Binary search trees of permuton samples

Benoît Corsini, Victor Dubach, Valentin Féray

AofA 2024, Bath

Full version at arXiv:2403.03151

- I. BSTs and permutons
- II. Universality of the height
- III. Proof ideas

Binary Search Trees

A Binary Search Tree (BST) is a rooted labeled binary tree such that: for each vertex v, all labels of vertices in its left-subtree are smaller than that of v (resp. right-subtree, greater).

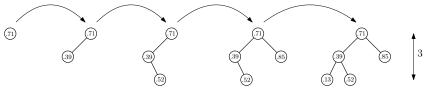
Binary Search Trees

A Binary Search Tree (BST) is a rooted labeled binary tree such that: for each vertex v, all labels of vertices in its left-subtree are smaller than that of v (resp. right-subtree, greater).

BST associated with a sequence of distinct numbers

Let $y = (y_1, \ldots, y_n)$ be a sequence of distinct numbers. We can construct a BST $\mathcal{T}\langle y \rangle$ by successively adding leaves with those labels.

Construction of $\mathcal{T}\langle y \rangle$ with y = (.71, .39, .52, .85, .13):



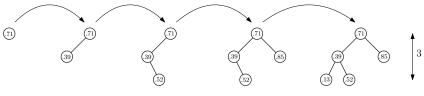
Binary Search Trees

A Binary Search Tree (BST) is a rooted labeled binary tree such that: for each vertex v, all labels of vertices in its left-subtree are smaller than that of v (resp. right-subtree, greater).

BST associated with a sequence of distinct numbers

Let $y = (y_1, \ldots, y_n)$ be a sequence of distinct numbers. We can construct a BST $\mathcal{T}\langle y \rangle$ by successively adding leaves with those labels.

Construction of $\mathcal{T}\langle y \rangle$ with y = (.71, .39, .52, .85, .13):

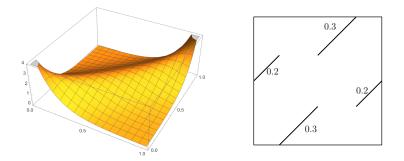


Rem: same shape as $\mathcal{T}\langle\sigma\rangle$ with $\sigma = (4, 2, 3, 5, 1)$.

Permutons

A *permuton* (or *copula*) is a probability measure μ on $[0, 1]^2$ with uniform marginals:

 $\forall t \in [0,1], \quad \mu([0,t] \times [0,1]) = \mu([0,1] \times [0,t]) = t.$



Permuton samples

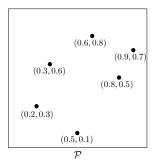
Let $\mathcal{P} = \{(x_1, y_1), \dots, (x_n, y_n)\} \subset \mathbb{R}^2$ with no common x- or y-coordinate.

Define a reordering $(x_{(1)}, y_{(1)}), \ldots, (x_{(n)}, y_{(n)})$ by $x_{(1)} < \cdots < x_{(n)}$. There exists a unique permutation $\sigma = \sigma \langle \mathcal{P} \rangle$ such that $(y_{(1)}, \ldots, y_{(n)})$ and $(\sigma(1), \ldots, \sigma(n))$ are in the same relative order.

Permuton samples

Let $\mathcal{P} = \{(x_1, y_1), \dots, (x_n, y_n)\} \subset \mathbb{R}^2$ with no common x- or y-coordinate.

Define a reordering $(x_{(1)}, y_{(1)}), \ldots, (x_{(n)}, y_{(n)})$ by $x_{(1)} < \cdots < x_{(n)}$. There exists a unique permutation $\sigma = \sigma \langle \mathcal{P} \rangle$ such that $(y_{(1)}, \ldots, y_{(n)})$ and $(\sigma(1), \ldots, \sigma(n))$ are in the same relative order.

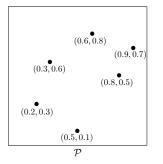


$$(y_{(1)}, \ldots, y_{(6)}) = (0.3, 0.6, 0.1, 0.8, 0.5, 0.7)$$

$$\sigma \langle \mathcal{P} \rangle = (2, 4, 1, 6, 3, 5)$$

Permuton samples

If \mathcal{P} is random i.i.d. under a permuton μ , this permutation σ_{μ}^{n} is a *permuton sample*.



