn 2020)

e x(n): g-regular sequence, first component of v(n)
@ C:=Ap+ -+ As-1
e o(C): spectrum of C

@ R = limg_ o sup{||A . ..Ark||1/k |0<n,...,rn < q}: Joint
spectral radius of Ag, ..., Ag—1

o k
Sxm =Y w3 LB o (j1og, w))

0<n<N Aea(C) 0<k<mc())
[AI>R

+ O(Nloqu(log N)max{mc(/\): \)\\:R})
as N — oo, where ®y are suitable 1-periodic functions.
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Analysis of Regular Sequences

Theorem (Dumas 2013; H-Krenn 2020)
e x(n): g-regular sequence, first component of v(n)
o Ci=Ag+-+Ag1
e o(C): spectrum of C

o R :=Ilimy_ o sup{||A, . ..Ark||1/k |0<nr,...,re < q}: Joint
spectral radius of Ag, ..., Ag—1

@ mc(\): size of the largest Jordan block of C associated with \

o k
Sxm=Y w3 LB o (j1og, w))

0<n<N Aea(C) 0<k<mc())
[A|I>R

+ O(Nlogq R(|Og N)max{mc()\): \)\|:R})
as N — oo, where ®y are suitable 1-periodic functions.
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Analysis of Regular Sequences: Fluctuations

For [A\| > R and 0 < k < mc()):
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Analysis of Regular Sequences: Fluctuations

For [A\| > R and 0 < k < mc()):
o &, is Holder continuous
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Analysis of Regular Sequences: Fluctuations

For [A\| > R and 0 < k < mc()):
o &, is Holder continuous

@ Pointwise convergence of the Fourier series

Oxi(t) = paku exp(2umiu)
REZL
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Analysis of Regular Sequences: Fluctuations

For [A\| > R and 0 < k < mc()):
o &, is Holder continuous

@ Pointwise convergence of the Fourier series

Oxi(t) = paku exp(2umiu)
REZL

o Fourier coefficients can be computed numerically (using a
functional equation for the corresponding Dirichlet series)
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Original Sequence, Summatory Function, Renormalisation

300 [~
=
= 200
100 [~
L
5 6 7
logy n
8r
[N
6r
=5C
\53/4k
3r
2r
1T
5 6 7
logy n
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Original Sequence, Summatory Function, Renormalisation

[ / 5% 10
300 -
4x10*
£ = 3x10*
= 200 - 1
t g W o2x10*
100 1x10*
L
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logy n
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= - 1000
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logy n logy n
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Original Sequence, Summatory Function, Renormalisation
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Original Sequence, Summatory Function, Renormalisation

[ / 5% 10
300 / 1.6
| 4x10* £
g 200 = 3x10t =
= =
H W 2x10* 15
100 - ' 1x10%
L
5 6 7 5 6 7
logy n logy n
]~
7+ - 1000 ; 0.50
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[ 800 /%049
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e = 600 W =
L 3 8 % =048
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E @
- [ W 047
2 200 -
1T L
5 6 7 5 6 7
logy n logy n
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Observations and Questions

Observations

@ Some regular sequences are “smooth enough” such that an
asymptotic formula makes sense.

@ Other regular sequences are not “smooth enough”; taking the
summatory function might help.
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Observations and Questions

Observations

@ Some regular sequences are “smooth enough” such that an
asymptotic formula makes sense.

@ Other regular sequences are not “smooth enough”; taking the
summatory function might help.

Questions

@ Does taking the summatory function a finite number of times
always lead to a smooth asymptotic behaviour?

@ Can we say something about classes where the original
sequence is smooth enough?
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Observations and Questions

Observations

@ Some regular sequences are “smooth enough” such that an
asymptotic formula makes sense.

@ Other regular sequences are not “smooth enough”; taking the
summatory function might help.

Questions

@ Does taking the summatory function a finite number of times
always lead to a smooth asymptotic behaviour?

@ Can we say something about classes where the original
sequence is smooth enough?

Spoilers
@ Yes (almost always)
@ For divide & conquer sequences
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lterated Summatory Function

0<n<N

Theorem (H.—Krenn—Lechner 2024)

Let x be a g-regular sequence with matrices (A;)o<r<q. Set
C =3 0<scqAr- Assume that C has an eigenvalue # 0.

Then there is a non-negative integer k such that ¥¥x admits a
‘good asymptotic expansion”.
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lterated Summatory Function

Sv(N) = > v(n)
0<n<N

Theorem (H.—Krenn—Lechner 2024)

Let x be a g-regular sequence with matrices (A;)o<r<q. Set
C =3 0<scqAr- Assume that C has an eigenvalue # 0.

Then there is a non-negative integer k such that ¥¥x admits a
‘good asymptotic expansion”.

Yv(gN +r)
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lterated Summatory Function

Sv(N) = > v(n)

0<n<N

Theorem (H.—Krenn—Lechner 2024)

Let x be a g-regular sequence with matrices (A;)o<r<q. Set
C =3 0<scqAr- Assume that C has an eigenvalue # 0.

