Lexicographic unranking algorithms for the Twelvefold Way

Amaury Curiel & Antoine Genitrini SU - LIP6

Wednesday, June 19th

Table des matières

The Twelvefold Way	3
Lexicographic unranking of set partitions [case 9]	11
Algorithm	20
Extension to problems [case 3] and [case 7]	30
Conclusion	33

The Twelvefold Way

The Twelvefold Way

elts of \mathcal{N}	elts of \mathcal{K}	f is arbitrary	f is injective	f is surjective
dist.	dist.	$\begin{array}{c c} 1. \\ n\text{-sequence in } \mathcal{K} \end{array}$	$\begin{array}{c} \textbf{2.} \\ n\text{-permutation of } \mathcal{K} \end{array}$	3. composition of \mathcal{N} with k subsets
enume	eration	k^n	$k^{\underline{n}}$	$k! \cdot {n \atop k}$
		4.	5.	6.
indist.	dist.	<i>n</i> -multisubset of \mathcal{K}	n -subset of \mathcal{K}	composition of n
enume	eration	$\binom{k+n-1}{n}$	$\binom{k}{n}$	with k terms $\binom{n-1}{n-k}$
		7.	8.	9.
dist.	indist.	partition of $\mathcal N$	partition of $\mathcal N$	partition of ${\cal N}$
		into $\leq k$ subsets	into $\leq k$ elements	into k subsets
enume	eration	$\sum_{i=0}^k {n \brack i}$	$[n \leq k]$	${n \choose k}$
		10.	11.	12.
indist.	dist.	partition of n	partition of n	partition of n
		into $\leq k$ parts	into $\leq k$ parts {1}	into k parts
enume	eration	$p_k(n+k)$	$[n \leq k]$	$p_k(n)$

Figure 1: Classification due to Rota in the 60's

AofA 2024, Bath

The Twelvefold Way (2)

About generation

The counting enumeration formula is well known for each of the twelve cases.

What about the generation algorithm for these combinatorial objects?

Unranking algorithms

Definition

Unranking algorithms are used to generate combinatorial objects.

- Let ${\mathcal C}$ be a class of combinatorial objects
 - Let $\mathcal O$ be a total order over $\mathcal C$
 - Let $r \in \mathbb{N}$ such that $r < |\mathcal{C}|$
- An unranking algorithm for ${\mathcal C}$ outputs the $r^{\rm th}$ object of ${\mathcal C}$ according to ${\mathcal O}$

Uses

Bijection between
$$[\![0,|\mathcal{C}|-1]\!]=[\![|\mathcal{C}-1|]\!]$$
 and \mathcal{C}

2 main use cases :

- Exhaustive generation
- Random generation

Unranking algorithms for the Twelvefold Way

Given a constructive enumeration formula $\not \!\!\!/$ for a class of combinatorial objects, we derive an unranking algorithm.

Unranking algorithms for the Twelvefold Way: Example

Unranking algorithms for the Twelvefold Way: Example

We are interested in combinations of k elements among $[\![0,n-1]\!].$

- Such objects are counted by the binomial coefficient $\binom{n}{k}$
 - $\overset{\bullet}{\begin{pmatrix}} n \\ k \end{pmatrix} = \begin{cases} \binom{n}{0} = \binom{n}{n} = 1 \\ \binom{n-1}{k-1} + \binom{n-1}{k} \end{cases}$
 - Combinatorially, this translates to :
 - The first element of the set is in the combination, in this case it remains
 - k-1 elements to choose among n-1 elements
 - The first element is not in the combination, in this case it remains k elements to choose among n-1 elements.
 - The unranking algorithm is then straightforward :
 - If $r < \binom{n-1}{k-1}$, the first element is in the combination, otherwise it is not.
 - After having adapted the rank, we can recursively build the rest of the combination.

Unranking algorithms for the Twelvefold Way

Rank	Combinations
0	(1 2 3)
1	(1 2 4)
2	(1 2 5)
3	(1 3 4)
4	(1 3 5)

Unranking algorithms for the Twelvefold Way

Rank	Combinations	Set partitions
0	(1 2 3)	$\{\{145\}\{2\}\{3\}\}$
1	(1 2 4)	$\{\{15\}\{24\}\{3\}\}$
2	(1 2 5)	$\{\{15\}\{2\}\{34\}\}$
3	(1 3 4)	$\{\{135\}\{2\}\{4\}\}$
4	(1 3 5)	$\{\{15\}\{23\}\{4\}\}$

Order

Can we fix an order that is more intuitive?