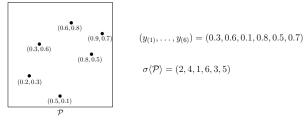
$$(y_{(1)}, \dots, y_{(6)}) = (0.3, 0.6, 0.1, 0.8, 0.5, 0.7)$$

 $\sigma \langle \mathcal{P} \rangle = (2, 4, 1, 6, 3, 5)$

Rem: if $\mu = \operatorname{Leb}_{[0,1]^2}$ then σ_{μ}^n is uniformly random.

Permuton samples

If $\mathcal P$ is random i.i.d. under a permuton $\mu,$ this permutation σ_{μ}^n is a permuton sample.

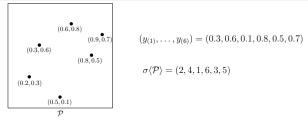


Rem: if $\mu = \text{Leb}_{[0,1]^2}$ then σ_{μ}^n is uniformly random. Motivation:

Continuous deformation of the uniform distribution

Permuton samples

If $\mathcal P$ is random i.i.d. under a permuton $\mu,$ this permutation σ_{μ}^n is a permuton sample.

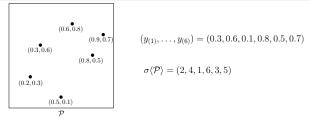


Rem: if $\mu = \text{Leb}_{[0,1]^2}$ then σ_{μ}^n is uniformly random. Motivation:

- Continuous deformation of the uniform distribution
- Highly non-parametric, wide range of distributions

Permuton samples

If $\mathcal P$ is random i.i.d. under a permuton $\mu,$ this permutation σ_{μ}^n is a permuton sample.



Rem: if $\mu = \text{Leb}_{[0,1]^2}$ then σ_{μ}^n is uniformly random. Motivation:

- Continuous deformation of the uniform distribution
- Highly non-parametric, wide range of distributions
- Insight on the links between random permutations and their limit permuton

BST of a point process

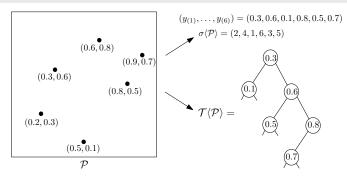
Let $\mathcal{P} = \{(x_1, y_1), \dots, (x_n, y_n)\} \subset \mathbb{R}^2$ with no common x- or y-coordinate.

Define a reordering $(x_{(1)}, y_{(1)}), \ldots, (x_{(n)}, y_{(n)})$ by $x_{(1)} < \cdots < x_{(n)}$. The BST of \mathcal{P} is defined as $\mathcal{T}\langle \mathcal{P} \rangle = \mathcal{T}\langle y_{(1)}, \ldots, y_{(n)} \rangle$.

BST of a point process

Let $\mathcal{P} = \{(x_1, y_1), \dots, (x_n, y_n)\} \subset \mathbb{R}^2$ with no common x- or y-coordinate.

Define a reordering $(x_{(1)}, y_{(1)}), \ldots, (x_{(n)}, y_{(n)})$ by $x_{(1)} < \cdots < x_{(n)}$. The BST of \mathcal{P} is defined as $\mathcal{T}\langle \mathcal{P} \rangle = \mathcal{T}\langle y_{(1)}, \ldots, y_{(n)} \rangle$.

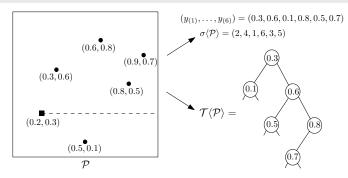


Rem: $\mathcal{T}\langle \mathcal{P} \rangle$ has the same shape as $\mathcal{T}\langle \sigma \langle \mathcal{P} \rangle \rangle$.

BST of a point process

Let $\mathcal{P} = \{(x_1, y_1), \dots, (x_n, y_n)\} \subset \mathbb{R}^2$ with no common x- or y-coordinate.

Define a reordering $(x_{(1)}, y_{(1)}), \ldots, (x_{(n)}, y_{(n)})$ by $x_{(1)} < \cdots < x_{(n)}$. The BST of \mathcal{P} is defined as $\mathcal{T}\langle \mathcal{P} \rangle = \mathcal{T}\langle y_{(1)}, \ldots, y_{(n)} \rangle$.