Then there is a non-negative integer k such that ¥¥x admits a
‘good asymptotic expansion”.

Yv(gN +r) = Z vign+r')
0<gn+r'<gN+r
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lterated Summatory Function

Sv(N) = > v(n)

0<n<N

Theorem (H.—Krenn—Lechner 2024)

Let x be a g-regular sequence with matrices (A;)o<r<q. Set
C =3 0<scqAr- Assume that C has an eigenvalue # 0.

Then there is a non-negative integer k such that ¥¥x admits a
‘good asymptotic expansion”.

Yv(gN +r) = Z vign+r')
0<gn+r'<gN+r

Z Z v(gn+r') Z v(gN + ')

0<n<N 0<r'<q o<r’'<r
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lterated Summatory Function

0<n<N

Theorem (H.—Krenn—Lechner 2024)

Let x be a g-regular sequence with matrices (A;)o<r<q. Set
C =3 0<scqAr- Assume that C has an eigenvalue # 0.

Then there is a non-negative integer k such that ¥¥x admits a
‘good asymptotic expansion”.

Yv(gN +r) Z Z vign+r') Z v(gh + ')

0<n<N 0<r'<q o<r'<r

S> T Av(n)+ D Av(N)

0<n<N 0<r'<q o<r'<r
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lterated Summatory Function

0<n<N

Theorem (H.—Krenn—Lechner 2024)

Let x be a g-regular sequence with matrices (A;)o<r<q. Set
C =3 0<scqAr- Assume that C has an eigenvalue # 0.

Then there is a non-negative integer k such that ¥¥x admits a
‘good asymptotic expansion”.

Yv(gN+r) = Z Z Av(n Z Av(N

0<n<N 0<r'<q o<r'<r

:( 3 A,/) 3 v(n)-l—( 3 A,/) V()

0<r'<q 0<n<N 0<r'<r
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lterated Summatory Function

0<n<N

Theorem (H.—Krenn—Lechner 2024)

Let x be a g-regular sequence with matrices (A;)o<r<q. Set
C =3 0<scqAr- Assume that C has an eigenvalue # 0.

Then there is a non-negative integer k such that ¥¥x admits a
‘good asymptotic expansion”.

Yv(gN +r) = (Z A,/) o n)—i—(Z A)

0<r'<q 0<n<N o<r'<r
= CTv(N)+ ( > A,,) v(N)
o<r'<r
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lterated Summatory Function

0<n<N

Theorem (H.—Krenn—Lechner 2024)

Let x be a g-regular sequence with matrices (A;)o<r<q. Set
C =3 0<scqAr- Assume that C has an eigenvalue # 0.

Then there is a non-negative integer k such that ¥¥x admits a
‘good asymptotic expansion”.

Yv(gN +r) = (Z A) o n)—i—(ZA)

0<r'<q 0<n<N o<r'<r
= CTv(N)+ ( > A,,) v(N)
o<r'<r

Repeating: asymptotic domination by D¥C (if C has an eigenvalue
#0).
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Divide-and-Conquer Sequences

Divide-and-conquer sequence:

oy =ox{[2]) (2] + 0

for n > 2 («, [ given positive constants, g given function (“toll
function”), x(1) given).
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Divide-and-Conquer Sequences

Divide-and-conquer sequence:

oy =ox{[2]) (2] + 0

for n > 2 («, [ given positive constants, g given function (“toll
function”), x(1) given).

Theorem (Hwang—Janson—Tsai 2023)

Assume that there is an ¢ > 0 such that g(n) = O(n'°g2(2+8)—¢)
Then

x(n) = n'°82FB)o({log, n}) + O(n'o82(a+A)=)

for n — oo where ® is a continuous, 1-periodic function.
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Divide-and-Conquer Sequences

Divide-and-conquer sequence:

oy =ox{[2]) (2] + 0

for n > 2 («, [ given positive constants, g given function (“toll
function”), x(1) given).

Theorem (Hwang—Janson—Tsai 2023)

Assume that there is an ¢ > 0 such that g(n) = O(n'°g2(2+8)—¢)
Then

x(n) = o8+ {log, n}) + O(noE=(e+)-<)

for n — oo where ® is a continuous, 1-periodic function.

Question: Relation to “our" result?
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Divide-and-Conquer and Regular Sequences

= ax(|2]) - +([3]) -0
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Divide-and-Conquer and Regular Sequences

= ax(|2]) - +([3]) -0

x(2n) = (a4 B)x(n) + g(2n)
x(2n+1) = ax(n) + Bx(n+1) +g(2n+1)
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Divide-and-Conquer and Regular Sequences

= ax(|2]) - +([3]) -0

x(2n) = (a4 B)x(n) + g(2n)
x(2n+1) = ax(n) + Bx(n+1) +g(2n+1)

— (with v(n) = (x(n), x(n+1))T)
v(2n) = (azﬂ g) v(n) + Qéf?l))
=5, L) 0+ (501 0)




