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The Twelvefold Way



The Twelvefold Way

Figure 1: Classification due to Rota in the 60's
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The Twelvefold Way (2)

About generation
The counting enumeration formula is well known for each of the twelve
cases.
What about the generation algorithm for these combinatorial objects?

AofA 2024, Bath 5/36



Unranking algorithms
Definition
Unranking algorithms are used to generate combinatorial objects.
• Let 𝒞 be a class of combinatorial objects

‣ Let 𝒪 be a total order over 𝒞
‣ Let 𝑟 ∈ ℕ such that 𝑟 < |𝒞|

• An unranking algorithm for 𝒞 outputs the 𝑟th object of 𝒞 according to 𝒪

Uses
Bijection between ⟦0, |𝒞| − 1⟧ = ⟦|𝒞 − 1|⟧ and 𝒞
2 main use cases :
• Exhaustive generation
• Random generation

Unranking algorithms for the Twelvefold Way
Given a constructive enumeration formula 𝒻 for a class of combinatorial
objects, we derive an unranking algorithm.
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Unranking algorithms for the Twelvefold Way:
Example

Unranking algorithms for the Twelvefold Way: Example
We are interested in combinations of 𝑘 elements among ⟦0, 𝑛 − 1⟧.
• Such objects are counted by the binomial coefficient (𝑛

𝑘)
‣

(𝑛
𝑘) =

⎩{
⎨
{⎧(

𝑛
0
)=(𝑛

𝑛)=1

(𝑛−1
𝑘−1

)+(𝑛−1
𝑘

)

‣ Combinatorially, this translates to :
– The first element of the set is in the combination, in this case it remains

𝑘 − 1 elements to choose among 𝑛 − 1 elements
– The first element is not in the combination, in this case it remains 𝑘 elements

to choose among 𝑛 − 1 elements.
‣ The unranking algorithm is then straightforward :

– If 𝑟 < (𝑛−1
𝑘−1), the first element is in the combination, otherwise it is not.

– After having adapted the rank, we can recursively build the rest of the
combination.
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Unranking algorithms for the Twelvefold Way

Rank Combinations
0 (1 2 3)
1 (1 2 4)
2 (1 2 5)
3 (1 3 4)
4 (1 3 5)
… …
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Unranking algorithms for the Twelvefold Way

Rank Combinations Set partitions
0 (1 2 3) { { 1 4 5 } { 2 } { 3 } }
1 (1 2 4) { { 1 5 } { 2 4 } { 3 } }
2 (1 2 5) { { 1 5 } { 2 } { 3 4 } }
3 (1 3 4) { { 1 3 5 } { 2 } { 4 } }
4 (1 3 5) { { 1 5 } { 2 3 } { 4 } }
… … …

Order
Can we fix an order that is more intuitive?
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Unranking algorithms for the Twelvefold Way (3)
Lexicographic order
• There exist a lexicographic unranking algorithm for nine out of the

twelve cases of the Twelvefold Way
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Lexicographic unranking of set
partitions [case 9]



Set partitions
Set partitions
Giving a set of 𝑛 labeled elements, and 𝑘 indistinguishable blocks, a set
partition is a way to distribute the elements among the blocks such that:
• Each element is exactly in one block
• There is no empty block
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Set partitions (2)
Prop. 1: Set partitions enumeration
The set partitions [9] are counted by the Stirling numbers of the second
kind {𝑛

𝑘} recursively defined by : {𝑛
𝑘} = {

1 if 𝑘=1 ∨ 𝑛=𝑘

{𝑛−1
𝑘−1

}+𝑘⋅{𝑛−1
𝑘

} otherwise

Sequential form [Mansour, 2012]
In the following, we will represent a set partition as a sequence of blocks
ordered with respect to their minimal element.
• 1/23/45 is the sequential form of {{2, 3}{1}{4, 5}}

Theorem 1: Lexicographic order
Let 𝑃  and 𝑄 be two subsets of integers. We say that 𝑃 ≤ 𝑄 iff either
{𝑃=𝑄 ∨ 𝑃⊂𝑄 and max(𝑃)< min(𝑄/𝑃)

𝑄⊂𝑃 and min(𝑃/𝑄)< max(𝑄) ∨ min(𝑃/𝑄)< min(𝑄/𝑃)
This relation is a total order over subsets of integers. Futhermore,
considering sets partitions in sequential form, the derived total order is the
lexicographic order.

