Binary search trees of permuton samples

Benoit Corsini, Victor Dubach, Valentin Féray

AofA 2024, Bath

Full version at arXiv:2403.03151



I. BSTs and permutons
Il. Universality of the height

1. Proof ideas



I. BSTs and permutons

Binary Search Trees

A Binary Search Tree (BST) is a rooted labeled binary tree such that:
for each vertex v, all labels of vertices in its left-subtree are smaller
than that of v (resp. right-subtree, greater).




I. BSTs and permutons

Binary Search Trees
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Rem: same shape as T(a ) with o = (4,2,3,5,1).



I. BSTs and permutons

Permutons

A permuton (or copula) is a probability measure z on [0,1]? with
uniform marginals:

vt e [0,1], ([0, ]x[0,1]) = u([0, 1] x [0, £]) = .

0.2
0.2,

0.3
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Permuton samples

Let P = {(x1,%),---,(Xn,¥n)} C R? with no common x- or y-

coordinate.
Define a reordering (x(1y, (1)) - - - » (X(n)> ¥(n)) BY X(1) < -+ < X(n)-
There exists a unique permutation ¢ = o(P) such that

(Y(1)s -+ +»¥(m) and (o(1),...,a(n)) are in the same relative order.
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coordinate.
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(0.6,0.8)
0.9.9.7) (Y1) - Ye)) = (0.3,0.6,0.1,0.8,0.5,0.7)
(0.370.6)
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I. BSTs and permutons

Permuton samples

n

If P is random i.i.d. under a permuton y, this permutation o, is a
permuton sample.
L]
(0.6,0.8)
09.0.7) (Y1), - Ye) = (0.3,0.6,0.1,0.8,0.5,0.7)
0.3%0.6) .
(0.8,0.5)
o(P)=1(2,4,1,6,3,5)
L]
(0.2,0.3)
(0.570.1)
P

n -

Rem: if 11 = Lebjg 152 then o7 is uniformly random.
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I. BSTs and permutons

Permuton samples

If P is random i.i.d. under a permuton u, this permutation o7 is a

m
permuton sample.

(o.ﬁ.'o.s)
09.37) Way, - ) = (0.3,0.6,0.1,0.8,0.5,0.7)
(0.3,‘0.6)
L]
(0.8,0.5)
. o(P) =(2,4,1,6,3,5)
(0.2,0.3)
L]
(0.5,0.1)
P

Rem: if 11 = Lebyg 452 then o7} is uniformly random.
Motivation:

m Continuous deformation of the uniform distribution
m Highly non-parametric, wide range of distributions

m Insight on the links between random permutations and their
limit permuton
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BST of a point process

Let P = {(>x1,%1),--->(Xn,¥n)} C R2 with no common x- or y-
coordinate.

Define a reordering (x(1), (1)) - - - » (X(n)> ¥(n)) BY X(1) < -+ < X(n)-
The BST of P is defined as 7(P) = T (y(1), - - -+ ¥(n))-
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BST of a point process
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I. BSTs and permutons

BST of a point process

Let P = {(>x1,%1),--->(Xn,¥n)} C R2 with no common x- or y-
coordinate.

Define a reordering (x(1), (1)) - - - » (X(n)> ¥(n)) BY X(1) < -+ < X(n)-
The BST of P is defined as 7(P) = T (y(1), - - -+ ¥(n))-

(Ways- - y@) = (0.3,0.6,0.1,0.8,0.5,0.7)
o(P) = (2,4,1,6,3,5)

(0:6’,.04‘8)».._
0.9.0.7) / 03
oty
(0.8,0.5) \ @ 0.9
TP =
(0.2,0:3) @()) < > @ @
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P

Rem: T (P) has the same shape as T (o (P)).
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The height of a BST determines the complexity of operations such
as lookup, addition or removal of data.

Q: Let o be a (random) permutation. What is the height of 7 (o)?
In general:

n>h(T{(o(1),...,0(n))) > logo(n+ 1)
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Il. Universality of the height

The height of a BST determines the complexity of operations such
as lookup, addition or removal of data.

Q: Let o be a (random) permutation. What is the height of 7 (o)?
In general:

n>h(T{(o(1),...,0(n))) > logo(n+ 1)

Depending on the law of o, asymptotic results for h (7 (c))?
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Devroye '86

If op ~ Unif (&,) then, as n — oo:
h(T{on))

c*logn

— 1

in probability and in LP for all p > 1, where ¢* > 2 solves
clog(2e/c) = 1.