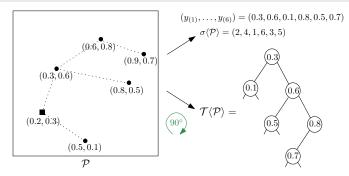


Rem: $\mathcal{T}\langle \mathcal{P} \rangle$ has the same shape as $\mathcal{T}\langle \sigma \langle \mathcal{P} \rangle \rangle$.

BST of a point process

Let $\mathcal{P} = \{(x_1, y_1), \dots, (x_n, y_n)\} \subset \mathbb{R}^2$ with no common x- or y-coordinate.

Define a reordering $(x_{(1)}, y_{(1)}), \ldots, (x_{(n)}, y_{(n)})$ by $x_{(1)} < \cdots < x_{(n)}$. The BST of \mathcal{P} is defined as $\mathcal{T}\langle \mathcal{P} \rangle = \mathcal{T}\langle y_{(1)}, \ldots, y_{(n)} \rangle$.



Rem: $\mathcal{T}\langle \mathcal{P} \rangle$ has the same shape as $\mathcal{T}\langle \sigma \langle \mathcal{P} \rangle \rangle$.

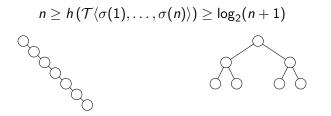
The height of a BST determines the complexity of operations such as lookup, addition or removal of data.

The height of a BST determines the complexity of operations such as lookup, addition or removal of data.

Q: Let σ be a (random) permutation. What is the height of $\mathcal{T}\langle \sigma \rangle$?

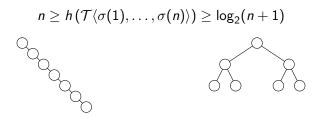
The height of a BST determines the complexity of operations such as lookup, addition or removal of data.

Q: Let σ be a (random) permutation. What is the height of $\mathcal{T}\langle\sigma\rangle$? In general:



The height of a BST determines the complexity of operations such as lookup, addition or removal of data.

Q: Let σ be a (random) permutation. What is the height of $\mathcal{T}\langle\sigma\rangle$? In general:



Depending on the law of σ , asymptotic results for $h(\mathcal{T}\langle\sigma\rangle)$?

Devroye '86

If
$$\sigma_n \sim \text{Unif}(\mathfrak{S}_n)$$
 then, as $n \to \infty$:

$$\frac{h(\mathcal{T}\langle \sigma_n \rangle)}{c^* \log n} \longrightarrow 1$$
in probability and in L^p for all $p \ge 1$, where $c^* \ge 2$ solves $c \log(2e/c) = 1$.

Devroye '86

If
$$\sigma_n \sim \text{Unif}(\mathfrak{S}_n)$$
 then, as $n \to \infty$:

$$\frac{h(\mathcal{T}\langle \sigma_n \rangle)}{c^* \log n} \longrightarrow 1$$
in probability and in L^p for all $p \ge 1$, where $c^* \ge 2$ solves $c \log(2e/c) = 1$.

Let $q \in [0, 1]$. The Mallows distribution $M_{n,q}$ is defined by: $\forall \sigma \in \mathfrak{S}_n, \quad M_{n,q}(\sigma) \propto q^{\mathrm{inv}(\sigma)}.$

Addario-Berry - Corsini '21

If
$$\sigma_n \sim M_{n,q_n}$$
 where $n(1-q_n)/\log n \to 0$, then:
$$\frac{h(\mathcal{T}\langle \sigma_n \rangle)}{c^*\log n} \longrightarrow 1$$

in probability and in L^p for all $p \ge 1$.

Devroye '86

If
$$\sigma_n \sim \text{Unif}(\mathfrak{S}_n)$$
 then, as $n \to \infty$:

$$\frac{h(\mathcal{T}\langle \sigma_n \rangle)}{c^* \log n} \longrightarrow 1$$
in probability and in L^p for all $p \ge 1$, where $c^* \ge 2$ solves

 $c\log(2e/c)=1.$

Let $\theta \geq 0$. The record-biased distribution $R_{n,\theta}$ is defined by: $\forall \sigma \in \mathfrak{S}_n, \quad R_{n,\theta}(\sigma) \propto \theta^{\operatorname{rec}(\sigma)}.$

Corsini '23

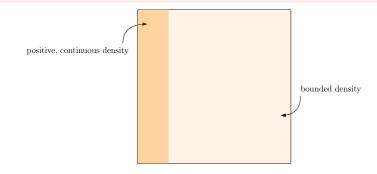
If $\sigma_n \sim R_{n,\theta}$ where $\theta \leq c^*$, then: $\frac{h(\mathcal{T}\langle \sigma_n \rangle)}{c^* \log n} \longrightarrow 1$ in probability and in L^p for all $p \geq 1$.