AofA 2024, Bath 13/36



Set partitions (3)
Rank Partition Canonical form [Mansour, 2012] Rank Partition Canonical form [Mansour, 2012]

0 1/2/345 12333 13 13/2/45 12133

1 1/23/45 12233 14 13/24/5 12123

2 1/234/5 12223 15 13/25/4 12132

3 1/235/4 12232 16 134/2/5 12113

4 1/24/35 12323 17 135/2/4 12131

5 1/245/3 12322 18 14/2/35 12313

6 1/25/34 12332 19 14/23/5 12213

7 12/3/45 11233 20 14/25/3 12312

8 12/34/5 11223 21 145/2/3 12311

9 12/35/4 11232 22 15/2/34 12331

10 123/4/5 11123 23 15/23/4 12231

11 124/3/5 11213 24 15/24/3 12321

12 125/3/4 11231

Table 3: Ranking of the 3-partitions of ⟦5⟧

AofA 2024, Bath 14/36



Set partitions (4)

Unranking in lexicographic order
The combinatorial interpretation of the construction of Stirling numbers of
the second kind does not lead to lexicographic order.
• How can we lexicographically unrank a set partition?
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Prefix of a set partition
Prefix of a set partition
Let 𝑃 = 𝑝1/…/𝑝𝑘 be a set partition in sequential form. We say that 𝜋 is a
prefix of 𝑃  iff 𝜋 ⊂ 𝑝1 and 𝜋 ≤ 𝑝1

Example
1, 12 and 123 are prefixes of 123/4/56
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Prefix completion theorem
Theorem 2: Prefix completion
Let 1 ≤ 𝑘 ≤ 𝑛 be two positive integers, Let 𝑙 and 𝑑 be two integers such
that either 𝑙 = 𝑑 = 1 or 1 < 𝑙 ≤ 𝑑. For a given prefix Π = 𝛼1, …, 𝛼𝑙−1, 𝑑,
we define 𝑆𝑛

𝑘 (𝑙, 𝑑) to be the numbers of partitions in 𝒫𝑛
𝑘  accepting Π as

prefix of length 𝑙. Futhermore, we have :
𝑆𝑛

𝑘 (𝑙, 𝑑) = ∑𝑛−𝑘−𝑙+1
𝑢=0 {𝑛−𝑙−𝑢

𝑘−1
} ⋅ (𝑛−𝑑

𝑢 )
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Prefix completion theorem : Interprétation
Combinatorial interpretation

𝑆𝑛
𝑘 (𝑙, 𝑑) = ∑𝑛−𝑘−𝑙+1

𝑢=0 {𝑛−𝑙−𝑢
𝑘−1

} ⋅ (𝑛−𝑑
𝑢 ):

Let 𝑃  be a set partition of 𝒫𝑛
𝑘  admiting Π as prefix.

• 𝑢 is the numbers of elements that we add to the prefix to complete it.
‣ If Π is the first block of 𝑃 , then, 𝑢 = 0.
‣ If Π is a strict prefix of 𝑃 , then the maximal capacity of the first block

of 𝑃  is 𝑛 − 𝑘. Therefore, we can’t add more than 𝑛 − 𝑘 − 𝑙 + 1
elements to the prefix.

• Once the size of the prefix is computed, we need to determine the number
of ways to complete the prefix.
‣ There are 𝑢 elements to choose among the legals elements to complete

the prefix. This is counted by (𝑛−𝑑
𝑢 ).