Il. Universality of the height

Devroye '86

If op ~ Unif (&,) then, as n — oo:
h(T{on))

c*logn

— 1

in probability and in LP for all p > 1, where ¢* > 2 solves
clog(2e/c) = 1.

Let g € [0,1]. The Mallows distribution M, q is defined by:
Vo € Gn,  Myglo) o g™,

Addario-Berry — Corsini '21

If 0, ~ My g, where n(1 — g,)/logn — 0, then:
h(T{on)

—1
c*logn

in probability and in LP for all p > 1.



Il. Universality of the height

Devroye '86

If op ~ Unif (&,) then, as n — oo:
h(T{on))

c*logn

— 1

in probability and in LP for all p > 1, where ¢* > 2 solves
clog(2e/c) = 1.

Let & > 0. The record-biased distribution R, ¢ is defined by:
Vo €8, Rpp(o) x gre<(@),

Corsini '23
If 0n ~ Rpg where § < c*, then:
h(Tlow)
c*logn

in probability and in LP for all p > 1.
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Corsini — D. — Féray '24

Let 4 be a permuton with a bounded density on [0, 1]?, which is
continuous and positive on a neighborhood of {0} x [0, 1]. Then:

h (T<O’Z>)

c*logn

—1

as n — oo, in probability and in LP for all p > 1.
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Il. Universality of the height

Corsini — D. — Féray '24

Let 4 be a permuton with a bounded density on [0, 1]?, which is
continuous and positive on a neighborhood of {0} x [0, 1]. Then:

h (T<O’Z>)

c*logn

—1

as n — oo, in probability and in LP for all p > 1.

Necessity of assumptions:

3/4

1/4

Height ~ cglogn for some ¢z > c* Height > ¢y/n
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positive, continuous density n L

bounded density

“Top tree” “hanging trees”

h(Tiop) < h(T(oR) < h(Tiop) + 1+ maxh (Tikging )

Two steps:
h(Tiop) ~ c*log n;

maxy h (Eﬁnging) = o (logn).
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I11. Proof ideas

Two steps:

max h (Egnging) = o (logn).

This is mainly done via coupling techniques and deviation estimates.

Problem: taking out a point might double the height...

> >
height = 4 height = 6
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I11. Proof ideas

A chain in a tree T is a subset C of vertices, which are all on a
common branch of T.

Lemma

Let P_ C Py be two point sets.
If C C Py is a chain in T(P4), then CNP_ is a chain in T(P_).
If C is a chain of maximal size in 7 (P,) then:

h(T(P-)) = h(T(P+)) —ICN(P+\P-)|.
If P C P C Py, we can apply this lemma twice: with P_ C P,
and with P C P,. Thus:

h(T(P4))=IC+N(PL\P)| < h(T(P)) < h(T(P-))+ICN(P\P-)|

negligible? negligible?
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I11. Proof ideas

Hyp: 1 has a density p, bounded above and below on [0, 5] x [0, 1].

Goal: height of the top tree.

“Poissonization”: easier to work with a Poisson point process P
with intensity np;

“Thinning™: there exist homogeneous Poisson point processes
such that P~ C P C Py

— (good?) estimate on h(T(P));
“dePoissonization” techniques.
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I11. Proof ideas

Using Devroye's result:

If p(x,y) = f(x) - g(y). then o7 is uniform and h (T (o)) ~ c*log n.

— if pon [0, 3] x [0, 1] is close to a function that only depends on
y, then the top tree is close to the BST of a uniform permutation.

m Hanging trees: the largest vertical gap of the points on the left
is O (log(n)/n), then deviation estimates for h (ﬂgngmg) by
comparison with longest monotone subsequences.

m Another result: the subtree size convergence. The BST of a

permuton sample is not “balanced” in the same way as the BST
of a uniform permutation.



(0;6','0.‘8) .
a1
o (0.9,0.7)
(0.3,0.6) e
: (0.8,0.5)
u
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(0.'5,'041)
P

positive, continuous density

(Ways -+ > y() = (0.3,0.6,0.1,0.8,0.5,0.7)

o(P) = (2,4,1,6,3,5)

bounded density

“Top tree”
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