Corsini – D. – Féray '24

Let μ be a permuton with a bounded density on $[0,1]^2$, which is continuous and positive on a neighborhood of $\{0\} \times [0,1]$. Then:

$$rac{h\left(\mathcal{T}\langle\sigma_{\mu}^{n}
ight)
ight)}{c^{*}\log n}\longrightarrow1$$

as $n \to \infty$, in probability and in L^p for all $p \ge 1$.

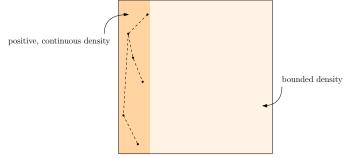


Corsini – D. – Féray '24

Let μ be a permuton with a bounded density on $[0,1]^2$, which is continuous and positive on a neighborhood of $\{0\} \times [0,1]$. Then:

$$\frac{h\left(\mathcal{T}\langle \sigma_{\mu}^{n}\rangle\right)}{c^{*}\log n}\longrightarrow 1$$

as $n \to \infty$, in probability and in L^p for all $p \ge 1$.



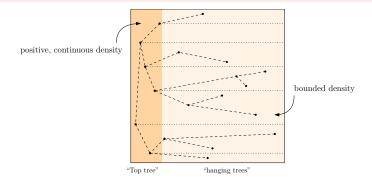
"Top tree"

Corsini – D. – Féray '24

Let μ be a permuton with a bounded density on $[0,1]^2$, which is continuous and positive on a neighborhood of $\{0\} \times [0,1]$. Then:

$$rac{h\left(\mathcal{T}\langle\sigma_{\mu}^{n}
ight)
ight)}{c^{st}\log n}\longrightarrow 1$$

as $n \to \infty$, in probability and in L^p for all $p \ge 1$.



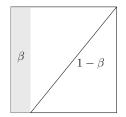
Corsini – D. – Féray '24

Let μ be a permuton with a bounded density on $[0,1]^2$, which is continuous and positive on a neighborhood of $\{0\} \times [0,1]$. Then:

$$\frac{h\left(\mathcal{T}\langle \sigma_{\mu}^{n}\rangle\right)}{c^{*}\log n}\longrightarrow 1$$

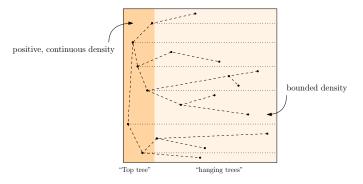
as $n \to \infty$, in probability and in L^p for all $p \ge 1$.

Necessity of assumptions:

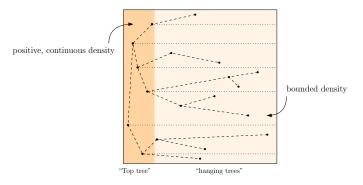


Height $\sim c_{\beta} \log n$ for some $c_{\beta} > c^*$

Height $\geq c\sqrt{n}$



 $h\left(\mathcal{T}_{ ext{top}}
ight) \, \leq \, h\left(\mathcal{T}\langle\sigma_{\mu}^{n}
angle
ight) \, \leq \, h\left(\mathcal{T}_{ ext{top}}
ight) + 1 + \max_{k} h\left(\mathcal{T}_{ ext{hanging}}^{k}
ight)$



$$h\left(\mathcal{T}_{ ext{top}}
ight) \,\leq\, h\left(\mathcal{T}\langle\sigma_{\mu}^{n}
ight
angle
ight) \,\leq\, h\left(\mathcal{T}_{ ext{top}}
ight) + 1 + \max_{k} h\left(\mathcal{T}_{ ext{hanging}}^{k}
ight)$$

Two steps:

1
$$h(\mathcal{T}_{top}) \sim c^* \log n;$$

2 $\max_k h\left(\mathcal{T}_{hanging}^k\right) = o(\log n).$

Two steps:

1
$$h(\mathcal{T}_{top}) \sim c^* \log n;$$

2 $\max_k h\left(\mathcal{T}_{hanging}^k\right) = o(\log n).$

This is mainly done via coupling techniques and deviation estimates.