Divide-and-Conquer and Regular Sequences

= ax(|2]) - +([3]) -0

x(2n) = (a4 B)x(n) + g(2n)
x(2n+1) = ax(n) + Bx(n+1) +g(2n+1)

— (with v(n) = (x(n), x(n+1))T)
v(2n) = (“25 g) v(n) + Qéf?l))
=5, L) 0+ (501 0)

If g is regular, then x is regular.
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Summatory Function of the Forward Difference

x(N) = x(0)+ > (x(n+1)—x(n))

0<n<N

Clemens Heuberger University of Klagenfurt



Summatory Function of the Forward Difference

x(N) = x(0)+ > (x(n+1)—x(n))

0<n<N

e Forward difference of regular sequence is regular
e Summatory function of regular sequence is regular

but can we say something in general?
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Forward Difference of Divide-and-Conquer Sequence

Set Ax(n) = x(n+1) — x(n).
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Forward Difference of Divide-and-Conquer Sequence

Set Ax(n) = x(n+1) — x(n).
Consider divide-and-conquer sequence

x(2n) = (o + B)x(n) + g(2n)
x(2n+1) = ax(n)+ Bx(n+ 1)+ g(2n+1)
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Forward Difference of Divide-and-Conquer Sequence

Set Ax(n) = x(n+1) — x(n).
Consider divide-and-conquer sequence

x(2n) = (o + B)x(n) + g(2n)
x(2n+1) = ax(n)+ Bx(n+ 1)+ g(2n+1)

Ax(2n) = BAx(n) + g(2n+ 1) — g(2n)
Ax(2n+1) = aAx(n)+ g(2n +2) — g(2n+1).
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Forward Difference of Divide-and-Conquer Sequence
Set Ax(n) = x(n+1) — x(n).
Consider divide-and-conquer sequence

x(2n) = (o + B)x(n) + g(2n)
x(2n+1) = ax(n) + Bx(n+ 1)+ g(2n + 1)

Ax(2n) = BAx(n) + g(2n+ 1) — g(2n)
Ax(2n+1) = aAx(n)+ g(2n +2) — g(2n+1).

Dimension 1 (plus dimension of linear representation of g):
particulary simple.
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Divide-and-Conquer: Result
Theorem (H.—Krenn—Lechner 2024)

Let x be a divide-and-conquer sequence with polynomial toll
function of degree k > 1. Then (for 1-periodic continuous
functions ® and W and n — o):
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Divide-and-Conquer: Result
Theorem (H.—Krenn—Lechner 2024)

Let x be a divide-and-conquer sequence with polynomial toll
function of degree k > 1. Then (for 1-periodic continuous
functions ® and W and n — o):

o Case la. If a+ 3 > 2k and 2% > max{a, £}, then

x(n) = n°%*Do({log, n}) + n*W({log, n})

+ O(nlog2 max{a,ﬁ}).
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Divide-and-Conquer: Result
Theorem (H.—Krenn—Lechner 2024)

Let x be a divide-and-conquer sequence with polynomial toll
function of degree k > 1. Then (for 1-periodic continuous
functions ® and W and n — o):

o Case 1b. If a + 3 > 2X and max{a, 8} > 2, then

x(n) = n'°8(2*9)o({log, n})
_|_ O(nIOgZ max{awg}(log n)[max{awg}zzk] )
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Divide-and-Conquer: Result
Theorem (H.—Krenn—Lechner 2024)

Let x be a divide-and-conquer sequence with polynomial toll
function of degree k > 1. Then (for 1-periodic continuous
functions ® and W and n — o):

@ Case 2. Ifa+ 3= 2k then

x(n) = n“(log n)®({log, n}) + n*W({log, n})
+ O(nlog2 max{a,,@}—l—[a:ﬁ]é:)

for any € > 0.
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Divide-and-Conquer: Result
Theorem (H.—Krenn—Lechner 2024)

Let x be a divide-and-conquer sequence with polynomial toll
function of degree k > 1. Then (for 1-periodic continuous
functions ® and W and n — o):

o Case 3. If 2k > a + 3 > 2K-1 then

x(n) = n*®({logy n}) + n'*&* DV ({log, n})
+ O<nlog2 max{a, 3,2~} +[max{a,B}=2Kk"1]¢

> (Iog n)[max{a,5}<2k_1]>

for any € > 0.
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Divide-and-Conquer: Result
Theorem (H.—Krenn—Lechner 2024)

Let x be a divide-and-conquer sequence with polynomial toll
function of degree k > 1. Then (for 1-periodic continuous
functions ® and W and n — co):

o Case 4. If 21 > o/ + 33, then
x(n) = n“®({log, n}) + O(n*~*(log n)F),
where
E:=1+[a+ =2 (k>2and c_1 # 0]
+ [k =1and do + di # 0])
with

do = (1= B)x(1) —g(1) + 8(0), dr:=g(1) —(1—pF)x(1).
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Min-Max: Fourier Coefficients

Computing Fourier coefficients using the general result . ..

1,0 I T T T I T T T I T T T I T T T I T T T I T T T I T T T I T T T I
2 3 4 ) 6 7 8 9 10
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