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Average Case Analysis in Anal. Comb.

C ... class of combinatorial objects

cn = #Cn ... number of objects in C of size n, cn = [zn]C(z)

C(z) =
∑
n≥0

cnz
n =

∑
ω∈C

zsize(ω) ... GF of C

cn,k = #Cn,k ... number of objects in Cn, where some parameter of

interest has value k

Xn ... random variable with P[Xn = k] =
cn,k

cn

C(z, u) =
∑

n,k≥0

cn,kz
nuk =

∑
n≥0

(
E[uXn]

)
cnz

n ... bivariate GF

E[uXn] =
∑
k≥0

cn,k

cn
uk =

[zn]C(z, u)

[zn]C(z,1)
EXn =

[zn]Cu(z, u)|u=1

[zn]C(z,1)



Limiting Distribution

Weak Limit

A sequence of random variables Yn converges weakly to a random

variable Y , if

EG(Yn) → EG(Y )

for all bounded functionals G. Notation: Yn → Y .

Equivalently we have

E eitYn → E eitY (for all real t)

or

P[Yn ≤ t] → P[Y ≤ t]

(for all continuity points of the distribution function F (t) = P[Y ≤ t]).



Limiting Distribution

Weak Limit with Moments

Theorem (the Moment Method)

Suppose that all moments E[Y r], r ≥ 1, of a random variable exist

and determine uniquely the distribution of Y . Furthermore let Yn be a

sequence of random variables. If for all integers r ≥ 1

E[Y r
n ] → E[Y r]

then Yn converges to Y weakly: Yn → Y



Examples

Height in binary trees (Flajolet and Odlyzko, 1982)

Hn ... height of a binary tree of size n

Yn =
Hn

2
√
n

... normalized height

E[Y r
n ] → µr = r(r − 1)Γ(r/2)ζ(r) =⇒ Hn

2
√
n

→ Y .

µr are the moments of the theta distribution Y with distribution

function

F (t) =
∑
k∈Z

(1− k2t2)e−k2t2

and density

f(t) = 4t
∑
k≥1

k2(2k2t2 − 3)e−k2t2



Examples

Selected Problems

• Path length in binary trees (Takács, 1992, 1994)

• Cost of linear probing hashing (Flajolet, Plobete, Viola, 1998)

• Maximum degree in triangulations (Gao and Wormald, 2000)

• etc. (many many examples!!!)



Moment Method for Central Limit Theorems

Moments of the Standard Normal Distribution N(0,1).

µ
(N)
2r = (2r − 1)!!, µ

(N)
2r+1 = 0

Moment Method for a sequence of random variables Xn:

E (Xn − EXn)
r =

r∑
ℓ=0

(−1)ℓ
(r
ℓ

)
E[Xr−ℓ

n ](EXn)
ℓ ∼ µ

(N)
r (VarXn)

r/2.

=⇒ Xn − EXn√
VarXn

→ N(0,1)

Several cancellations of asymptotic leading terms !!



Moment Method for Central Limit Theorems

Asymptotics for Centered Moments [Hwang et al.]

E (Xn − EXn)r

• Recursive random variable: e.g. Xn ≡ XIn +Xn−1−In + tn,

(In u.d. on {0,1, . . . , n− 1}

• Recurrence for scaled moment generating function E[et(Xn−EXn)]

• Asymptotic transfer results

• Asymptotics for centered moments

This method is technically highly involved !!



Hwang’s Quasi-Power-Theorem

Theorem [Hwang]

Suppose that Xn is a sequence of random variables that satisfies

E[uXn] = enf(u)+g(u)+O(1/n)

uniformly for complex u with |u − 1| < η and analytic functions f(u)

and g(u) with f(1) = g(1) = 0, f ′(1) > 0, and f ′(1)+ f ′′(1) > 0. Then

we have

Xn − E(Xn)√
V(Xn)

→ N (0,1),

where

E(Xn) = f ′(1)n+O(1) and V(Xn) = (f ′′(1) + f ′(1))n+O(1).



