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I. BSTs and permutons

Binary Search Trees

A Binary Search Tree (BST) is a rooted labeled binary tree such that:
for each vertex v , all labels of vertices in its left-subtree are smaller
than that of v (resp. right-subtree, greater).

BST associated with a sequence of distinct numbers

Let y = (y1, . . . , yn) be a sequence of distinct numbers. We can
construct a BST T ⟨y⟩ by successively adding leaves with those labels.

Construction of T ⟨y⟩ with y = (.71, .39, .52, .85, .13):

.71 .71 .71 .71 .71

.39 .39 .39 .39 .85.85

.52 .52 .52.13

3

Rem: same shape as T ⟨σ⟩ with σ = (4, 2, 3, 5, 1).
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I. BSTs and permutons

Permutons
A permuton (or copula) is a probability measure µ on [0, 1]2 with
uniform marginals:

∀t ∈ [0, 1], µ([0, t]×[0, 1]) = µ([0, 1]×[0, t]) = t.
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0.2

0.2



I. BSTs and permutons

Permuton samples

Let P = {(x1, y1), . . . , (xn, yn)} ⊂ R2 with no common x- or y-
coordinate.
Define a reordering (x(1), y(1)), . . . , (x(n), y(n)) by x(1) < · · · < x(n).
There exists a unique permutation σ = σ⟨P⟩ such that
(y(1), . . . , y(n)) and (σ(1), . . . , σ(n)) are in the same relative order.

(0.2, 0.3)

(0.3, 0.6)

(0.5, 0.1)

(0.6, 0.8)

(0.8, 0.5)

(0.9, 0.7)

σ⟨P⟩ = (2, 4, 1, 6, 3, 5)

P

(y(1), . . . , y(6)) = (0.3, 0.6, 0.1, 0.8, 0.5, 0.7)

Rem: if µ = Leb[0,1]2 then σn
µ is uniformly random.
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Permuton samples

If P is random i.i.d. under a permuton µ, this permutation σn
µ is a

permuton sample.
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Motivation:
Continuous deformation of the uniform distribution

Highly non-parametric, wide range of distributions
Insight on the links between random permutations and their
limit permuton
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I. BSTs and permutons

BST of a point process

Let P = {(x1, y1), . . . , (xn, yn)} ⊂ R2 with no common x- or y-
coordinate.
Define a reordering (x(1), y(1)), . . . , (x(n), y(n)) by x(1) < · · · < x(n).
The BST of P is defined as T ⟨P⟩ = T ⟨y(1), . . . , y(n)⟩.
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σ〈P〉 = (2, 4, 1, 6, 3, 5)

P

T 〈P〉 =

0.3

0.60.1

0.80.5

0.7

(y(1), . . . , y(6)) = (0.3, 0.6, 0.1, 0.8, 0.5, 0.7)

Rem: T ⟨P⟩ has the same shape as T ⟨σ⟨P⟩⟩.
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Rem: T ⟨P⟩ has the same shape as T ⟨σ⟨P⟩⟩.



II. Universality of the height

The height of a BST determines the complexity of operations such
as lookup, addition or removal of data.

Q: Let σ be a (random) permutation. What is the height of T ⟨σ⟩?

In general:

n ≥ h (T ⟨σ(1), . . . , σ(n)⟩) ≥ log2(n + 1)

Depending on the law of σ, asymptotic results for h (T ⟨σ⟩)?
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II. Universality of the height

Devroye ’86

If σn ∼ Unif (Sn) then, as n → ∞:
h (T ⟨σn⟩)
c∗ log n

−→ 1

in probability and in Lp for all p ≥ 1, where c∗ ≥ 2 solves
c log(2e/c) = 1.

Let q ∈ [0, 1]. The Mallows distribution Mn,q is defined by:

∀σ ∈ Sn, Mn,q(σ) ∝ qinv(σ).

Addario-Berry – Corsini ’21

If σn ∼ Mn,qn where n(1 − qn)/ log n → 0, then:

h (T ⟨σn⟩)
c∗ log n

−→ 1

in probability and in Lp for all p ≥ 1.
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II. Universality of the height

Devroye ’86

If σn ∼ Unif (Sn) then, as n → ∞:
h (T ⟨σn⟩)
c∗ log n

−→ 1

in probability and in Lp for all p ≥ 1, where c∗ ≥ 2 solves
c log(2e/c) = 1.

Let θ ≥ 0. The record-biased distribution Rn,θ is defined by:

∀σ ∈ Sn, Rn,θ(σ) ∝ θrec(σ).

