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Warm up: The independence polynomial

Graph G = (V, E)

A set I ⊆ V is an independent set of G if it contains no edges
of G.
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∅ is an independent set of G.
Any size-1 subset of V is an
independent set of G.
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The independence polynomial

ZG(λ) =
∑
I∈IG

λ|I|.
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∅ is an independent set of G.
Any size-1 subset of V is an
independent set of G.
G has 6 larger independent sets.

x y

a b

c

x y

a b

c

x y

a b

c

x y

a b

c

x y

a b

c

x y

a b

c

ZG(λ) = 1 + 5λ+ 5λ2 + λ3
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Gibbs/Boltzmann distribution

Gibbs measure: measure on independent sets where the
probability of I is ∝ λ|I|.

x y

a b

c

The probability of this independent set is
λ2/ZG(λ), where ZG(λ) = 1 + 5λ+ 5λ2 + λ3.

The normalising factor ZG(λ) (the independence polynomial
of G) is also called the partition function of G in statistical
physics.
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How hard is it to compute the independence polynomial of G,
given a fixed “activity” λ?

ZG(λ) =
∑
I∈IG

λ|I|

Start with λ = 1...

ZG(1) is the number of independent sets of G. This is known to
be #P-complete (Valiant, 1979), even when the graph is
restricted to have degree at at most 3 (Greenhill, 2000).

But most people are more interested in approximating ZG(λ).
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Approximating the Partition Function

Fix λ.

Graph G
accuracy parameter ε

Value Ẑ

ZG(λ)(1 − ε) 6 Ẑ 6 ZG(λ)(1 + ε)

Running time at most poly(n, 1/ε).

FPRAS or FPTAS.

Robust.

When is there an FPTAS/FPRAS?
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G∆: Graphs with max degree at most ∆.

λc =
(∆− 1)∆−1

(∆− 2)∆
∼

e
∆

.

•Weitz 2006: If λ < λc then ZG(λ) can be efficiently
approximated on graphs G ∈ G∆. (There is an FPTAS)

• Sly 2010; Galanis, Štefankovič, Vigoda 2012; Sly, Sun 2012:
If λ > λc then, for some κ > 1, ZG(λ) cannot be efficiently
approximated within a factor of κn on ∆-regular graphs (unless
NP=RP).

What is the magic value λc?
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Let Z in
G,v(λ) =

∑
I∈IG; v∈I λ

|I|. In the Gibbs measure, the
probability that v is occupied is

pv(G) =
Z in

G,v(λ)

ZG(λ)

Given a ∆-regular tree T of height h with root r,

The occupation ratio of the tree: p[h] = pr(T).

p[h] converges to a limit as h→∞ iff λ 6 λc (Kelly 1985)

The complexity of approximating ZG(λ) for G ∈ G∆ depends on
whether p[h] converges.
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Another Example: Partition function of the Ising model

• “Spins” {0, 1}

• parameter β (real number, associated with the temperature of
the model)

Graph G = (V, E)

u v

w

A “configuration” σ assigns a spin to every vertex

1 0

1

Spins interact along the edges: Same spins contribute a factor
of β so w(σ) = β.

The partition function: ZG =
∑

σ∈[q]V
w(σ)
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Example: Partition function of the Ising model

ZG =
∑

σ∈[q]V
w(σ)

1 1

1

w(σ) = β3

1 0

1

w(σ) = β

×3

0 0

1

w(σ) = β

×3

0 0

0

w(σ) = β3

ZG = 2β3 + 6β.

Again can consider difficulty of approximately computing ZG, or
sampling from the Gibbs distribution.
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Partition Functions, more generally
• Fix “Spins” [q] = {0, . . . , q − 1} e.g., q = 2 for the Ising model

• Fix symmetric matrix A ∈ Rq×q

e.g., for the Ising model A =

(
β 1
1 β

)
.

• Given a graph G = (V, E)

• configuration σ ∈ [q]V weight

w(σ) =
∏

{u,v}∈E

Aσ(u),σ(v)

• Partition function ZG associates G with the real number
ZG =

∑
σ∈[q]V

w(σ)

Examples: Ising model, Potts model... Independent sets
A =

(
1 1
1 0

)
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Example
Partition functions count graph homomorphisms

1

1

0 2

Graph G = (V, E)

Graph H 0 1 2

Homomorphism from G to H: A map
σ ∈ V(H)V that maps every edge of G
to an edge of H

11



Example
Partition functions count graph homomorphisms

1

1

0 2

Graph G = (V, E)

Configuration
σ ∈ {0, 1, 2}V with weight
w(σ) = 1 is a
homomorphism from G
to H.

Graph H 0 1 2

Homomorphism from G to H: A map
σ ∈ V(H)V that maps every edge of G
to an edge of H

A: Adjacency matrix of H

A =

0 1 0
1 1 1
0 1 0


ZG: number of homomorphisms from
G to H.