Applications of Hwang’s Quasi-Power-Theorem

Moving Singularities

C(z, u) ≈ h(u)F (z/ρ(u)) with F (x) singular at x = 1

(e.g. F (x) =
√
1− x)

=⇒ [zn]C(z, u) ∼ fnh(u)ρ(u)
−n

=⇒ E[uXn] =
[zn]C(z, u)

[zn]C(z,1)
∼

h(u)

h(1)

(
ρ(1)

ρ(u)

)n

(System) of Functional Equations

Unique combinatoral decompostions lead to recurrence relations that

rewrite into a (system of) functional equation(s) for C(z, u)

C(z, u) = G(z, u, C(z, u))

and leads “automatically” to moving singularities (and to a CLT).



Pattern Occurences in Trees

Occurence of a pattern M in a labelled tree
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Pattern Occurences in Trees

Partition of trees in classes ( ... out-degree different from 2)
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Pattern Occurences in Trees

Recurrences A3 = xA0A2 + xA0A3 + xA0A4

a3

a0
a2 a3

a4

= + +
a0 a0

Aj(x) =
∑
n,k

aj;n
xn

n!

aj;n ... number of trees of size n in class j



Pattern Occurences in Trees

Recurrences A3 = xuA0A2 + xuA0A3 + xuA0A4

a3

a0
a2 a3

a4

= + +
a0 a0

Aj(x, u) =
∑
n,k

aj;n,m
xn

n!
um

aj;n,m ... number of trees of size n in class j with m occurences of M



Pattern Occurences in Trees

A0 = A0(x, u) = x+ x
10∑
i=0

Ai + x
∞∑

n=3

1

n!

 10∑
i=0

Ai

n

,

A1 = A1(x, u) =
1

2
xA2

0,

A2 = A2(x, u) = xA0A1,

A3 = A3(x, u) = xA0(A2 +A3 +A4)u,

A4 = A4(x, u) = xA0(A5 +A6 +A7 +A8 +A9 +A10)u
2,

A5 = A5(x, u) =
1

2
xA2

1u,

A6 = A6(x, u) = xA1(A2 +A3 +A4)u
2,

A7 = A7(x, u) = xA1(A5 +A6 +A7 +A8 +A9 +A10)u
3,

A8 = A8(x, u) =
1

2
x(A2 +A3 +A4)

2u3,

A9 = A9(x, u) = x(A2 +A3 +A4)(A5 +A6 +A7 +A8 +A9 +A10)u
4,

A10 = A10(x, u) =
1

2
x(A5 +A6 +A7 +A8 +A9 +A10)

2u5.



Pattern Occurences in Trees

Result for M =

Central limit theorem for (Xn − µn)/
√
σ2n) with

µ =
5

8e3
= 0.0311169177 . . .

and

σ2 =
20e3 +72e2 +84e− 175

32e6
= 0.0764585401 . . . .

Theorem [Chyzak+D.+Klausner 2008]

For every tree pattern M the number of it occurences Xn in a

random (labelled) tree of size n satisfies a central limit theorem with

(asymptotically) linear mean and variance.



Subgraph Counts in Subcritical Graphs

Examples of subcritical graphs are series-parallel graphs or outer-

planar graphs. They behave makroscopically like trees (they have the

CRT as a scaling limit).

Theorem [D.+Ramos+Rue 2017]

Let G be a given subcritical class of (labelled) graphs. Then for every

given graph H the number of it occurences Xn (as subgraphs) in a

graph G of size n satisfies a central limit theorem with (asymptoti-

cally) linear mean and variance.

Here we need an infinite system of equations (that can be analyzed

since the Jacobian of the system is a compact operator).



Factorial Moments

Problem.

What can we do if we expect a central limit theorem but the bivari-

ate generating function C(z, u) cannot be described in a proper way

(explicitly or implicitly)?

Observation

Usually we can compute (factorial) moments.



Factorial Moments

(x)r = x(x− 1)(x− 2) · · · (x− r +1) ... falling factorials

Factorial Moments

E (X)r = E[X(X − 1)(X − 2) · · · (X − r +1)] =
∂r

∂ur
E[uX]

∣∣∣∣∣
u=1

They can be computed by the Bivariate generating functions

C(z, u) =
∑

n,k≥0

cn,kz
nuk =

∑
n≥0

(
E[uXn]

)
cnz

n

=⇒ E[(Xn)r] =
[zn] ∂r

∂urC(z, u)|u=1

[zn]C(z,1)



Factorial Moments

... or by a

Combinatorial interpretation

Suppose that the parameter of interest is a counting parameter, e.g.

the number of leaves in a tree or the number of triangles in a graph.