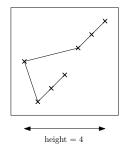
Two steps:

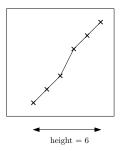
1
$$h(\mathcal{T}_{top}) \sim c^* \log n;$$

2 $\max_k h\left(\mathcal{T}_{hanging}^k\right) = o(\log n).$

This is mainly done via coupling techniques and deviation estimates.

Problem: taking out a point might double the height...





Definition

A *chain* in a tree T is a subset C of vertices, which are all on a common branch of T.

Definition

A *chain* in a tree T is a subset C of vertices, which are all on a common branch of T.

Lemma

Let $\mathcal{P}_{-} \subseteq \mathcal{P}_{+}$ be two point sets. If $C \subseteq \mathcal{P}_{+}$ is a chain in $\mathcal{T}\langle \mathcal{P}_{+} \rangle$, then $C \cap \mathcal{P}_{-}$ is a chain in $\mathcal{T}\langle \mathcal{P}_{-} \rangle$.

Definition

A *chain* in a tree T is a subset C of vertices, which are all on a common branch of T.

Lemma

Let $\mathcal{P}_{-} \subseteq \mathcal{P}_{+}$ be two point sets. If $\mathcal{C} \subseteq \mathcal{P}_{+}$ is a chain in $\mathcal{T}\langle \mathcal{P}_{+} \rangle$, then $\mathcal{C} \cap \mathcal{P}_{-}$ is a chain in $\mathcal{T}\langle \mathcal{P}_{-} \rangle$. If \mathcal{C} is a chain of maximal size in $\mathcal{T}\langle \mathcal{P}_{+} \rangle$ then:

$$h\left(\mathcal{T}\langle\mathcal{P}_{-}
ight
angle
ight)\,\geq\,h\left(\mathcal{T}\langle\mathcal{P}_{+}
ight
angle)-\left|\mathcal{C}\cap\left(\mathcal{P}_{+}\setminus\mathcal{P}_{-}
ight)
ight|.$$

Definition

A *chain* in a tree T is a subset C of vertices, which are all on a common branch of T.

Lemma

Let $\mathcal{P}_{-} \subseteq \mathcal{P}_{+}$ be two point sets. If $\mathcal{C} \subseteq \mathcal{P}_{+}$ is a chain in $\mathcal{T}\langle \mathcal{P}_{+} \rangle$, then $\mathcal{C} \cap \mathcal{P}_{-}$ is a chain in $\mathcal{T}\langle \mathcal{P}_{-} \rangle$. If \mathcal{C} is a chain of maximal size in $\mathcal{T}\langle \mathcal{P}_{+} \rangle$ then:

$$h\left(\mathcal{T}\langle\mathcal{P}_{-}
ight
angle
ight)\geq\,h\left(\mathcal{T}\langle\mathcal{P}_{+}
ight
angle
ight)-\left|\mathcal{C}\cap\left(\mathcal{P}_{+}\setminus\mathcal{P}_{-}
ight)
ight|.$$

If $\mathcal{P}_{-} \subseteq \mathcal{P} \subseteq \mathcal{P}_{+}$, we can apply this lemma twice: with $\mathcal{P}_{-} \subseteq \mathcal{P}$, and with $\mathcal{P} \subseteq \mathcal{P}_{+}$. Thus:

$$h(\mathcal{T}\langle \mathcal{P}_+
angle) - |\mathcal{C}_+ \cap (\mathcal{P}_+ \setminus \mathcal{P})| \le h(\mathcal{T}\langle \mathcal{P}
angle) \le h(\mathcal{T}\langle \mathcal{P}_-
angle) + |\mathcal{C} \cap (\mathcal{P} \setminus \mathcal{P}_-)|$$

negligible?

<u>Hyp</u>: μ has a density ρ , bounded above and below on $[0, \beta] \times [0, 1]$. <u>Goal</u>: height of the top tree. <u>Hyp</u>: μ has a density ρ , bounded above and below on $[0, \beta] \times [0, 1]$. <u>Goal</u>: height of the top tree.

1 "Poissonization": easier to work with a Poisson point process \mathcal{P} with intensity $n\rho$;

<u>Hyp</u>: μ has a density ρ , bounded above and below on $[0, \beta] \times [0, 1]$.