Why computing partition fns
is called “counting”

11



Complexity of computing partition functions

Dichotomy Theorem: For every symmetric matrix A, one of the
following holds:
(1) the corresponding partition function ZG can be computed in
polynomial time (as a function of n, the number of vertices
of G), or
(2) ZG is #P-hard to compute.

We can tell which, given A.

• Dyer and Greenhill 2000: 0-1-matrices

• Bulatov and Grohe 2005: non-negative real algebraic
matrices.

• G, Grohe, Jerrum, Thurley 2010: real algebraic matrices.

• Cai, Chen, Lu 2013: complex algebraic matrices.
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the nonnegative real case

A =

0 1 2 3 4
0 0 3.5 0 0 0
1 3.5 1 1 0 0
2 0 1 0 0 0
3 0 0 0 0 1
4 0 0 0 1 0

3.5
0 1 2

3 4

corresponding weighted graph

Each non-bipartite connected component of this graph
corresponds to one block and each bipartite connected
component corresponds to two blocks.

Computing ZG is in polynomial time if the rank of every block of
A is 1 and #P-hard otherwise.
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When A can have negative numbers

Roughly, computing ZG is tractable if each of the blocks of A
can be written as a tensor product of a positive matrix of rank 1
and a tractable Hadamard matrix.

(
2 3
4 6

)
⊗
(

1 1
1 −1

)
=


2 3 2 3
4 6 4 6
2 3 −2 −3
4 6 −4 −6


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Hadamard matrices

A Hadamard matrix is a square matrix H with entries from
{−1, 1} such that H · HT is a diagonal matrix.

(
1 1
1 −1

)
·
(

1 1
1 −1

)
=

(
2 0
0 2

)
.

(the order is 1, 2, or a multiple of 4 - open whether there is one
for every multiple of 4)

• A symmetric Hadamard matrix H is tractable if it has a
“quadratic representation” and hard otherwise.
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A “quadratic representation” for order 2k (roughly)

A =

00 01 10 11
00
01 −1
10
11

Row and column labels of A over Fk
2 (here k = 2)

multivariate polynomial h(X1, . . . , Xk, Y1, . . . , Yk) over F2 of
degree at most 2 such that

h(0001) = 1⇔ H00,01 = −1.
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Approximating the partition function
Open even for these special cases

A is a (symmetric) 0-1 matrix (counting graph
homomorphisms)
A is 2× 2.

A =

(
β 1
1 γ

)
.

w(σ) =
∏

{u,v}∈E

Aσ(u),σ(v).

ZG =
∑

σ∈{0,1}V

w(σ).

(probably won’t have time)

(this talk)

Normalisation to A01 = A10 = 1 is wlg
since easy to compute if they are 0
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G, Jerrum, Paterson, 2003

A =

(
β 1
1 γ

)
.

w(σ) =
∏

{u,v}∈E

Aσ(u),σ(v).

ZG =
∑

σ∈{0,1}V

w(σ).

Above βγ = 1. Reduction to Ising (β = γ)
with consistent fields

No FPRAS unless NP=RP

Easiness extends below hyperbola, hardness outside of
the square
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understanding βγ < 1

1 Inputs in G∆ (graphs of degree at most ∆)
2 Generalise the notion of Gibbs distribution to infinite

graphs.

Pr(· = σ) = w(σ)/ZG.

Infinite G: For any finite subgraph H, marginal distribution,
conditioned on σ(G \ H), is proportional to w(·).
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• Non-uniqueness: If the
infinite ∆-regular tree has
multiple Gibbs measures
then no FPRAS/FPTAS
for ∆-regular graphs G
(NP-hard).
• Uniqueness: If ∀d 6 ∆
the infinite d-regular tree
has a unique Gibbs
measure then there is an
FPTAS for ZG for G ∈ G∆.

Sly 2010; Galanis, Štefankovič, Vigoda 2012 Sly, Sun 2012
Weitz 2006; Sinclair, Srivastava, Thurley 2011; Li, Lu, Yin 2012
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Uniqueness or not?

f (x) =
(
βx+1
x+γ

)∆−1

x∗ is the unique positive fixed-point — the solution to x∗ = f (x∗).

Uniqueness: |f ′(x∗)| 6 1
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• 0 6 β < 1 and 0 < γ 6 1:
non-uniqueness on the infinite
∆-regular tree for all sufficiently
large ∆.
• 0 6 β < 1 and γ > 1:
uniqueness holds on the infinite
∆-regular tree for all sufficiently
large ∆.

The uniqueness threshold is not monotonic in ∆. (It is possible to be
in uniqueness for ∆, but in non-uniqueness for some d < ∆!)