The factorial moment

E[(Xn)r] =
1

cn

∑
k≥0

k(k − 1) · · · (k − r +1)cn,k

is also the number of objects of size n, where r different appear-

ances of the parameter (that is considered) are marked (and the

order or marks is important) divided by the number of objects of

size n.



Factoral Moments of the Binomial Distr.

Xn ... Bi(n, p),
Xn − np√
p(1− p)n

→ N(0,1).

EuXn = (1− p+ up)n

E[(Xn)r] =
∂r

∂ur
(1− p+ up)n

∣∣∣∣∣
u=1

= n(n− 1) · · · (n− r +1)pr ∼ (np)re−r2/(2n)

for r = O(
√
n)

QUESTION. Suppose that E (Xn)r ∼ (np)re−r2/(2n) for r = O(
√
n) .

Does it follow that
Xn − np√
p(1− p)n

→ N(0,1) ?



Factorial Moment Method by Gao and Wormald

E[(X)r] = E[X(X − 1) · · · (X − r +1)] ... r-th factorial moment

Lemma [Gao+Wormald 2004]

Suppose that E[Xn] = µn → ∞,Var[Xn] = σ2n = o(µ2n/ log
4 n), µn =

o(σ3n) and (Xn)n≥1 ≥ 0 satisfies

E [(Xn)r] ∼ µrn exp

(
r2

2

σ2n − µn

µ2n

)

uniformly for all r in the range cµn/σn ≤ r ≤ c′µn/σn for some constants

c′ > c > 0. Then

Xn − µn

σn
→ N (0,1) .

Remark. Xn ∼ Bi(n, p), µn = np, σ2n = p(1− p)n, r = Θ(
√
n).



Quasi-Powers and Factorial Moments

Lemma

Suppose that Xn is a sequence of random variables that satisfies

E[uXn] = enf(u)+g(u)+O(1/n)

uniformly for complex u with |u − 1| < η and analytic functions f(u)

and g(u) with f(1) = g(1) = 0 and f ′(1) > 0. Then we have

E[(Xn)r] ∼ (nf ′(1))r exp

(
r2

2n

f ′′(1)

(f ′(1))2

)

uniformly for 0 ≤ r ≤ C
√
n, where C > 0 is an arbitrary constant.

Remark. This is consistent with Hwang’s Quasi-Power-Theorem.



Quasi-Powers and Factorial Moments

Proof

E[(Xn)r] = r!
1

2πi

∫
γ

E[uXn]

(u− 1)r+1
du,

γ is a cycle with center 1 and radius ρ = r/(nf ′(1)): u = 1+ ρeiφ

E[(Xn)r] =
r!

2π

∫ π

−π
enf

′(1)ρeiφ+n
2f

′′(1)ρe2iφ+O(nρ3+ρ+1/n)ρ−re−irφ dφ

= (nf ′(1))re
r2
2n

f ′′(1)
(f ′(1))2 r!

2πrre−r

×
∫ π

−π
e
r(eiφ−1−iφ)+r2

2n
f ′′(1)

(f ′(1))2
(e2iφ−1)+O( r

3

n2
+r+1

n )
dφ.

The last integral evaluates (uniformly for r ≤ C
√
n) by Laplace’s

method∫ π

−π
e
r(eiφ−1−iφ)+r2

2n
f ′′(1)

(f ′(1))2
(e2iφ−1)+O( r

3

n2
+r+1

n )
dφ ∼

∫ ∞

−∞
e−

r
2φ

2
dφ =

√
2π

r
.