<u>Goal</u>: height of the top tree.

- **1** "Poissonization": easier to work with a Poisson point process \mathcal{P} with intensity $n\rho$;
- 2 "Thinning": there exist homogeneous Poisson point processes such that $\mathcal{P}_- \subseteq \mathcal{P} \subseteq \mathcal{P}_+$

 \longrightarrow estimate on $h(\mathcal{T}\langle \mathcal{P} \rangle)$;

<u>Hyp</u>: μ has a density ρ , bounded above and below on $[0, \beta] \times [0, 1]$.

<u>Goal</u>: height of the top tree.

- **1** "Poissonization": easier to work with a Poisson point process \mathcal{P} with intensity $n\rho$;
- 2 "Thinning": there exist homogeneous Poisson point processes such that $\mathcal{P}_- \subseteq \mathcal{P} \subseteq \mathcal{P}_+$

 \longrightarrow estimate on $h(\mathcal{T}\langle \mathcal{P} \rangle)$;

3 "dePoissonization" techniques.

<u>Hyp</u>: μ has a density ρ , bounded above and below on $[0, \beta] \times [0, 1]$.

<u>Goal</u>: height of the top tree.

- **1** "Poissonization": easier to work with a Poisson point process \mathcal{P} with intensity $n\rho$;
- 2 "Thinning": there exist homogeneous Poisson point processes such that $\mathcal{P}_- \subseteq \mathcal{P} \subseteq \mathcal{P}_+$

 \longrightarrow (good?) estimate on $h(\mathcal{T}\langle \mathcal{P} \rangle)$;

3 "dePoissonization" techniques.

Using Devroye's result:

If $\rho(x, y) = 1$, then σ_{ρ}^{n} is uniform and $h(\mathcal{T}\langle \sigma_{\rho}^{n} \rangle) \sim c^{*} \log n$.

Using Devroye's result:

If $\rho(\mathbf{x},\mathbf{y}) = f(\mathbf{x}) \cdot g(\mathbf{y})$, then σ_{ρ}^{n} is uniform and $h\left(\mathcal{T}\langle\sigma_{\rho}^{n}\rangle\right) \sim c^{*}\log n$.

Using Devroye's result:

If $\rho(\mathbf{x},\mathbf{y}) = f(\mathbf{x}) \cdot g(\mathbf{y})$, then σ_{ρ}^{n} is uniform and $h\left(\mathcal{T}\langle\sigma_{\rho}^{n}\rangle\right) \sim c^{*}\log n$.

 \longrightarrow if ρ on $[0,\beta] \times [0,1]$ is close to a function that only depends on y, then the top tree is close to the BST of a uniform permutation.

Using Devroye's result:

If $\rho(\mathbf{x}, \mathbf{y}) = f(\mathbf{x}) \cdot g(\mathbf{y})$, then σ_{ρ}^{n} is uniform and $h\left(\mathcal{T}\langle \sigma_{\rho}^{n} \rangle\right) \sim c^{*} \log n$.

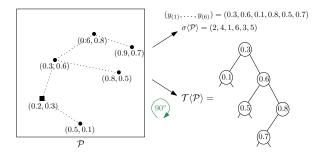
 \longrightarrow if ρ on $[0,\beta] \times [0,1]$ is close to a function that only depends on y, then the top tree is close to the BST of a uniform permutation.

■ Hanging trees: the largest vertical gap of the points on the left is O(log(n)/n), then deviation estimates for h(T^k_{hanging}) by comparison with longest monotone subsequences. Using Devroye's result:

If $\rho(\mathbf{x}, \mathbf{y}) = f(\mathbf{x}) \cdot g(\mathbf{y})$, then σ_{ρ}^{n} is uniform and $h\left(\mathcal{T}\langle \sigma_{\rho}^{n} \rangle\right) \sim c^{*} \log n$.

 \longrightarrow if ρ on $[0,\beta] \times [0,1]$ is close to a function that only depends on y, then the top tree is close to the BST of a uniform permutation.

- Hanging trees: the largest vertical gap of the points on the left is O(log(n)/n), then deviation estimates for h(T^k_{hanging}) by comparison with longest monotone subsequences.
- Another result: the subtree size convergence. The BST of a permuton sample is not "balanced" in the same way as the BST of a uniform permutation.



Thank you for your attention!