AofA 2024, Bath

Unranking algorithms for the Twelvefold Way (3)

Lexicographic order

• There exist a lexicographic unranking algorithm for nine out of the twelve cases of the Twelvefold Way

elts of ${\cal N}$	elts of \mathcal{K}	f is arbitrary	f is injective	f is surjective
dist. dist.		1. n-sequence in \mathcal{K}	$\begin{array}{c} \textbf{2.} \\ \text{n-permutation of } \mathcal{K} \end{array}$	$\begin{array}{c} \textbf{3.}\\ \text{composition of }\mathcal{N}\\ \text{with }k \text{ subsets} \end{array}$
enume	eration	k^n	$k^{\underline{n}}$	$k! \cdot {n \brack k}$
indist. dist.		$\begin{array}{c c} \textbf{4.} \\ n\text{-multisubset of } \mathcal{K} \end{array}$	5. n -subset of \mathcal{K}	$\begin{array}{c} 6. \\ \text{composition of } n \\ \text{with } k \text{ terms} \end{array}$
enumeration		$\binom{k+n-1}{n}$	$\binom{k}{n}$	$\binom{n-1}{n-k}$
dist. indist.		7. partition of \mathcal{N} into $\leq k$ subsets	8. partition of \mathcal{N} into $\leq k$ elements	9. partition of \mathcal{N} into k subsets
enumeration		$\sum_{i=0}^k {n \\ i}$	$[n \le k]$	${n \\ k}$
indist. indist.		$10.$ partition of n into $\leq k$ parts	11. partition of n into $\leq k$ parts $\{1\}$	12. partition of n into k parts
enumeration		$p_k(n+k)$	$[n \le k]$	$p_k(n)$

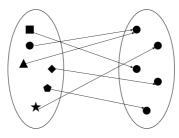
Lexicographic unranking of set partitions [case 9]

Set partitions

Set partitions

Giving a set of n labeled elements, and k indistinguishable blocks, a set partition is a way to distribute the elements among the blocks such that:

- Each element is exactly in one block
- There is no empty block



 $\{\,\{\blacksquare\}\{\bullet\,\,\vartriangle\}\{\bullet\}\{\bullet\}\{\bullet\}\{\star\}\,\}$

Set partitions (2)

Prop. 1: Set partitions enumeration The set partitions [9] are counted by the Stirling numbers of the second kind $\binom{n}{k}$ recursively defined by : $\binom{n}{k} = \begin{cases} 1 & \text{if } k=1 \lor n=k \\ \binom{n-1}{k-1} + k \cdot \binom{n-1}{k} & \text{otherwise} \end{cases}$

Sequential form [Mansour, 2012]

In the following, we will represent a set partition as a sequence of blocks ordered with respect to their minimal element.

+ 1/23/45 is the sequential form of $\{\{2,3\}\{1\}\{4,5\}\}$

Theorem 1: Lexicographic order

Let P and Q be two subsets of integers. We say that $P \leq Q$ iff either $\begin{cases} P=Q & \lor & P \subset Q \text{ and } \max(P) < \min(Q/P) \\ Q \subset P \text{ and } \min(P/Q) < \max(Q) & \lor & \min(P/Q) < \min(Q/P) \end{cases}$ This relation is a total order over subsets of integers. Futhermore, considering sets partitions in sequential form, the derived total order is the **lexicographic order**.