Applications of the Factorial Moment Method

• Gao+Wormald 2004: submap counts in random planar triangula-

tions

• Cai+Devroye 2017: subtrees in conditional Galton-Watson trees

• Hitczenko+Wormald 2023+: balls in bins in a classical allocation

scheme (multivariate version)

• Ojeda+Holmgren+Janson 2023+: Fringe trees for random trees

with given vertex degrees (multivariate version)

• NEW: D.+Hainzl+Wormald 2024+: pattern counts in random

planar maps



Planar Maps

A planar map is a connected planar graph, possibly with loops and

multiple edges, together with an embedding in the plane.

A map is rooted if a vertex v and an edge e incident with v are dis-

tinguished, and are called the root-vertex and root-edge, respectively.

The face to the right of e is called the root-face and is usually taken

as the outer face.



Planar Maps

Mn ... number of rooted maps with n edges [Tutte]

Mn =
2(2n)!

(n+2)!n!
3n

The proof is given with the help of generating functions and the so-

called quadratic method.

Asymptotics:

Mn ∼
2
√
π
· n−5/2 12n

Generating Function:

M(z) =
∑
n≥0

Mnz
n = −

1

54z2

(
1− 18z − (1− 12z)3/2

)



Planar Maps

Quadratic Method

Mn,k ... number of maps with n edges and outer-face-valency k

M(z, v) =
∑
n,k

Mn,kv
kzn

M(z, v) = 1+ zv2M(z, v)2 + vz
vM(z, v)−M(z,1)

v − 1
.

By binding z and v by a proper function v = v(z) this equation can

be solved and we get

M(z) = M(z,1)−
1

54z2

(
1− 18z − (1− 12z)3/2

)
.



Random Planar Maps

Picture by Nicolas Curien



Classes of Planar Maps

• Bipartite / Eulerian planar maps

• Quadrangulations / 4-regular planar maps

• Triangulations / 3-regular planar maps

• 2-connected planar maps

• 3-connected planar maps

• ...



Scaling Limit of Planar Maps

Mn ... random planar map with n edges

Qn ... random quadrangulation with n edges

Theorem [Miermont 13, Le Gall 13, Bettinelli+Jacob+Miermont 14]

We have in distribution for the Gromov-Hausdorff topology(
9

8n

)1/4
Mn → S,

(
9

8n

)1/4
Qn → S,

where S denotes the Brownian Map.

In particular, the typical distance of two vertices is of order n1/4



Local Limit of Planar Maps

Ur(M) ... rooted map induced by those vertices of the rooted map M

with distance < r from the root vertex of M .

Theorem [Ménard+Nolin 2014, Stephenson 2016]

We have for any rooted map M and for all r > 0

lim
n→∞P[Ur(Mn) = M ] = P[Ur(s) = M ],

where s denotes the Uniform Infinite Planar Map.

Remark. There are similar results for triangulations by [Angel+Schramm

2003], for quadrangulations by Krikum 2005+] and by [Curien+Ménard+

Miermont 2013], and for bipartite maps by [Björnberg+Stefánsson

2014].



Local Limit of Planar Maps

M•
n ... random planar map with n edges and a randomly chosen

distinguished vertex v

Uv
r (M) ... rooted map induced by those vertices of M the with dis-

tance < r from the vertex v (of M)

Corollary [D.+Stufler 2019]

We have for every vertex rooted map M̃ and for all r > 0

lim
n→∞P[Uv

r (M•
n) = M̃ ] = P[Uv

r (s
∗) = M̃ ],

where s∗ denotes the corresponding Benjamini-Schramm limit.



Pattern in a Planar Map

A pattern P in a planar map M is a planar map, if M can be con-

structed by adding successively faces to the outer face of P and to the

outer faces of the appearing maps.

M

Simplest pattern: face of valency r

Coloured pictures by Eva-Maria Hainzl



Local Limit of Planar Maps

P ... planar pattern

X
(P )
n ... number of occurrences of P in Mn

Theorem [D.+Stufler 2019]

There exists c(P ) > 0 with

EX
(P )
n ∼ c(P )n.

Problem. What can be said about the difference X
(P )
n − EX

(P )
n ?

Is there always a Central Limit Theorem ?