• Once the prefix is completed, we need to determine the remainings blocks
of 𝑃 .
‣ This is counted by {𝑛−𝑙−𝑢

𝑘−1
}
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Prefix completion theorem : Other forms

Other forms
The prefix completion theorem can be rewritten in other forms :
• ̃𝑆𝑛

𝑘 (𝑑) = ∑min(𝑛−𝑘,𝑛−𝑑)
𝑢=0 {𝑛−𝑢

𝑘 } ⋅ (𝑛−𝑑
𝑢 ) = 𝑆𝑛+𝑙

𝑘+1(𝑑 + 𝑙)

• ̃𝑆𝑛
𝑘 (𝑑) = ∑min(𝑛−𝑘,𝑑)

𝑢=0 (−1)𝑢{𝑛+1−𝑢
𝑘+1 }(𝑑

𝑢)
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Algorithm



Algorithm design
Algorithm design
• We build the set partition block by block from left to right
• We build the blocks from the left to right
• In order to build the 𝑖th block, we use the ̃𝑆𝑛

𝑘  formula to determine the
prefix starting by the prefix 1 and ending by the prefix 1𝑛.

Example
We want to unrank the 1st block of the 20th partition of ⟦5⟧ in 3 blocks.

Step Rank Block Prefix tested Number of partitions Comment

1 20 {} 1 25 20 < 25
1 bis 20 {1} exactly 1 6 20 > 6
2 14 {1} 12 6 14 > 6
3 8 {1} 13 5 8 > 5
4 3 {1} 14 4 3 < 4
5 3 {1,4} exactly 14 3 3 ≤ 3
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Algorithm design (2)
Optimisation
Can we do better ?

Optimisation
YES !
• We can use the 𝑅𝑛

𝑘  formula in order to use a binary search to determine
the prefix.

Theorem 3: An other form of the prefix completion theorem
Let 1 ≤ 𝑘 ≤ 𝑛 be two positive integer. Let 𝑑1 ∈ ⟦2, 𝑛⟧, 𝑑0 ∈ ⟦𝑑1 − 1⟧ and
𝑙 > 1 be integers. For a given prefix 𝛼1, …, 𝛼𝑙−2, 𝑑0, the numbers of
elements of 𝒫𝑛

𝑘  that admit a length-𝑙 prefix satisfying 1, 𝛼2, …, 𝛼𝑙−2, 𝑑0, 𝑑1,
𝑑1 ∈ ⟦𝑑0 + 1, 𝑑1⟧ is given by :
𝑅𝑛

𝑘 (𝑙, 𝑑0, 𝑑1) = ̃𝑆𝑛−𝑙
𝑘−1(𝑑0 − 𝑙) − ̃𝑆𝑛−𝑙

𝑘−1(𝑑1 + 1 − 𝑙)
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Algorithm design (3)

Example
We want to unrank the 1st block of the 20th partition of ⟦5⟧ in 3 blocks.

Step Rank Block Prefix tested Number of partitions
1 20 {} 13 17
2 3 {} 14 4
3 3 {1,4} - -

Our algorithm converges in 3 steps instead of 5.
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Algorithm implementation

Question
Can we do better ?

Optimisation
YES !
• The 𝑅𝑛

𝑘  formula has several writing in the form of sums wich has
different numbers of terms. Thus, before calling 𝑅𝑛

𝑘 , we choose the
formula that has the least number of terms.
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Algorithm implementation
Algorithm implementation
In order to compute the Stirling numbers, we had two main choices:
• Put in cache the values of the Stirling numbers
• Compute them on the fly

Caching Stirling numbers
When 𝑘 ≈ log(𝑛), log({𝑛

𝑘}) = Θ(𝑛 ⋅ log(𝑛)5) [Rennie & Dobson, 1969].
Thus, precomputing the Stirling numbers cost among 𝑂(𝑛3) bit memory
space, which will saturate the memory of a modern laptop for 𝑛 ≈ 3000.

Computing Stirling numbers on the fly
The explicit formula of the Stirling numbers of the second kind is {𝑛

𝑘} =
1
𝑘! ∑𝑘

𝑖=0 (−1)𝑘−𝑖(𝑘
𝑖)𝑖𝑛.

which costs 𝑂(𝑘) operations on big int. to compute {𝑛
𝑘}. In practice, the

cost of such computation is too expensive for 𝑛 ≈ 2000.
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Algorithm implementation (2)

Usefull Stirling numbers
During the 𝑘th block construction: only need the 𝑘th and the (𝑘 − 1)th

columns. Futhermore, compute the previous Stirling column from the
current one is linear using the recursive formula.

Number of call to 𝑅𝑛
𝑘

Determining one component of the 𝑘th block costs 𝑂(log(𝑛)) calls to 𝑅𝑛
𝑘 .