AofA 2024, Bath

Set partitions (3)

Rank	Partition	Canonical form [Mansour, 2012]	Rank	Partition	Canonical form [Mansour, 2012]
0	1/2/345	12333	13	13/2/45	12133
1	1/23/45	12233	14	13/24/5	12123
2	1/234/5	12223	15	13/25/4	12132
3	1/235/4	12232	16	134/2/5	12113
4	1/24/35	12323	17	135/2/4	12131
5	1/245/3	12322	18	14/2/35	12313
6	1/25/34	12332	19	14/23/5	12213
7	12/3/45	11233	20	14/25/3	12312
8	12/34/5	11223	21	145/2/3	12311
9	12/35/4	11232	22	15/2/34	12331
10	123/4/5	11123	23	15/23/4	12231
11	124/3/5	11213	24	15/24/3	12321
12	125/3/4	11231			

Table 3: Ranking of the 3-partitions of $[\![5]\!]$

Set partitions (4)

Unranking in lexicographic order

The combinatorial interpretation of the construction of Stirling numbers of the second kind does not lead to lexicographic order.

• How can we lexicographically unrank a set partition?

Prefix of a set partition

Prefix of a set partition

Let $P=p_1/.../p_k$ be a set partition in sequential form. We say that π is a prefix of P iff $\pi\subset p_1$ and $\pi\leq p_1$

Example

1, 12 and 123 are prefixes of 123/4/56

Prefix completion theorem

Theorem 2: Prefix completion

Let $1 \le k \le n$ be two positive integers, Let l and d be two integers such that either l = d = 1 or $1 < l \le d$. For a given prefix $\Pi = \alpha_1, ..., \alpha_{l-1}, d$, we define $S_k^n(l, d)$ to be the numbers of partitions in \mathcal{P}_k^n accepting Π as prefix of length l. Furthermore, we have : $S_k^n(l, d) = \sum_{u=0}^{n-k-l+1} {n-l-u \choose u} \cdot {n-d \choose u}$

Prefix completion theorem : Interprétation

Combinatorial interpretation

$$S^n_k(l,d) = \sum_{u=0}^{n-k-l+1} \binom{n-l-u}{k-1} \cdot \binom{n-d}{u}$$
 :

Let P be a set partition of \mathcal{P}^n_k admiting Π as prefix.

- u is the numbers of elements that we add to the prefix to complete it.
 - If Π is the first block of P, then, u = 0.
 - If ∏ is a strict prefix of P, then the maximal capacity of the first block of P is n − k. Therefore, we can't add more than n − k − l + 1 elements to the prefix.
- Once the size of the prefix is computed, we need to determine the number of ways to complete the prefix.
- Once the prefix is completed, we need to determine the remainings blocks of *P*.

• This is counted by
$$\binom{n-l-u}{k-1}$$

Prefix completion theorem : Other forms

Other forms

The prefix completion theorem can be rewritten in other forms :

•
$$\tilde{S}_k^n(d) = \sum_{u=0}^{\min(n-k,n-d)} {n-u \choose k} \cdot {n-d \choose u} = S_{k+1}^{n+l}(d+l)$$

-
$$\tilde{S}_k^n(d) = \sum_{u=0}^{\min(n-k,d)} (-1)^u {n+1-u \brack k+1} {d \choose u}$$

Algorithm

Algorithm design

Algorithm design

- We build the set partition block by block from left to right
- We build the blocks from the left to right
- In order to build the i^{th} block, we use the \tilde{S}_k^n formula to determine the prefix starting by the prefix 1 and ending by the prefix 1n.

Example

We want to unrank the $1^{\rm st}$ block of the $20^{\rm th}$ partition of $[\![5]\!]$ in 3 blocks.

Step	Rank	Block	Prefix tested	Number of partitions	Comment
1	20	{}	1	25	20 < 25
1 bis	20	{1}	exactly 1	6	20 > 6
2	14	{1}	12	6	14 > 6
3	8	{1}	13	5	8 > 5
4	3	{1}	14	4	3 < 4
5	3	{1,4}	exactly 14	3	$3 \leq 3$

Algorithm design (2)

Optimisation

Can we do better ?

Optimisation

YES !

- We can use the R_k^n formula in order to use a binary search to determine the prefix.

Theorem 3: An other form of the prefix completion theorem

Let $1 \leq k \leq n$ be two positive integer. Let $d_1 \in [\![2,n]\!], d_0 \in [\![d_1-1]\!]$ and l > 1 be integers. For a given prefix $\alpha_1, ..., \alpha_{l-2}, d_0$, the numbers of elements of \mathcal{P}^n_k that admit a length-l prefix satisfying $1, \alpha_2, ..., \alpha_{l-2}, d_0, \widetilde{d_1}, \widetilde{d_1} \in [\![d_0+1, d_1]\!]$ is given by : $R^n_k(l, d_0, d_1) = \tilde{S}^{n-l}_{k-1}(d_0 - l) - \tilde{S}^{n-l}_{k-1}(d_1 + 1 - l)$

Algorithm design (3)

Example

We want to unrank the 1^{st} block of the 20^{th} partition of $[\![5]\!]$ in 3 blocks.