Results

• Submaps counts of a 3-connected map N in 2-connected triangu-

lations satisfy a CLT. [Gao+Wormald 2004]

• The number of faces of degree r in (2-connected) random planar

maps satisfy a CLT. [D+Panagiotou 2013, Collet+D.+Klausner+Kok

2019]

• Double-triangles in random planar maps [D.+Yu 2018]

• NEW: pattern with simply boundary [D.+Hainzl+Wormald]



Methods

Proof Methods for CLT

• Bijective method with mobiles (restricted to face valencies, no

other pattern, no connectivity assumptions): Quasi-Power-Th.

• Quadratic method (face valencies, pattern without self-intersections,

several map classes): Quasi-Power-Th.

• NEW; Gao-Wormald-Moment-Method with “Quasi-Power-

Preprocessing” (pattern with simple boundary)



Bijective Method

Theorem 1 [Collet+D.+Klausner 2019]

Ω ... an arbitrary set of positive integers, not a subset of {1,2}

MΩ ... planar rooted maps such that all face valencies are in Ω

X
(r)
n ... number of faces of valency r in a random planar map in

MΩ. (r ∈ Ω)

Then we have

E[X(r)
n ] = µrn+O(1), Var[X(k)

n ] = σ2rn+O(1)

for certain constants µr > 0, σ2r ≥ 0, and

X
(r)
n − E[X(r)

n ]
√
n

→ N(0, σ2r ) .



Bijective Method

Examples.

Ω = {3} ... triangulations

Ω = {4} ... quadrangulations

Ω = 2N ... bipartiite maps

Ω = N ... all maps

Ω = P = {2,3,5,7, . . .} ... all face valencies are prime numbers

...



Bijective Method

Remark.

MΩ,n ... number of maps in MΩ with n edges

Then there exist positive constants cΩ and γΩ with

MΩ,n ∼ cΩn−5/2γnΩ, n ≡ 0 mod d ,

where d = gcd{i : 2i ∈ Ω} if Ω contains only even numbers, otherwise

d = 1.

The exponent −5/2 is universal.



Mobiles

Definition.

A mobile is a planar tree – that is, a map with a single face –

such that there are two kinds of vertices (black and white) with

no white-white edges, and black vertices additionally have so-called

“legs” attached to them (which are not considered edges), whose

number equals the number of white neighbor vertices.

A bipartite mobile is a mobile without black–black edges.

The degree of a black vertex is the number of half-edges plus the

number of legs that are attached to it.

A mobile is called rooted if an edge is distinguished and oriented.



Mobiles



Mobiles

Theorem [Cori+Vauquelin, Schaeffer, Bouttier+Di Francesco+Guitter,
Bernardi+Fusy, Collet+Fusy, ...]

There is a bijection between mobiles that contain at least one black
vertex and pointed planar maps, where white vertices in the mobile
correspond to non-pointed vertices in the equivalent planar map, black
vertices correspond to faces of the map, and the degrees of the black
vertices correspond to the face valencies.

This bijection induces a bijection on the edge sets so that the number
of edges is the same. (Only the pointed vertex of the map has no
counterpart.)

Similarly, rooted mobiles that contain at least one black vertex are in
bijection to rooted and vertex-pointed planar maps.

Finally, bipartite mobiles with at least two vertices correspond to bi-
partite maps with at least two vertices, in the unrooted as well as in
the rooted case.



Mobiles



Mobiles and Maps

• L(t, z, x1, x2, . . .) ... mobiles rooted at a black vertex and where an
additional edge is attached to the black vertex (the xi “count” the
number of black vertices of degree i)

• Q(t, z, x1, x2, . . .) ... mobiles rooted at a univalent white vertex,
which is not counted,

• R(t, z, x1, x2, . . .) ... mobiles rooted at a white vertex and where an
additional edge is attached to the root vertex.

Bℓ,m =
(l+2m

l,m,m

)
B

(+1)
ℓ,m =

(l+2m+1

l,m,m+1

)
Bℓ,m =

l+m

l+2m

(l+2m

l,m,m

)



Mobiles and Maps

Lemma

The generating functions L = L(t, z, x1, x2, . . .), Q = Q(t, z, x1, x2, . . .),
and R = R(t, z, x1, x2, . . .) satisfy the system of equations

L = z
∑

ℓ,m x2m+ℓ+1Bℓ,mLℓRm,

Q = z
∑

ℓ,m xℓ+2m+2B
(+1)
ℓ,m LℓRm,

R = tz
1−Q.