Futhermore, the cost of a call to 𝑅𝑛
𝑘  is 𝑂(𝑛).
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Algorithm implementation
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Complexity analysis & performance in practice
Theorem 4: Theoretical complexity
The bit-complexity of our algorithm is bounded by
𝑂( (𝑛−𝑘)3⋅𝑀(𝑛)

𝑛 ln(𝑛) ln(𝑘) + 𝑘(𝑛−𝑘)2𝑀(𝑛)
𝑛 ln(𝑛)(ln(𝑛⋅𝑒

𝑘 )))
where 𝑀(𝑛) is the cost of a multiplication of two 𝑛-bits big integers (in
practice 𝑀(𝑛) = 𝑂(𝑛log(3))).

Benchmark procedure
In order to have an overview of the performance of our algorithm, we
provide 6 diferents implementations of 𝑅𝑛

𝑘  :
• S_v1: The direct implementation of 𝑅𝑛

𝑘 .
• S_v2: S_v1 but taking into acount the symmetry of binomial coefficients.
• S_v3: The binomial transform of 𝑅𝑛

𝑘 .
• S_v4: S_v3 but taking into acount the symmetry of binomial coefficients.
• S_v5: Call to S_v2 or S_v4 depending on the number of terms of the

formula.
• S_v6: S_v5 but Stirling numbers are precomputed.
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Performance in practice
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Extension to problems [case 3] and
[case 7]



Ordered set partitions [3]
Prop. 2: Ordered set partitions enumeration
The ordered set partitions are counted by the ordered Stirling numbers
of the second kind defined by : 𝒪𝑛

𝑘 = 𝑘! ⋅ {𝑛
𝑘}.

Theorem 5: Prefix completion
Let 1 ≤ 𝑘 ≤ 𝑛 be two positive integers, let 𝑙 and 𝑑 be two integers. For a
given prefix Π = 𝛼1, …, 𝛼𝑙−1, 𝑑, we define 𝑇 𝑛

𝑘(𝑙,𝑑) to be the number of
ordered set partitions of ⟦𝑛⟧ in 𝑘 parts that admit Π as prefix of length 𝑙. We
have
𝑇 𝑛

𝑘(𝑙,𝑑) = ∑𝑛−𝑘−𝑙+1
𝑢=0 𝑘! ⋅ {𝑛−𝑙−𝑢

𝑘−1
} ⋅ (𝑛−𝑑

𝑢 ).
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Bell’s set partitions
Prop. 3: Bell set partitions
The Bell set partitions are counted by the Bell numbers 𝐵𝑛 defined by :
𝐵𝑛 = ∑𝑛

𝑘=1{
𝑛
𝑘}.

Theorem 6: Prefix completion
Let 1 ≤ 𝑘 ≤ 𝑛 be two positive integers, let 𝑙 and 𝑑 be two integers such that
either 𝑙 = 𝑑 = 1 or 1 < 𝑙 ≤ 𝑑. For a given prefix Π = 𝛼1, …, 𝛼𝑙−1, 𝑑, we
define 𝑆𝑛

𝑘 (𝑙, 𝑑) to be the numbers of partitions in 𝒫𝑛
𝑘  accepting Π as prefix

of length 𝑙. Futhermore, we have:
𝑆𝑛

𝑘 (𝑙, 𝑑) = ∑𝑛−𝑘−𝑙+1
𝑢=0 ∑𝑘

𝑖=1{
𝑛−𝑙−𝑢

𝑖−1 } ⋅ (𝑛−𝑑
𝑢 ).
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Conclusion



Conclusion
Conclusion
In this talk, we have presented a prefix completion theorem which leads to
a lexicographic unranking algorithm for set partitions. This algorithm is
highly adaptatable to other combinatorial structures.
• Code available at https://pkg.golang.ir/github.com/AMAURYCU/

setpartition_unrank#section-readme

Future works
• Our algorithm is easily adaptable to other structures to handle them, we

need to change few lines of code.
‣ How can we generalize our algorithm so that we do not have to change

any lines of code?
• Try to improve the efficiency for other existing unranking algorithms

using concurrency.
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