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Dyck Paths

How many paths start at (0,0), end at (n,n), take steps in
{→, ↑}, and stay weakly above the line y = x?

(n,n)

(0,0)



Bad Paths

How many paths start at (0,0), end at (n,n), take steps in
{→, ↑}, and stay weakly above the line y = x?

(n,n)

(0,0)



Bad Path Bijection

How many paths start at (0,0), end at (n,n), take steps in
{→, ↑}, and stay weakly above the line y = x?

(n,n)

(0,0)



Dyck Path formula
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Question:
How much can the re�ection principle be generalized?



Why study lattice paths?

• Catalan objects are ubiquitous.
• Lattice paths in higher dimensions have bijections with

trees, maps, permutations, lattice polygons, Young
tableaux, queues, . . .

• Tracking the endpoint of a lattice path is the same as
tracking the sum of steps, which could be viewed as a
sum of independent discrete random variables.



Lattice models

To generalize, we could change:

• the stepset S of the model (previously {→, ↑}).
• the domain in which walks must stay (previously the

upper half plane... or, really, N).
• the weights of paths.



Interaction between lattice paths and ACSV

• Results on lattice paths have pushed forward results in
Analytic Combinatorics in Several Variables (ACSV), and
vice versa.

• There were regularly types of GF singularities that were
�rst found in examples by studying lattice paths.



Our results: weighted walks in A2
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Graphical results
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Increasing dimensions

• Banderier & Flajolet considered one-dimensional walks,
bridges, meanders, and excursions.

• The quarter plane N×N proves to be much more di�cult.
Fayolle, Iasnogorodski, and Malyshev and
Bousquet-Mélou and Mishna developed frameworks.

• The analysis depends heavily on the stepset.

Many additional authors have contributed: Bostan, Chyzak,
Kauers, Krattenthaler, Kurkova, Raschel, Pech, van Hoeij.



Analysis pipeline

• Figure out how to encode an, the number of walks with n
total steps, in the generating function

F(t) =
∑

antn.

• Use ACSV to extract asymptotics.



Classi�cation of generating functions
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Walks in Zd

Some classi�cation results:

• Walks in all of Zd have rational GFs.
• Walks in a half space of Zd have algebraic GFs.
• Walks in the intersection of two half spaces could have

algebraic GFs, or transcendental D-�nite GFs, or neither.



More on walks in restricted domains

• Melczer, Mishna, and Wilson: d-dimensional orthant,
(almost) highly symmetrical stepsets.

• Denisov and Wachtel examined walks in general cones,
including Weyl chambers, from a probabilistic viewpoint.

• Bostan, Raschel, and Salvy: made explicit the results of
Denisov and Wachtel in some settings.

• Courtiel, Melczer, Mishna, and Raschel: weighted
Gouyou-Beauchamps model; found universality classes –
our framework is modeled a�er theirs.



Reduced root systems

De�nition (Reduced Root System)
For vectors x, y ∈ Rd, let σx(y) be the re�ection of y through
the hyperplane perpendicular to x. A reduced root system is
a �nite set of vectors Φ ⊂ Rd such that for any x, y ∈ Φ,

• σx(y) ∈ Φ,
• y− σx(y) is an integer multiple of x, and
• the only nontrivial scalar multiple of x in Φ is −x.

The group of re�ections G determined by a root system is
called a Weyl group.



Walks in Weyl chambers

De�nition (Re�ectable stepset)
LetW be a Weyl group acting on a real inner product space
V with a distinguished basis B = (b1, . . . ,bd). We say that a
nonempty set of vectors S is a (W,B)-re�ectable stepset if

• for all g ∈ W and s ∈ S , we have g(s) ∈ S , and
• for all s ∈ S and 1 ≤ i ≤ d, there is an integer ci such that

the dot product 〈s,bi〉 ∈ {−ci,0, ci}.



Walks in the Weyl chamber A2
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The three step version is called the Tandem model, and the
six step version is called the Double Tandem model.

We look at weighted walks where each step to the right has
weight a and each step up has weight b.



Walks in Weyl chambers: previous results

• Grabiner and Magyar, Krattenthaler, and Feierl analyzed
weighted walks in Weyl chambers using determinants or
from a probabilistic viewpoint.

• Mishna and Simon analyzed walks in the Weyl chamber
Ad1 , and found nice patterns and results for all
dimensions.



Reminder of results
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Finding the generating functions

The kernel method or the generalized re�ection principle
have already yielded the unweighted GFs (Melczer & Wilson),
and the weighted GF can be interpreted as an evaluation.

FT(x, y, t) =
(b2x − ay2)(bx2 − a2y)(xy − ab)

(1− txy(ax + bx
ay + y

b))a3b3(1− x)x(1− y)y

and

FDT(x, y, t) =

(b2x − ay2)(bx2 − a2y)(xy − ab)

(1− txy(ax + x
a + bx

ay + ay
bx + y

b + b
y ))a3b3(1− x)x(1− y)y



Recap: analytic combinatorics mantra

• The location of a GFs smallest singularities determine
exponential growth rate. We call these critical points.

• The behavior of the GF near these singularities
determines the subexponential growth.



ACSV pipeline

1. Classify what kinds of critical points are possible.
2. Identify the critical points.
3. Re�ne to contributing critical points.
4. Use pre-existing results to evaluate asymptotics.



Critical point classi�cation

Our GFs have two types of critical points: smooth and
transverse.

• A smooth critical point means that the singular set near
the critical point is a smooth manifold that can be
parameterized smoothly in d− 1 variables.
• The implicit function theorem can help us identify these.

• A transverse critical point is one where the singular
variety appears locally to be the intersection of
hyperplanes whose gradients are linearly independent.

All of these conditions can be checked algebraically.



Additional criterion: contributing critical points

De�nition
Let w be a transverse critical point, and let the denominator
of the GF encoding the walks be H(z) = H0(z)H1(z) · · ·Hm(z)
where H0(w) 6= 0 but Hi(w) = 0 for i ≥ 1. The point w is
called contributing if the vector (1, 1, . . . , 1) is in the normal
cone

N(w) :=


m∑
j=1

ajvj : aj > 0


where vj is the normalized logarithmic gradient of Hj at w.



Read-o� results

Once the critical points are classi�ed, identi�ed, and then
�ltered, we can use a result like the following.

Theorem (Pemantle and Wilson)
If a rational GF F(x, y, t) has a strictly minimal smooth critical
point w then

[xnyntn]F(x, y, t) =

w−nn−3/2 (2π)−3/2√
(detH)

 M∑
j=0

Cjn−j + O
(
n−M−1)

for explicitly computable constants Cj and some explicit
matrix H.



Conjectured results

In the analysis of A2, a type of critical point previously unseen
in applications appeared:

• The critical point is transverse.
• The numerator of the GF vanishes at the critical point.
• The direction (1, 1, 1) is at the boundary of the normal
cone.

We verify numerically that this cuts the normal asymptotic
contribution of such a critical point in half.



Future problems

• We are working with Melczer and Kroiter to verify the
conjecture.

• Ad2 and other Weyl chambers should be accessible via the
same framework.

• Products of Weyl chambers.



Thank you!