Let T = T (t, z, x1, x2, . . .) be given by

T = 1+
∑
ℓ,m

x2m+ℓBℓ,mLℓRm,

Then the generating function M = M(t, z, x1, x2, . . .) of rooted maps
satisfies

∂M

∂t
= R/z − t+ T ,

where the variable t corresponds to the number of vertices, z to the
number of edges, and xi, i ≥ 1, to the number of faces of valency i.



Extensions and Limitation

Extensions

• Local limit theorems

Limitations

• There is no control on adjacent vertices. Thus, we cannot handle

more complicated patterns.

• There is no control on the level of connectivity. We cannot

handle 2-connected or 3-connected maps.



Quadratic Method

Theorem 2 [D.+Panagiotou 2013]

X
(r)
n ... number of faces of valency r in a random planar map with

n edges or in a random 2-connected map with n edges.

Then we have

E[X(r)
n ] = µrn+O(1), Var[X(r)

n ] = σ2rn+O(1)

with constants µr > 0, σ2r and

X
(r)
n − E[X(r)

n ]

(Var[X(r)
n ])1/2

→ N(0,1) .

Remark. The same result holds for pure r-gons (all vertices are

different).



Quadratic Method

Generating functions

Mn,k ... number of maps with n edges and outer-face-valency k

M(z, v) =
∑
n,k

Mn,kv
kzn

M(z, v) = 1+ zv2M(z, u)2 + vz
vM(z, v)−M(z,1)

v − 1

v ... “catalytic variable”



Analytic Quadratic Method

(Crucial) Lemma

Suppose that we have a catalytic equation of the form

P (z, v,u,M(z, v,u),M1(z,v)) = 0

such that for u = 1 the solution M1(z, 1) has a singular behaviour of

the form

M1(z, 1) = g(z) + h(z)

(
1−

z

ρ

)3/2
Then (under weak technical conditions) we have

M1(z,u) = g̃(z,u) + h̃(z,u)

(
1−

z

ρ̃(u)

)3/2
with g̃(z, 1) = g(z), h̃(z, 1) = h(z), and ρ̃(1) = ρ (for u in a small

neighborhood of 1).



Faces of given valency

Mn,k,ℓ ... number of maps with n edges, root face valency k and ℓ

non-root faces of valency r

M(z, v, u) =
∑

n,k,ℓ≥0

Mn,k,lz
nvkuℓ,

Lemma [D.+Panagiotou, 2013]

M(z, v, u) = 1+ zv2M(z, v, u)2 + zv
M(z,1, u)− vM(z, v, u)

1− v

+z(u− 1)v−r+2

M(z, v, u)−
r−2∑
ℓ=0

Mℓ(z, u)v
ℓ

 ,

where Mℓ(z, u) = [vℓ]M(z, v, u).

Remark. The same method works for 2-connected planar maps.



Double-Triangles

Theorem 3 [D.+Yu 2018]

Xn ... number of double-triangles in a random planar map with n

edges (counted by the number or edges where both adjacent faces

have valency 3).

Then we have

E[Xn] = µn+O(1), Var[Xn] = σ2n+O(1)

with constants µ > 0, σ2 > 0 and

Xn − E[Xn]

(Var[Xn])1/2
→ N(0,1) .



Double-Triangles

Dn,k,ℓ ... number of maps with n edges, root face valency k and ℓ

edges outside the root face, where both adjacent faces are triangles

D(z, v, u) =
∑

n,k,ℓ≥0

Dn,k,ℓz
nvkuℓ,

Lemma

D = 1+ zv2D2 +D⋫ +D▷,

D⋫ = zv
D(1)− vD

1− v
− zv−1

(
D − 1− v[v1]D

)
,

D▷ = zv−1
(
D − 1− v[v1]D

)
+ (u− 1)

[
z2vD − z2v(u− 1)DD▷

+ (u+1)
(
zv−1D▷ − z[v1]D▷

)
− (u− 1)P (D▷)

]
with

P (D▷) = z2
D▷(1)− vD▷

1− v
−z2D▷(1)−z2v−2

(
D▷ − v[v1]D▷ − v2[v2]D▷

)
.