Step	Rank	Block	Prefix tested	Number of partitions
1	20	{}	13	17
2	3	{}	14	4
3	3	{1,4}	-	-

Our algorithm converges in 3 steps instead of 5.

Algorithm implementation

Question

Can we do better ?

Optimisation

YES !

• The R_k^n formula has several writing in the form of sums wich has different numbers of terms. Thus, before calling R_k^n , we choose the formula that has the least number of terms.

Algorithm implementation

Algorithm implementation

In order to compute the Stirling numbers, we had two main choices:

- Put in cache the values of the Stirling numbers
- Compute them on the fly

Caching Stirling numbers

When $k \approx \log(n)$, $\log({n \choose k}) = \Theta(n \cdot \log(n)^5)$ [Rennie & Dobson, 1969]. Thus, precomputing the Stirling numbers cost among $O(n^3)$ bit memory space, which will saturate the memory of a modern laptop for $n \approx 3000$.

Computing Stirling numbers on the fly

The explicit formula of the Stirling numbers of the second kind is $\binom{n}{k} = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{k-i} \binom{k}{i} i^{n}$. which costs O(k) operations on big int. to compute $\binom{n}{k}$. In practice, the cost of such computation is too expensive for $n \approx 2000$.

Algorithm implementation (2)

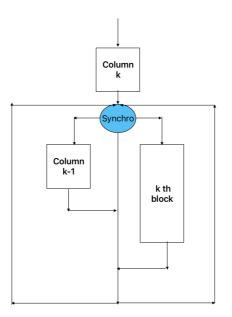
Usefull Stirling numbers

During the k^{th} block construction: only need the k^{th} and the $(k-1)^{\text{th}}$ columns. Futhermore, compute the previous Stirling column from the current one is linear using the recursive formula.

Number of call to R_k^n

Determining one component of the k^{th} block costs $O(\log(n))$ calls to R_k^n . Futhermore, the cost of a call to R_k^n is O(n).

Algorithm implementation



Complexity analysis & performance in practice

Theorem 4: Theoretical complexity

The bit-complexity of our algorithm is bounded by $O\left(\frac{(n-k)^3 \cdot M(n)}{n} \ln(n) \ln(k) + \frac{k(n-k)^2 M(n)}{n} \ln(n) \left(\ln\left(\frac{n \cdot e}{k}\right)\right)\right)$ where M(n) is the cost of a multiplication of two *n* bits hig i

where M(n) is the cost of a multiplication of two n-bits big integers (in practice $M(n)=O\bigl(n^{\log(3)}\bigr)).$

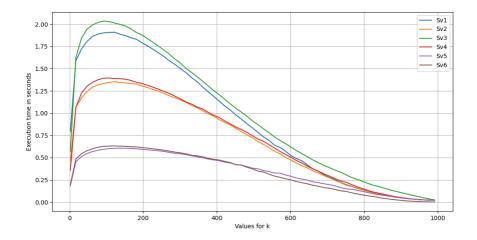
Benchmark procedure

In order to have an overview of the performance of our algorithm, we provide 6 differents implementations of R_k^n :

- S_v1: The direct implementation of R_k^n .
- S_v2: S_v1 but taking into acount the symmetry of binomial coefficients.
- S_v3: The binomial transform of R_k^n .
- S_v4: S_v3 but taking into acount the symmetry of binomial coefficients.
- S_v5: Call to S_v2 or S_v4 depending on the number of terms of the formula.
- S_v6: S_v5 but Stirling numbers are precomputed.

AofA 2024, Bath

Performance in practice



AofA 2024, Bath

Extension to problems [case 3] and [case 7]

Ordered set partitions [3]

Prop. 2: Ordered set partitions enumeration

The ordered set partitions are counted by the **ordered Stirling numbers** of the second kind defined by : $\mathcal{O}_k^n = k! \cdot {n \atop k}$.