Corsini ’23
If σn ∼ Rn,θ where θ ≤ c∗, then:
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II. Universality of the height

Corsini – D. – Féray ’24

Let µ be a permuton with a bounded density on [0, 1]2, which is
continuous and positive on a neighborhood of {0} × [0, 1]. Then:

h
(
T ⟨σn

µ⟩
)

c∗ log n
−→ 1

as n → ∞, in probability and in Lp for all p ≥ 1.

positive, continuous density

bounded density
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II. Universality of the height

Corsini – D. – Féray ’24

Let µ be a permuton with a bounded density on [0, 1]2, which is
continuous and positive on a neighborhood of {0} × [0, 1]. Then:

h
(
T ⟨σn

µ⟩
)

c∗ log n
−→ 1

as n → ∞, in probability and in Lp for all p ≥ 1.

Necessity of assumptions:

β
1− β

Height ∼ cβ log n for some cβ > c∗

3/4

1/4

Height ≥ c
√
n



III. Proof ideas

“Top tree” “hanging trees”

positive, continuous density

bounded density

h (Ttop) ≤ h
(
T ⟨σn

µ⟩
)
≤ h (Ttop) + 1 +max

k
h
(
T k

hanging

)

Two steps:
1 h (Ttop) ∼ c∗ log n;

2 maxk h
(
T k

hanging

)
= o (log n).
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This is mainly done via coupling techniques and deviation estimates.

Problem: taking out a point might double the height...

height = 4 height = 6



III. Proof ideas

Two steps:
1 h (Ttop) ∼ c∗ log n;

2 maxk h
(
T k

hanging

)
= o (log n).

This is mainly done via coupling techniques and deviation estimates.

Problem: taking out a point might double the height...

height = 4 height = 6



III. Proof ideas

Definition
A chain in a tree T is a subset C of vertices, which are all on a
common branch of T .

Lemma
Let P− ⊆ P+ be two point sets.
If C ⊆ P+ is a chain in T ⟨P+⟩, then C ∩ P− is a chain in T ⟨P−⟩.
If C is a chain of maximal size in T ⟨P+⟩ then:

h (T ⟨P−⟩) ≥ h (T ⟨P+⟩)− |C ∩ (P+ \ P−)| .

If P− ⊆ P ⊆ P+, we can apply this lemma twice: with P− ⊆ P,
and with P ⊆ P+. Thus:

h (T ⟨P+⟩)−|C+∩(P+\P)|
negligible?

≤ h (T ⟨P⟩) ≤ h (T ⟨P−⟩)+|C∩(P\P−)|
negligible?
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III. Proof ideas

Hyp: µ has a density ρ, bounded above and below on [0, β]× [0, 1].

Goal: height of the top tree.

1 “Poissonization”: easier to work with a Poisson point process P
with intensity nρ;

2 “Thinning”: there exist homogeneous Poisson point processes
such that P− ⊆ P ⊆ P+

−→ estimate on h (T ⟨P⟩);
3 “dePoissonization” techniques.
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1 “Poissonization”: easier to work with a Poisson point process P
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III. Proof ideas

Using Devroye’s result:

If ρ(x , y) = 1, then σn
ρ is uniform and h

(
T ⟨σn

ρ⟩
)
∼ c∗ log n.

−→ if ρ on [0, β]× [0, 1] is close to a function that only depends on
y , then the top tree is close to the BST of a uniform permutation.

Hanging trees: the largest vertical gap of the points on the left
is O (log(n)/n), then deviation estimates for h

(
T k

hanging

)
by

comparison with longest monotone subsequences.

Another result: the subtree size convergence. The BST of a
permuton sample is not “balanced” in the same way as the BST
of a uniform permutation.
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is O (log(n)/n), then deviation estimates for h

(
T k

hanging

)
by

comparison with longest monotone subsequences.

Another result: the subtree size convergence. The BST of a
permuton sample is not “balanced” in the same way as the BST
of a uniform permutation.
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(0.2, 0.3)

(0.3, 0.6)

(0.5, 0.1)

(0.6, 0.8)

(0.8, 0.5)

(0.9, 0.7)

σ⟨P⟩ = (2, 4, 1, 6, 3, 5)

P

T ⟨P⟩ =

0.3

0.60.1

0.80.5

0.7

(y(1), . . . , y(6)) = (0.3, 0.6, 0.1, 0.8, 0.5, 0.7)

90◦

Thank you for your attention!

“Top tree” “hanging trees”

positive, continuous density

bounded density