Double-Triangles
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Double-Triangles

Proof strategy

• Combinatorics leads to a system of catalytic equations

• Extension of quadratic method

• This leads to a central limit theorem with the help of the Crucial

Lemma and the Quasi-Power-Theorem.



General Pattern

P ... pattern

X
(P )
n ... number of occurences of P in a random planar map of size n

Mn ... number ob maps of size n

M
(r)
n ... number of maps of size n with r distinguished (and ordered)

occurences of P

Then

E[(X(P )
n )r] =

M
(r)
n

Mn
,

where E[(X)r] = E[X(X − 1) · · · (X − r + 1)] denotes the r-th factorial

moment.



General Pattern

• Delete interior edges of pattern

• Count maps with distinguished pure polygon face

• Insert interior edges back

M M



Moment Method

M(z, v, u) ... generating function, where u counts pure 4-gons

E[X(P )
n ] =

[zn] 2 z2 ∂uM(z, v, u)

[zn]M(z, v, u)

∣∣∣∣∣
v=u=1

= 2
[zn−2]∂uM(z, v, u)

[zn−2]M(z, v, u)
·
[zn−2]M(z, v, u)

[zn]M(z, v, u)

∣∣∣∣∣
v=u=1

∼ 2µ4
n− 2

122



Moment Method

M(z, v, u, u2) ... generating function, where u counts pure 4-gons and

u2 pure 2-gons

M M M

E[X(P )
n (X(P )

n − 1)] =

(
2!

[zn]4z4(2!)−1∂2uM(z, v, u, u2)

[zn]M(z, v, u, u2)

) ∣∣∣∣∣
v=u=u2=1

+

(
2!

[zn]2z4∂uM(z, v, u, u2)

[zn]M(z, v, u, u2)

) ∣∣∣∣∣
v=u=u2=1

+

(
2!

[zn]z4∂u2M(z, v, u, u2)

[zn]M(z, v, u, u2)

) ∣∣∣∣∣
v=u=u2=1



Moment Method

Remark.

M(z, v, u) ... generating function, where u counts pure 4-gons

By the D.+Panagiotou-method we have the property that

E[uX
(4)
n ] =

h̃(1, u)

h̃(1,1)

(
ρ̃(1,1)

ρ̃(1, u)

)n (
1+O

(
1

n

))
which implies that

E[(X(4)
n )r] ∼ (nf ′(1))ke

r2
2n

f ′′(1)
(f ′(1))2

uniformly for 0 ≤ r ≤ C
√
n.

With factorial moments of X(4)
n (and more ...) we can then compute

the factorial moments of X
(P )
n .



Moment Method

A Problem. Overlaps of several occurences of P

M M

Solution. We only have to take care of double occurences. The

other cases do not contribute to the asympotic leading term.



Moment Method

unlabel patterns

delete
interior edges

label 4-faces

k!

2r1+r2
(
r1+r2
r1

)

1
(r1+r2)!d2!

1

2

34

5

67

8

9

10

1

2

3

4

5

1



Moment Method

Theorem 4 [D.+Hainzl+Wormald 2024+]

Let P be a pattern with a simple boundary (in particular without cut-

vertices or loops) and let X
(P )
n be the number of occurences of P in a

random planar map. Then

X
(P )
n − E[X(P )

n ]√
V[X(P )

n ]
→ N (0,1).

Remark. It is very likely that this method can be generalized to general

pattern (ongoing work).



General Framework

Let f be proper local functional on a structure Gn with a Benjamini-

Schramm limit and let Sn =
∑

x∈Gn

f(x) be the sum functional on a

random structure Gn of size n.

Then (under natural assumptions) we know that

ESn ∼ cn

Which additional condition on the Benjamini-Schramm limit im-

plies a CLT for Sn ??

For example, it is not known if the number of vertices of given degree

k in random planar graphs with n vertices satisfy a CLT (although a

Benjamini-Schramm limit exists).



Thank You!