Theorem 5: Prefix completion

Let $1 \le k \le n$ be two positive integers, let l and d be two integers. For a given prefix $\Pi = \alpha_1, ..., \alpha_{l-1}, d$, we define $T_{k(l,d)}^n$ to be the number of ordered set partitions of $[\![n]\!]$ in k parts that admit Π as prefix of length l. We have

$$T_{k(l,d)}^n = \sum_{u=0}^{n-k-l+1} k! \cdot \begin{Bmatrix} n-l-u \\ k-1 \end{Bmatrix} \cdot \binom{n-d}{u}.$$

Bell's set partitions

Prop. 3: Bell set partitions

The Bell set partitions are counted by the **Bell numbers** B_n defined by : $B_n = \sum_{k=1}^n {n \\ k}.$

Theorem 6: Prefix completion

Let $1 \le k \le n$ be two positive integers, let l and d be two integers such that either l = d = 1 or $1 < l \le d$. For a given prefix $\Pi = \alpha_1, ..., \alpha_{l-1}, d$, we define $S_k^n(l, d)$ to be the numbers of partitions in \mathcal{P}_k^n accepting Π as prefix of length l. Futhermore, we have: $S_k^n(l, d) = \sum_{u=0}^{n-k-l+1} \sum_{i=1}^k {n-l-u \choose i-1} \cdot {n-d \choose u}$.

Conclusion

Conclusion

Conclusion

In this talk, we have presented a prefix completion theorem which leads to a lexicographic unranking algorithm for set partitions. This algorithm is highly adaptatable to other combinatorial structures.

 Code available at https://pkg.golang.ir/github.com/AMAURYCU/ setpartition_unrank#section-readme

Future works

- Our algorithm is easily adaptable to other structures to handle them, we need to change few lines of code.
 - How can we generalize our algorithm so that we do not have to change any lines of code?
- Try to improve the efficiency for other existing unranking algorithms using concurrency.

Bibliographie

- Mansour, T. [2012]. Combinatorics of Set Partitions. Taylor & Francis. https:// doi.org/10.1201/b12691
- Rennie, B., & Dobson, A. [1969]. On stirling numbers of the second kind. *Journal of Combinatorial Theory*, 7[2], 116–121. https://doi.org/10.1016/S 0021-9800(69)80045-1

elts of ${\cal N}$	elts of \mathcal{K}	f is arbitrary	f is injective	f is surjective
dist. dist.		1. n-sequence in ${\cal K}$	$\begin{array}{c} \textbf{2.} \\ \text{n-permutation of } \mathcal{K} \end{array}$	$\begin{array}{c} \textbf{3.} \\ \text{composition of } \mathcal{N} \\ \text{with } k \text{ subsets} \end{array}$
enume	eration	k^n	$k^{\underline{n}}$	$k! \cdot {n \brack k}$
indist. dist.		$\begin{array}{c c} & 4. \\ & n \text{-multisubset of } \mathcal{K} \end{array}$	5. <i>n</i> -subset of \mathcal{K}	$\begin{array}{c} 6. \\ \text{composition of } n \\ \text{with } k \text{ terms} \end{array}$
enume	eration	$\binom{k+n-1}{n}$	$\binom{k}{n}$	$\binom{n-1}{n-k}$
dist. indist.		$\begin{array}{ c c }\hline \textbf{7.}\\ \text{partition of }\mathcal{N}\\ \text{into }\leq k \text{ subsets} \end{array}$	8. partition of \mathcal{N} into $\leq k$ elements	$\begin{array}{c} \textbf{9.} \\ \text{partition of } \mathcal{N} \\ \text{into } k \text{ subsets} \end{array}$
enumeration		$\sum_{i=0}^{k} {n \\ i}$	$[n \le k]$	${n \\ k}$
indist. indist.		$\begin{array}{ c c c } \textbf{10.} \\ \text{partition of } n \\ \text{into } \leq k \text{ parts} \end{array}$	11. partition of n into $\leq k$ parts $\{1\}$	12. partition of n into k parts
enume	eration	$p_k(n+k)$	$[n \leq k]$	$p_k(n)$