The boundary between hard and easy is the “in uniqueness for all ∆”
curve
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What if β and γ can be negative?

−2 1 2

−2

1

2

β

γ Yumou Fei, LG, Pinyan Lu,
ITCS 2024

A =

(
β 1
1 γ

)
.

ZG =
∑

σ∈{0,1}V

∏
{u,v}∈E

Aσ(u),σ(v).

• sky blue points: poly-time exact
(already seen)
•: pos quadrant: dotted line “is”
uniqueness-for-all-∆ curve. βγ = 1
exact poly time.
• β = γ ising: Earlier work with
Jerrum, hard for β = γ ∈ (−1, 0)
(even #P-hard to find sign of ZG)
and equivalent to counting PMs for
β = γ < −1 (orange line).
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What if β and γ can be negative?

−2 1 2

−2

1

2

β

γ Yumou Fei, LG, Pinyan Lu,
ITCS 2024

A =

(
β 1
1 γ

)
.

ZG =
∑

σ∈{0,1}V

∏
{u,v}∈E

Aσ(u),σ(v).

• β+ γ = −2, β+ γ = 2.
• green: FPTAS on G∆ and
FPRAS (all degrees)
• blue line β+ γ = −2 has FPRAS
• red: #P-hard even to determine
sign
• yellow “strip” (width → 0 as move
from origin) has FPTAS on G∆ so
β+ γ = 2 not a threshold
• white: open. There are hard
points near (1, 0). Conjecture: ex-
tend non-uniqueness curve?
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How to approximate ZG

Theorem. Fix β 6= γ with |β+ γ| > 2.

1 There is an FPRAS for ZG

2 For any positive integer ∆ there is an FPTAS for ZG for
G ∈ G∆.
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A polynomial generalising ZG (recall the independence
polynomial)

A =

(
A00 A01
A10 A11

)
=

(
β 1
1 γ

)
.

For G = (V, E) and x ∈ RV , let

ZG(x) =
∑

σ∈{0,1}V

 ∏
{u,v}∈E

Aσ(u),σ(v)

∏
v∈V

xσ(v)
v

 .

x is the vector of external fields.

ZG = ZG(1).

Setting xv = x for all v ∈ V, we get a univariate polynomial ZG(x).
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The method of Barvinok 2016

p(z) = a0 + a1x + · · ·+ adxd, ai’s complex

Suppose p(x) 6= 0 in disk of
radius r > 1 around origin

0 r

Fix a branch of f (x) = ln p(x) for |x| 6 1

truncate Taylor expansion of f around x = 0:

fN(x) =
∑N

j=0
xj

j!
f (j)(0).

For |x| 6 1, fN(x) is additively close to f (as a fn of d, N, r) so
|f (1) − fN(1)| < ε for N = O(ln(d/ε))

e.g., fix the value of
log(p(0)) to lie in (−π,π]
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Patel/Regts 2017
For

p(x) = ZG(x) =
∑

σ∈{0,1}V

 ∏
{u,v}∈E

Aσ(u),σ(v)

∏
v∈V

xσ(v)

 .

can compute the coefficients of fN(x) for graphs G ∈ G∆ by
reduction to counting induced subgraphs from certain fixed
graphs H into G.

So to get a FPTAS we just need to prove that there are no complex zeroes in a disk
of radius > 1 in the complex plane

Theorem. Fix β 6= γ with |β+ γ| > 2.

1 There is an FPRAS for ZG
2 For any positive integer ∆ there is an FPTAS for ZG for

G ∈ G∆.

A =

(
A00 A01
A10 A11

)
=

(
β 1
1 γ

)
.
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−2 1 2

−2

1

2

β

γ

ZG(x) =∑
σ∈{0,1}V

(∏
{u,v}∈E Aσ(u),σ(v)

∏
v∈V xσ(v)

v

)
A =

(
β 1
1 γ

)
.

FPTAS for G ∈ G∆ when
|β+ γ| > 2 from
zero-freeness in a disk of
radius r > 1

Contraction method of
Asano 1970 (used to give
simple proof of Lee-Yang
circle theorem and extended
by Ruelle 1971) Suffices to
show that γxuxv + xu + xv + β
has no zeroes when |xu| < r
and |xv| < r
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A typical case: β > γ, β+ γ > 2.
Showing γxuxv + xu + xv + β has no zeroes when
|xu| < r and |xv| < r

The unique sol’n to γ x g(x) + x + g(x) + β = 0 is
g(x) = −(x + β)/(γx + 1).

But g maps the open disk of radius r around the origin to the
outside of this circle...

g
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−2 1 2

−2

1

2

β

γ

ZG =
∑

σ∈{0,1}V

∏
{u,v}∈E Aσ(u),σ(v)

A =
(
β 1
1 γ

)
.

FPRAS for all G when
β 6= γ, |β+ γ| > 2
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